Probabilistic methods for financial and marketing informatics

Probabilistic Methods for Financial and Marketing Informatics aims to provide students with insights and a guide explaining how to apply probabilistic reasoning to business problems. Rather than dwelling on rigor, algorithms, and proofs of theorems, the authors concentrate on showing examples and us...

Full description

Saved in:
Bibliographic Details
Main Authors Neapolitan, Richard E., Jiang, Xia
Format eBook Book
LanguageEnglish
Published San Francisco, Calif Elsevier 2007
Oxford Morgan Kaufmann
Elsevier Science & Technology
Morgan Kaufmann Publ
Edition1
Subjects
Online AccessGet full text
ISBN0123704774
9780123704771
DOI10.1016/B978-0-12-370477-1.X5016-6

Cover

Table of Contents:
  • Front Cover -- Probabilistic Methods for Financial and Marketing Informatics -- Copyright Page -- Preface -- Contents -- Part I: Bayesian Networks and Decision Analysis -- Chapter 1. Probabilistic Informatics -- 1.1 What Is Informatics? -- 1.2 Probabilistic Informatics -- 1.3 Outline of This Book -- Chapter 2. Probability and Statistics -- 2.1 Probability Basics -- 2.2 Random Variables -- 2.3 The Meaning of Probability -- 2.4 Random Variables in Applications -- 2.5 Statistical Concepts -- Chapter 3. Bayesian Networks -- 3.1 What Is a Bayesian Network? -- 3.2 Properties of Bayesian Networks -- 3.3 Causal Networks as Bayesian Networks -- 3.4 Inference in Bayesian Networks -- 3.5 How Do We Obtain the Probabilities? -- 3.6 Entailed Conditional Independencies * -- Chapter 4. Learning Bayesian Networks -- 4.1 Parameter Learning -- 4.2 Learning Structure (Model Selection) -- 4.3 Score-Based Structure Learning * -- 4.4 Constraint-Based Structure Learning -- 4.5 Causal Learning -- 4.6 Software Packages for Learning -- 4.7 Examples of Learning -- Chapter 5. Decision Analysis Fundamentals -- 5.1 Decision Trees -- 5.2 Influence Diagrams -- 5.3 Dynamic Networks * -- Chapter 6. Further Techniques in Decision Analysis -- 6.1 Modeling Risk Preferences -- 6.2 Analyzing Risk Directly -- 6.3 Dominance -- 6.4 Sensitivity Analysis -- 6.5 Value of Information -- 6.6 Normative Decision Analysis -- Part II: Financial Applications -- Chapter 7. Investment Science -- 7.1 Basics of Investment Science -- 7.2 Advanced Topics in Investment Science* -- 7.3 A Bayesian Network Portfolio Risk Analyzer * -- Chapter 8. Modeling Real Options -- 8.1 Solving Real Options Decision Problems -- 8.2 Making a Plan -- 8.3 Sensitivity Analysis -- Chapter 9. Venture Capital Decision Making -- 9.1 A Simple VC Decision Model -- 9.2 A Detailed VC Decision Model -- 9.3 Modeling Real Decisions
  • 9.A Appendix -- Chapter 10. Bankruptcy Prediction -- 10.1 A Bayesian Network for Predicting Bankruptcy -- 10.2 Experiments -- Part III: Marketing Applications -- Chapter 11. Collaborative Filtering -- 11.1 Memory-Based Methods -- 11.2 Model-Based Methods -- 11.3 Experiments -- Chapter 12. Targeted Advertising -- 12.1 Class Probability Trees -- 12.2 Application to Targeted Advertising -- Bibliography -- Index