Process Control - A Practical Approach (2nd Edition)
This expanded new edition is specifically designed to meet the needs of the process industry, and closes the gap between theory and practice. Back-to-basics approach, with a focus on techniques that have an immediate practical application, and heavy maths relegated to the end of the book; Written by...
Saved in:
| Main Author | |
|---|---|
| Format | eBook Book |
| Language | English |
| Published |
Chichester, West Sussex
John Wiley & Sons
2016
Wiley John Wiley & Sons, Incorporated Wiley-Blackwell John Wiley & Sons Ltd |
| Edition | 2 |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781119157748 1119157749 0470975873 9780470975879 1119157765 9781119157762 047097656X 9780470976562 0470976667 9780470976661 0470976551 9780470976555 |
| DOI | 10.1002/9780470976562 |
Cover
Table of Contents:
- Title Page Preface Table of Contents 1. Introduction 2. Process Dynamics 3. PID Algorithm 4. Level Control 5. Signal Conditioning 6. Feedforward Control 7. Deadtime Compensation 8. Multivariable Control 9. Inferentials and Analysers 10. Combustion Control 11. Compressor Control 12. Distillation Control 13. APC Project Execution 14. Statistical Methods 15. Mathematical Techniques References Index
- Intro -- Title Page -- Copyright Page -- Contents -- Preface -- About the Author -- Chapter 1 Introduction -- Chapter 2 Process Dynamics -- 2.1 Definition -- 2.2 Cascade Control -- 2.3 Model Identification -- 2.4 Integrating Processes -- 2.5 Other Types of Process -- 2.6 Robustness -- Chapter 3 PID Algorithm -- 3.1 Definitions -- 3.2 Proportional Action -- 3.3 Integral Action -- 3.4 Derivative Action -- 3.5 Versions of Control Algorithm -- 3.6 Interactive PID Controller -- 3.7 Proportional-on-PV Controller -- 3.8 Nonstandard Algorithms -- 3.9 Tuning -- 3.10 Ziegler-Nichols Tuning Method -- 3.11 Cohen-Coon Tuning Method -- 3.12 Tuning Based on Penalty Functions -- 3.13 Manipulated Variable Overshoot -- 3.14 Lambda Tuning Method -- 3.15 IMC Tuning Method -- 3.16 Choice of Tuning Method -- 3.17 Suggested Tuning Method for Self-Regulating Processes -- 3.18 Tuning for Load Changes -- 3.19 Tuning for SP Ramps -- 3.20 Tuning for Unconstrained MV Overshoot -- 3.21 PI Tuning Compared to PID Tuning -- 3.22 Tuning for Large Scan Interval -- 3.23 Suggested Tuning Method for Integrating Processes -- 3.24 Measure of Robustness -- 3.25 Implementation of Tuning -- 3.26 Tuning Cascades -- 3.27 Loop Gain -- 3.28 Adaptive Tuning -- 3.29 Initialisation -- 3.30 Anti-Reset Windup -- 3.31 On-Off Control -- Chapter 4 Level Control -- 4.1 Use of Cascade Control -- 4.2 Parameters Required for Tuning Calculations -- 4.3 Tight Level Control -- 4.4 Averaging Level Control -- 4.5 Error-Squared Controller -- 4.6 Gap Controller -- 4.7 Impact of Noise on Averaging Control -- 4.8 Potential Disadvantage of Averaging Level Control -- 4.9 General Approach to Tuning -- 4.10 Three-Element Level Control -- Chapter 5 Signal Conditioning -- 5.1 Instrument Linearisation -- 5.2 Process Linearisation -- 5.3 Control of pH -- 5.4 Constraint Conditioning
- 5.5 Pressure Compensation of Distillation Tray Temperature -- 5.6 Compensation of Gas Flow Measurement -- 5.7 Filtering -- 5.8 Exponential Filter -- 5.9 Nonlinear Exponential Filter -- 5.10 Moving Average Filter -- 5.11 Least Squares Filter -- 5.12 Tuning the Filter -- 5.13 Control Valve Characterisation -- 5.14 Equal Percentage Valve -- 5.15 Split-Range Valves -- Chapter 6 Feedforward Control -- 6.1 Ratio Algorithm -- 6.2 Bias Algorithm -- 6.3 Deadtime and Lead-Lag Algorithms -- 6.4 Tuning -- 6.5 Laplace Derivation of Dynamic Compensation -- Chapter 7 Deadtime Compensation -- 7.1 Smith Predictor -- 7.2 Internal Model Control -- 7.3 Dahlin Algorithm -- Chapter 8 Multivariable Control -- 8.1 Constraint Control -- 8.2 SISO Constraint Control -- 8.3 Signal Selectors -- 