Optimization algorithms on matrix manifolds

Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on...

Full description

Saved in:
Bibliographic Details
Main Authors Absil, P.A, Mahony,R, Sepulchre,R
Format eBook Book
LanguageEnglish
Published Princeton Princeton University Press 2008
Edition1
Subjects
Online AccessGet full text
ISBN9780691132983
0691132984
1400830249
9781400830244
DOI10.1515/9781400830244

Cover

Abstract Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra.
AbstractList Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.
Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra.
No detailed description available for "Optimization Algorithms on Matrix Manifolds".
Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifoldsoffers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.
Author Mahony,R
Sepulchre,R
Absil, P.A
Author_xml – sequence: 1
  fullname: Absil, P.A
– sequence: 2
  fullname: Absil, P.A
– sequence: 3
  fullname: Mahony,R
– sequence: 4
  fullname: Sepulchre,R
BackLink https://cir.nii.ac.jp/crid/1130282270670001664$$DView record in CiNii
BookMark eNplkU1vEzEQho2giKbkyAkh9YBACAU8_vaRRv1AqtQegKvl3fVunOyug-1Qyq_H6UYghA8ej97H74zHM_RkDKND6AXgD8CBf9RSAcNYUUwYe4RmfxL9GM2LiIUGoEQreoRmBGOpieRUPUXHjCpJiQTxDM1TWuOyCHAp1DF6f7PNfvC_bPZhPLV9F6LPqyGdlmywOfqfJYy-DX2TnqOj1vbJzQ_xBH27OP-yvFpc31x-Xn66XljFtMILYikWSlak4UBqDU4q5qgAZ1vdAC2voHVNuRCtBFAt4ZZXjQNSaQuu1o6eoHeTsU0bd5dWoc_J_OhdFcImmX_m8Je9s312sXFd3N2XgxlsrP9j30zsNobvO5eyebCs3Zij7c352ZJxWXoq4MsD6GLvumCmypIyznRRX0_q6L2p_X4vdzBRhEgsZJkuCLGv9mrC1imHeLBYmzpnmYZhU_S3k-677a7qfVr5sTPb6Evn9-b26-3Z_qMoB_obUciSBQ
ContentType eBook
Book
Copyright 2008 Princeton University Press
Copyright_xml – notice: 2008 Princeton University Press
DBID E06
RYH
YSPEL
DEWEY 518.1
DOI 10.1515/9781400830244
DatabaseName Princeton University Press eBooks
CiNii Complete
Perlego
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISBN 1400830249
9781400830244
Edition 1
ExternalDocumentID 9781400830244
EBC457711
734549
BA84559669
j.ctt7smmk
PUPB0000351
Genre Electronic books
GroupedDBID -VQ
-VX
05P
089
20A
38.
6XM
92K
A4I
A4J
AABBV
AAGED
AAJDW
AAMYY
AANYM
AAUSU
AAZEP
ABARN
ABCYV
ABCYY
ABHWV
ABIAV
ABIWA
ABONK
ABYBY
ACEOT
ACFYN
ACHKM
ACISH
ACLGV
ACQYL
ADDXO
ADVEM
ADVQQ
AEAED
AECLD
AEDVL
AEEBL
AERYV
AEYCP
AFHFQ
AFRFP
AGLEC
AILDO
AIOLA
AIUUY
AIXPE
AJFER
AKHYG
ALMA_UNASSIGNED_HOLDINGS
AMYDA
APVFW
ARPAB
ARSQP
ATDNW
AZZ
BBABE
BFATZ
BFRBX
BJTYN
CDLGT
CZZ
DGVNY
DHNOV
DUGUG
E06
EBSCA
EBZNK
ECOWB
GEOUK
HELXT
HF4
I4C
IVK
IWG
J-X
JJU
JLPMJ
KBOFU
L7C
MYL
O7H
PQQKQ
QD8
SUPCW
UE6
XI1
YSPEL
~I6
ABMRC
ABQNV
ABRSK
ACBYE
ACHUA
AHWGJ
AVGCG
RYH
ID FETCH-LOGICAL-a84980-2a30687b2d512c91e784e361eaf9d138143cc3566f7118f25a5bde12b9a1ec9e3