8.4 Relative Gain Analysis -- 8.5 Niederlinski Index -- 8.6 Condition Number -- 8.7 Steady State Decoupling -- 8.8 Dynamic Decoupling -- 8.9 MPC Principles -- 8.10 Parallel Coordinates -- 8.11 Enhanced Operator Displays -- 8.12 MPC Performance Monitoring -- Chapter 9 Inferentials and Analysers -- 9.1 Inferential Properties -- 9.2 Assessing Accuracy -- 9.3 Laboratory Update of Inferential -- 9.4 Analyser Update of Inferential -- 9.5 Monitoring On-Stream Analysers -- Chapter 10 Combustion Control -- 10.1 Fuel Gas Flow Correction -- 10.2 Measuring NHV -- 10.3 Dual Firing -- 10.4 Heater Inlet Temperature Feedforward -- 10.5 Fuel Pressure Control -- 10.6 Firebox Pressure -- 10.7 Combustion Air Control -- 10.8 Boiler Control -- 10.9 Fired Heater Pass Balancing -- Chapter 11 Compressor Control -- 11.1 Polytropic Head -- 11.2 Load Control (Turbo-Machines) -- 11.3 Load Control (Reciprocating Machines) -- 11.4 Anti-Surge Control -- Chapter 12 Distillation Control -- 12.1 Key Components -- 12.2 Relative Volatility -- 12.3 McCabe-Thiele Diagram -- 12.4 Cut and Separation
- 12.5 Effect of Process Design -- 12.6 Basic Controls -- 12.7 Pressure Control -- 12.8 Level Control -- 12.9 Tray Temperature Control -- 12.10 Pressure Compensated Temperature -- 12.11 Inferentials -- 12.12 First-Principle Inferentials -- 12.13 Feedforward on Feed Rate -- 12.14 Feed Composition Feedforward -- 12.15 Feed Enthalpy Feedforward -- 12.16 Decoupling -- 12.17 Multivariable Control -- 12.18 On-Stream Analysers -- 12.19 Towers with Sidestreams -- 12.20 Column Optimisation -- 12.21 Optimisation of Column Pressure -- 12.22 Energy/Yield Optimisation -- Chapter 13 APC Project Execution -- 13.1 Benefits Study -- 13.2 Benefit Estimation for Improved Regulatory Control -- 13.3 Benefits of Closed-Loop Real-Time Optimisation -- 13.4 Basic Controls -- 13.5 Basic Control Monitoring -- 13.6 Inferential Properties -- 13.7 Organisation -- 13.8 Vendor Selection -- 13.9 Safety in APC Design -- 13.10 Alarms -- Chapter 14 Statistical Methods -- 14.1 Central Limit Theorem -- 14.2 Generating a Normal Distribution -- 14.3 Quantile Plots -- 14.4 Calculating Standard Deviation -- 14.5 Skewness and Kurtosis -- 14.6 Correlation -- 14.7 Confidence Interval -- 14.8 Westinghouse Electric Company Rules -- 14.9 Gamma Function -- 14.10 Student t Distribution -- 14.11 χ2 Distribution -- 14.12 F Distribution -- 14.13 Akaike Information Criterion -- 14.14 Adjusted R2 -- 14.15 Levene's Test -- 14.16 Box-Wetz Ratio -- 14.17 Regression Analysis -- 14.18 Outliers -- 14.19 Model Identification -- 14.20 Autocorrelation and Autocovariance -- 14.21 Artificial Neural Networks -- 14.22 Repeatability -- 14.23 Reproducibility -- 14.24 Six-Sigma -- 14.25 Data Reconciliation -- Chapter 15 Mathematical Techniques -- 15.1 Fourier Transform -- 15.2 Recursive Filters -- 15.3 Lagrangian Interpolation -- 15.4 Padé Approximation -- 15.5 Laplace Transform Derivations
- 15.6 Laplace Transforms for Processes -- 15.7 Laplace Transforms for Controllers -- 15.8 I-PD versus PI-D Algorithm -- 15.9 Direct Synthesis -- 15.10 Predicting Filter Attenuation -- 15.11 Stability Limit for PID Control -- 15.12 Ziegler-Nichols Tuning from Process Dynamics -- 15.13 Partial Fractions -- 15.14 z-Transforms and Finite Difference Equations -- References -- Index -- EULA
- 5.5 Pressure Compensation of Gas Flow Measurement -- 5.6 Filtering -- 5.7 Exponential Filter -- 5.8 Higher Order Filters -- 5.9 Nonlinear Exponential Filter -- 5.10 Averaging Filter -- 5.11 Least Squares Filter -- 5.12 Control Valve Characterisation -- 5.13 Equal Percentage Valve -- 5.14 Split-Range Valves -- 6 Feedforward Control -- 6.1 Ratio Algorithm -- 6.2 Bias Algorithm -- 6.3 Deadtime and Lead-Lag Algorithms -- 6.4 Tuning -- 6.5 Laplace Derivation of Dynamic Compensation -- 7 Deadtime Compensation -- 7.1 Smith Predictor -- 7.2 Internal Model Control -- 7.3 Dahlin Algorithm -- References -- 8 Multivariable Control -- 8.1 Constraint Control -- 8.2 SISO Constraint Control -- 8.3 Signal Selectors -- 8.4 Relative Gain Analysis -- 8.5 Steady State Decoupling -- 8.6 Dynamic Decoupling -- 8.7 MVC Principles -- 8.8 Parallel Coordinates -- 8.9 Enhanced Operator Displays -- 8.10 MVC Performance Monitoring -- References -- 9 Inferentials and Analysers -- 9.1 Inferential Properties -- 9.2 Assessing Accuracy -- 9.3 Laboratory Update of Inferential -- 9.4 Analyser Update of Inferential -- 9.5 Monitoring On-stream Analysers -- Reference -- 10 Combustion Control -- 10.1 Fuel Gas Flow Correction -- 10.2 Measuring NHV -- 10.3 Dual Firing -- 10.4 Inlet Temperature Feedforward -- 10.5 Fuel Pressure Control -- 10.6 Combustion Air Control -- 10.7 Boiler Control -- 10.8 Fired Heater Pass Balancing -- 11 Compressor Control -- 11.1 Polytropic Head -- 11.2 Flow Control (Turbo-Machines) -- 11.3 Flow Control (Reciprocating Machines) -- 11.4 Anti-Surge Control -- 12 Distillation Control -- 12.1 Key Components -- 12.2 Relative Volatility -- 12.3 McCabe-Thiele Diagram -- 12.4 Cut and Separation -- 12.5 Effect of Process Design -- 12.6 Basic Controls -- 12.7 Pressure Control -- 12.8 Level Control -- 12.9 Tray Temperature Control -- 12.10 Pressure Compensated Temperature
- 12.11 Inferentials -- 12.12 First-Principle Inferentials -- 12.13 Feedforward on Feed Rate -- 12.14 Feed Composition Feedforward -- 12.15 Feed Enthalpy Feedforward -- 12.16 Decoupling -- 12.17 Multivariable Control -- 12.18 On-stream Analysers -- 12.19 Towers with Sidestreams -- 12.20 Column Optimisation -- 12.21 Optimisation of Column Pressure -- 12.22 Energy/Yield Optimisation -- References -- 13 APC Project Execution -- 13.1 Benefits Study -- 13.2 Benefit Estimation for Improved Regulatory Control -- 13.3 Benefits of Closed-Loop Real-Time Optimisation -- 13.4 Basic Controls -- 13.5 Inferentials -- 13.6 Organisation -- 13.7 Vendor Selection -- 13.8 Safety in APC Design -- 13.9 Alarms -- References -- Index
- Process Control A Practical Approach -- Contents -- Preface -- About the Author -- 1 Introduction -- 2 Process Dynamics -- 2.1 Definition -- 2.2 Cascade Control -- 2.3 Model Identification -- 2.4 Integrating Processes -- 2.5 Other Types of Process -- 2.6 Robustness -- 2.7 Laplace Transforms for Processes -- References -- 3 PID Algorithm -- 3.1 Definitions -- 3.2 Proportional Action -- 3.3 Integral Action -- 3.4 Derivative Action -- 3.5 Versions of Control Algorithm -- 3.6 Interactive PID Controller -- 3.7 Proportional-on-PV Controller -- 3.8 Nonstandard Algorithms -- 3.9 Tuning -- 3.10 Ziegler-Nichols Tuning Method -- 3.11 Cohen-Coon Tuning Method -- 3.12 Tuning Based on Penalty Functions -- 3.13 Manipulated Variable Overshoot -- 3.14 Lambda Tuning Method -- 3.15 IMC Tuning Method -- 3.16 Choice of Tuning Method -- 3.17 Suggested Tuning Method for Self-Regulating Processes -- 3.18 Tuning for Load Changes -- 3.19 Tuning for Unconstrained MV Overshoot -- 3.20 PI Tuning Compared to PID Tuning -- 3.21 Tuning for Large Scan Interval -- 3.22 Suggested Tuning Method for Integrating Processes -- 3.23 Implementation of Tuning -- 3.24 Loop Gain -- 3.25 Adaptive Tuning -- 3.26 Initialisation -- 3.27 Anti-Reset Windup -- 3.28 On-Off Control -- 3.29 Laplace Transforms for Controllers -- 3.30 Direct Synthesis -- References -- 4 Level Control -- 4.1 Use of Cascade Control -- 4.2 Parameters Required for Tuning Calculations -- 4.3 Tight Level Control -- 4.4 Averaging Level Control -- 4.5 Error-Squared Controller -- 4.6 Gap Controller -- 4.7 Impact of Noise on Averaging Control -- 4.8 General Approach to Tuning -- 4.9 Three-Element Level Control -- 5 Signal Conditioning -- 5.1 Instrument Linearisation -- 5.2 Process Linearisation -- 5.3 Constraint Conditioning -- 5.4 Pressure Compensation of Distillation Tray Temperature