ISBN 9780691132983
0691132984
1400830249
9781400830244
IngestDate Fri Nov 08 05:49:45 EST 2024
Sat Oct 25 00:45:46 EDT 2025
Wed Oct 29 00:48:23 EDT 2025
Tue Sep 30 17:15:04 EDT 2025
Thu Jun 26 21:52:05 EDT 2025
Tue Sep 16 03:33:23 EDT 2025
Wed Jul 17 03:28:08 EDT 2024
IsPeerReviewed false
IsScholarly false
Keywords Subset
Euclidean vector
Iterative method
Projection (linear algebra)
Matrix (mathematics)
Tangent vector
Gradient descent
Vector space
Eigenvalue algorithm
Eigenvalues and eigenvectors
Invertible matrix
Tangent space
Finsler manifold
Real projective space
Numerical linear algebra
Invariant subspace problem
Topology
Subspace topology
Riemannian manifold
Matrix decomposition
Algorithm
Complex projective space
Gauss–Newton algorithm
Line search
Directional derivative
Numerical analysis
Quasi-Newton method
Computation
Topological space
Submersion (mathematics)
Linear algebra
Inclusion map
Normed vector space
Mathematical optimization
Rayleigh quotient
Submanifold
Invariant subspace
Product topology
Fixed-point theorem
Iteration
Quotient space (topology)
Linear subspace
Computational problem
Riemannian geometry
Taylor's theorem
Manifold
Linear map
Rayleigh quotient iteration
Stiefel manifold
Theorem
Row and column spaces
Rate of convergence
Local convergence
Conjugate gradient method
Scale invariance
Numerical integration
Linear space (geometry)
Levenberg–Marquardt algorithm
Equation
Analytic function
Affine space
Quadratic equation
Constrained optimization
Geometry
Simultaneous equations
Global optimization
Newton's method
Optimization problem
Riemannian submanifold
Principal component analysis
LCCN 2007927538
LCCallNum QA402.5
LCCallNum_Ident QA402.5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a84980-2a30687b2d512c91e784e361eaf9d138143cc3566f7118f25a5bde12b9a1ec9e3
Notes Includes bibliographical references and index
OCLC 438732716
PQID EBC457711
PageCount 240
ParticipantIDs askewsholts_vlebooks_9781400830244
walterdegruyter_marc_9781400830244
proquest_ebookcentral_EBC457711
perlego_books_734549
nii_cinii_1130282270670001664
jstor_books_j_ctt7smmk
igpublishing_primary_PUPB0000351
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate [2008]
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: [2008]
PublicationDecade 2000
PublicationPlace Princeton
PublicationPlace_xml – name: Princeton
– name: Princeton, NJ
PublicationYear 2008
Publisher Princeton University Press
Publisher_xml – name: Princeton University Press
RestrictionsOnAccess restricted access
SSID ssj0000215768
Score 2.5112162
Snippet Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure....
No detailed description available for "Optimization Algorithms on Matrix Manifolds".
SourceID askewsholts
walterdegruyter
proquest
perlego
nii
jstor
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms Affine space
Algorithm
Algorithms
Analytic function
Complex projective space
Computation
Computational problem
COMPUTERS / Computer Science
Conjugate gradient method
Constrained optimization
Directional derivative
Eigenvalue algorithm
Eigenvalues and eigenvectors
Equation
Euclidean vector
Finsler manifold
Fixed-point theorem
Gauss–Newton algorithm
Geometry
Global optimization
Gradient descent
Inclusion map
Invariant subspace
Invariant subspace problem
Invertible matrix
Iteration
Iterative method
Levenberg–Marquardt algorithm
Line search
Linear algebra
Linear map
Linear space (geometry)
Linear subspace
Local convergence
Manifold
Mathematical optimization
MATHEMATICS
MATHEMATICS / Applied
Matrices
Matrix (mathematics)
Matrix decomposition
Newton's method
Normed vector space
Numerical analysis
Numerical integration
Numerical linear algebra
Optimization problem
Principal component analysis
Product topology
Projection (linear algebra)
Quadratic equation
Quasi-Newton method
Quotient space (topology)
Rate of convergence
Rayleigh quotient
Rayleigh quotient iteration
Real projective space
Riemannian geometry
Riemannian manifold
Riemannian submanifold
Row and column spaces
Scale invariance
Simultaneous equations
Stiefel manifold
Submanifold
Submersion (mathematics)
Subset
Subspace topology
Tangent space
Tangent vector
Taylor's theorem
Technology
Technology & Engineering / Engineering (General)
Theorem
Topological space
Topology
Vector space
SubjectTermsDisplay Mathematical optimization
TableOfContents Optimization algorithms on matrix manifolds -- Contents -- List of Algorithms -- Foreword -- Notation Conventions -- Chapter One: Introduction -- Chapter Two: Motivation and Applications -- Chapter Three: Matrix Manifolds: First-Order Geometry -- Chapter Four: Line-Search Algorithms on Manifolds -- Chapter Five: Matrix Manifolds: Second-Order Geometry -- Chapter Six: Newton's Method -- Chapter Seven: Trust-Region Methods -- Chapter Eight: A Constellation of Superlinear Algorithms -- Appendix A: Elements of Linear Algebra, Topology, and Calculus -- Bibliography -- Index
Front Matter Table of Contents List of Algorithms Foreword Notation Conventions Chapter One: Introduction Chapter Two: Motivation and Applications Chapter Three: Matrix Manifolds: Chapter Four: Line-Search Algorithms on Manifolds Chapter Five: Matrix Manifolds: Chapter Six: Newton’s Method Chapter Seven: Trust-Region Methods Chapter Eight: A Constellation of Superlinear Algorithms Appendix A Bibliography Index
Intro -- Contents -- List of Algorithms -- Foreword -- Notation Conventions -- 1. Introduction -- 2. Motivation and Applications -- 2.1 A case study: the eigenvalue problem -- 2.1.1 The eigenvalue problem as an optimization problem -- 2.1.2 Some benefits of an optimization framework -- 2.2 Research problems -- 2.2.1 Singular value problem -- 2.2.2 Matrix approximations -- 2.2.3 Independent component analysis -- 2.2.4 Pose estimation and motion recovery -- 2.3 Notes and references -- 3. Matrix Manifolds: First-Order Geometry -- 3.1 Manifolds -- 3.1.1 Definitions: charts, atlases, manifolds -- 3.1.2 The topology of a manifold* -- 3.1.3 How to recognize a manifold -- 3.1.4 Vector spaces as manifolds -- 3.1.5 The manifolds Rnxp and R*nxp -- 3.1.6 Product manifolds -- 3.2 Differentiable functions -- 3.2.1 Immersions and submersions -- 3.3 Embedded submanifolds -- 3.3.1 General theory -- 3.3.2 The Stiefel manifold -- 3.4 Quotient manifolds -- 3.4.1 Theory of quotient manifolds -- 3.4.2 Functions on quotient manifolds -- 3.4.3 The real projective space RPn-1 -- 3.4.4 The Grassmann manifold Grass(p, n) -- 3.5 Tangent vectors and differential maps -- 3.5.1 Tangent vectors -- 3.5.2 Tangent vectors to a vector space -- 3.5.3 Tangent bundle -- 3.5.4 Vector fields -- 3.5.5 Tangent vectors as derivations* -- 3.5.6 Differential of a mapping -- 3.5.7 Tangent vectors to embedded submanifolds -- 3.5.8 Tangent vectors to quotient manifolds -- 3.6 Riemannian metric, distance, and gradients -- 3.6.1 Riemannian submanifolds -- 3.6.2 Riemannian quotient manifolds -- 3.7 Notes and references -- 4. Line-Search Algorithms on Manifolds -- 4.1 Retractions -- 4.1.1 Retractions on embedded submanifolds -- 4.1.2 Retractions on quotient manifolds -- 4.1.3 Retractions and local coordinates* -- 4.2 Line-search methods -- 4.3 Convergence analysis -- 4.3.1 Convergence on manifolds
6.5 Analysis of Rayleigh quotient algorithms -- 6.5.1 Convergence analysis -- 6.5.2 Numerical implementation -- 6.6 Notes and references -- 7. Trust-Region Methods -- 7.1 Models -- 7.1.1 Models in Rn -- 7.1.2 Models in general Euclidean spaces -- 7.1.3 Models on Riemannian manifolds -- 7.2 Trust-region methods -- 7.2.1 Trust-region methods in Rn -- 7.2.2 Trust-region methods on Riemannian manifolds -- 7.3 Computing a trust-region step -- 7.3.1 Computing a nearly exact solution -- 7.3.2 Improving on the Cauchy point -- 7.4 Convergence analysis -- 7.4.1 Global convergence -- 7.4.2 Local convergence -- 7.4.3 Discussion -- 7.5 Applications -- 7.5.1 Checklist -- 7.5.2 Symmetric eigenvalue decomposition -- 7.5.3 Computing an extreme eigenspace -- 7.6 Notes and references -- 8. A Constellation of Superlinear Algorithms -- 8.1 Vector transport -- 8.1.1 Vector transport and affine connections -- 8.1.2 Vector transport by differentiated retraction -- 8.1.3 Vector transport on Riemannian submanifolds -- 8.1.4 Vector transport on quotient manifolds -- 8.2 Approximate Newton methods -- 8.2.1 Finite difference approximations -- 8.2.2 Secant methods -- 8.3 Conjugate gradients -- 8.3.1 Application: Rayleigh quotient minimization -- 8.4 Least-square methods -- 8.4.1 Gauss-Newton methods -- 8.4.2 Levenberg-Marquardt methods -- 8.5 Notes and references -- A. Elements of Linear Algebra, Topology, and Calculus -- A.1 Linear algebra -- A.2 Topology -- A.3 Functions -- A.4 Asymptotic notation -- A.5 Derivatives -- A.6 Taylor's formula -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z
4.3.2 A topological curiosity* -- 4.3.3 Convergence of line-search methods -- 4.4 Stability of fixed points -- 4.5 Speed of convergence -- 4.5.1 Order of convergence -- 4.5.2 Rate of convergence of line-search methods* -- 4.6 Rayleigh quotient minimization on the sphere -- 4.6.1 Cost function and gradient calculation -- 4.6.2 Critical points of the Rayleigh quotient -- 4.6.3 Armijo line search -- 4.6.4 Exact line search -- 4.6.5 Accelerated line search: locally optimal conjugate gradient -- 4.6.6 Links with the power method and inverse iteration -- 4.7 Refining eigenvector estimates -- 4.8 Brockett cost function on the Stiefel manifold -- 4.8.1 Cost function and search direction -- 4.8.2 Critical points -- 4.9 Rayleigh quotient minimization on the Grassmann manifold -- 4.9.1 Cost function and gradient calculation -- 4.9.2 Line-search algorithm -- 4.10 Notes and references -- 5. Matrix Manifolds: Second-Order Geometry -- 5.1 Newton's method in Rn -- 5.2 Affine connections -- 5.3 Riemannian connection -- 5.3.1 Symmetric connections -- 5.3.2 Definition of the Riemannian connection -- 5.3.3 Riemannian connection on Riemannian submanifolds -- 5.3.4 Riemannian connection on quotient manifolds -- 5.4 Geodesics, exponential mapping, and parallel translation -- 5.5 Riemannian Hessian operator -- 5.6 Second covariant derivative* -- 5.7 Notes and references -- 6. Newton's Method -- 6.1 Newton's method on manifolds -- 6.2 Riemannian Newton method for real-valued functions -- 6.3 Local convergence -- 6.3.1 Calculus approach to local convergence analysis -- 6.4 Rayleigh quotient algorithms -- 6.4.1 Rayleigh quotient on the sphere -- 6.4.2 Rayleigh quotient on the Grassmann manifold -- 6.4.3 Generalized eigenvalue problem -- 6.4.4 The nonsymmetric eigenvalue problem -- 6.4.5 Newton with subspace acceleration: Jacobi-Davidson
Chapter Six. Newton’s Method
List of Algorithms
Notation Conventions
Index
-
/
Chapter Four. Line-Search Algorithms On Manifolds
Contents
Foreword
Chapter One. Introduction
Chapter Three. Matrix Manifolds: First-Order Geometry
Chapter Eight. A Constellation Of Superlinear Algorithms
A. Elements Of Linear Algebra, Topology, And Calculus
Chapter Two. Motivation and Applications
Frontmatter --
Chapter Seven. Trust-Region Methods
Chapter Five. Matrix Manifolds: Second-Order Geometry
Bibliography
Title Optimization algorithms on matrix manifolds
URI http://portal.igpublish.com/iglibrary/search/PUPB0000351.html
https://www.jstor.org/stable/j.ctt7smmk
https://cir.nii.ac.jp/crid/1130282270670001664
https://www.perlego.com/book/734549/optimization-algorithms-on-matrix-manifolds-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=457711
https://www.degruyterbrill.com/isbn/9781400830244
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781400830244&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH6C9kIPCBgTAQYV4jZl5IdTx8dtKpqQAhVsaDcrcV7abmkbNSm__nqekzRtMg7Axaqj2HX81fH3nt_7CvBWIW2S3FGmr2JlMqUErTkUpos22rEnEsvRCc7Bx9HFFftw7V3vtJ7L7JIiOlG__phX8j-o0jXCVWfJ_gOyTad0gT4TvlQSwlR2yG9TrcD9RAt9UWdQHp-m0xWZ-LNF6fkPtOb-Dx3WMk9WadxQ5tMor9y9kxOzQS0IdWR6K27wC2abVM0q1_RnMlrTbIYt34Df8Q1MtL8etTxHN-2wZUWSjWVpGbBKiPHOO9Ur5Sfu3NfWru7sKU2kX6vZfeg7jChaD_q06Y6DxhmmiQfZPbUGKn3hu1a7AQzC_JZe-rQhFLkWlZ1mjZNuG0hK5GA5n5MZk-E6xemqZTI8_F4GH8Q4XW9-FtvD7pJDXD6CPurEksdwD5dPYLAnBEm1oFHPzQ_geB_e4Q7eIdUqeIcNvE_h6_vx5fmFWf-phRn6TPiW6YRkpfk8cmLiWkrYyH2G7sjGMBGxTQSKuUq5xLITTsZf4nihF8VoO5EIbVQC3UPoLVdLfAZDRlw45J6InFHMPB6HFktYxDy0qCPOEgPe7M2b_JaWB_C5bE2uAcP96ZRZpXIiJ1eTM6s6aTbgsJxiWTW_kaooeL5Y3BpwRHMu1VyXtj4DJ77Jy9QvMiVG1PdBjUbdlLvMY8KA11toZDmkOhBZjs_O6TnouWnkHcSklnZpj_z539z0Ah7sVsZL6BXrDR4RjyyiV_Wv8DfCG22u
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Optimization+Algorithms+on+Matrix+Manifolds&rft.au=Absil%2C+P.-A&rft.au=Mahony%2C+R&rft.au=Sepulchre%2C+Rodolphe&rft.date=2008-01-01&rft.pub=Princeton+University+Press&rft.isbn=9781400830244&rft_id=info:doi/10.1515%2F9781400830244&rft.externalDBID=n%2Fa&rft.externalDocID=9781400830244
thumbnail_l http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fprinceton_university_press_rydfxi%2F9781400830244.jpg
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.degruyterbrill.com%2Fdocument%2Fcover%2Fisbn%2F9781400830244%2Foriginal
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814008%2F9781400830244.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FPUPB0000351_null_0_320.png