Theory and applications of numerical analysis
Theory and Applications of Numerical Analysis is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis.The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program th...
Saved in:
| Main Authors | , |
|---|---|
| Format | eBook Book |
| Language | English |
| Published |
London ; New York ; Tokyo
Academic Press
1996
Elsevier Science & Technology |
| Edition | 2 |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9780125535601 0125535600 |
Cover
| Abstract | Theory and Applications of Numerical Analysis is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis.The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. |
|---|---|
| AbstractList | Theory and Applications of Numerical Analysis is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis.The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included. * a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions |
| Author | Taylor, Peter John Phillips, G. M. (George McArtney) |
| Author_xml | – sequence: 1 fullname: Phillips, G. M. (George McArtney) – sequence: 2 fullname: Taylor, Peter John |
| BackLink | https://cir.nii.ac.jp/crid/1130000797717377280$$DView record in CiNii |
| BookMark | eNpVkE1LxDAQhiN-4Lr2P_QggodCkmm-jlrWD1jwsngtaZqwdWNSm66y_96u9eIc3uF952Fg5gqdhRjsCcqUkBhLzIgiVJ7OnlDGgHFMLtBCAaO8pFJcoiyldzwVZRILWKBis7VxOOQ6tLnue98ZPXYxpDy6POw_7DAFfppqf0hdukbnTvtks7--RG-Pq031XKxfn16q-3WhhWQKF4xzLFXbNKCMU7YxXDVEcu245VDKtixN67QADmAt5pJTR40qOZGCU-YILNHdvFinnf1O2-jHVH9528S4S_W_eyf2dmb7IX7ubRrrX8zYMA7a16uHCggIhSfwZgZD19WmOyohcPyGUEIQAUJQieEHoaFd_g |
| ContentType | eBook Book |
| DBID | RYH |
| DEWEY | 519.4 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISBN | 9780080519128 0080519121 |
| Edition | 2 2nd ed. |
| ExternalDocumentID | 9780080519128 EBC313790 BA29116441 |
| GroupedDBID | -KG -VX 089 20A 38. 5O- A4I A4J AAAAS AABBV AAGAK AAJBF AALRI AAORS AAXUO AAYWO AAZNM ABARN ABGWT ABIAV ABLXK ABMAC ABMRC ABQPQ ABQQC ACLGV ACXMD ADCEY ADVEM AERYV AFOJC AGAMA AHWGJ AIXPE AJFER AKHYG ALMA_UNASSIGNED_HOLDINGS ANFFI APUXA AUHWD AZZ BBABE CETPU CZZ D8I DUGUG EBSCA ECOWB GEOUK HF4 HGY INJ IPK IWG KZNKS MYL PQQKQ RYH SDK SRW UO7 XI1 AJLYV |
| ID | FETCH-LOGICAL-a78590-566089dbb39cf9ebc69b186af6e6348d44cdfa73633ee06862f2c946187625f13 |
| ISBN | 9780125535601 0125535600 |
| IngestDate | Fri Apr 25 07:35:30 EDT 2025 Wed Oct 29 00:42:48 EDT 2025 Thu Jun 26 23:23:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCallNum_Ident | QA297.P52 1996 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a78590-566089dbb39cf9ebc69b186af6e6348d44cdfa73633ee06862f2c946187625f13 |
| OCLC | 935264287 |
| PQID | EBC313790 |
| PageCount | 461 |
| ParticipantIDs | askewsholts_vlebooks_9780080519128 proquest_ebookcentral_EBC313790 nii_cinii_1130000797717377280 |
| PublicationCentury | 1900 |
| PublicationDate | 1996 1996-07-05 |
| PublicationDateYYYYMMDD | 1996-01-01 1996-07-05 |
| PublicationDate_xml | – year: 1996 text: 1996 |
| PublicationDecade | 1990 |
| PublicationPlace | London ; New York ; Tokyo |
| PublicationPlace_xml | – name: London ; New York ; Tokyo – name: Chantilly |
| PublicationYear | 1996 |
| Publisher | Academic Press Elsevier Science & Technology |
| Publisher_xml | – name: Academic Press – name: Elsevier Science & Technology |
| SSID | ssj0000258073 ssib011364373 |
| Score | 1.7823514 |
| Snippet | Theory and Applications of Numerical Analysis is a self-contained Second Edition, providing an introductory account of the main topics in numerical... This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems... |
| SourceID | askewsholts proquest nii |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Numerical analysis |
| TableOfContents | 13.12 Systems and higher order equations -- 13.13 Comparison of step-by-step methods -- Problems -- Chapter 14. Boundary value and other methods for ordinary differential equations -- 14.1 Shooting method for boundary value problems -- 14.2 Boundary value method -- 14.3 Extrapolation to the limit -- 14.4 Deferred correction -- 14.5 Chebyshev series method -- Problems -- Appendix: Computer arithmetic -- A.1 Binary numbers -- A.2 Integers and fixed point fractions -- A.3 Floating point arithmetic -- Problems -- Solutions to selected problems -- References and further reading -- Index 7.7 Numerical differentiation -- 7.8 Effect of errors -- Problems -- Chapter 8. Solution of algebraic equations of one variable -- 8.1 Introduction -- 8.2 The bisection method -- 8.3 Interpolation methods -- 8.4 One-point iterative methods -- 8.5 Faster convergence -- 8.6 Higher order processes -- 8.7 The contraction mapping theorem -- Problems -- Chapter 9. Linear equations -- 9.1 Introduction -- 9.2 Matrices -- 9.3 Linear equations -- 9.4 Pivoting -- 9.5 Analysis of elimination method -- 9.6 Matrix factorization -- 9.7 Compact elimination methods -- 9.8 Symmetric matrices -- 9.9 Tridiagonal matrices -- 9.10 Rounding errors in solving linear equations -- Problems -- Chapter 10. Matrix norms and applications -- 10.1 Determinants, eigenvalues and eigenvectors -- 10.2 Vector norms -- 10.3 Matrix norms -- 10.4 Conditioning -- 10.5 Iterative correction from residual vectors -- 10.6 Iterative methods -- Problems -- Chapter 11. Matrix eigenvalues and eigenvectors -- 11.1 Relations between matrix norms and eigenvalues -- Gerschgorin theorems -- 11.2 Simple and inverse iterative method -- 11.3 Sturm sequence method -- 11.4 The QR algorithm -- 11.5 Reduction to tridiagonal form: Householder's method -- Problems -- Chapter 12. Systems of non-linear equations -- 12.1 Contraction mapping theorem -- 12.2 Newton's method -- Problems -- 13. Ordinary differential equations -- 13.1 Introduction -- 13.2 Difference equations and inequalities -- 13.3 One-step methods -- 13.4 Truncation errors of one-step methods -- 13.5 Convergence of one-step methods -- 13.6 Effect of rounding errors on one-step methods -- 13.7 Methods based on numerical integration -- explicit methods -- 13.8 Methods based on numerical integration -- implicit methods -- 13.9 Iterating with the corrector -- 13.10 Milne's method of estimating truncation errors -- 13.11 Numerical stability Front Cover -- Theory and Applications of Numerical Analysis -- Copyright Page -- Contents -- Preface -- From the preface to the first edition -- Chapter 1. Introduction -- 1.1 What is numerical analysis? -- 1.2 Numerical algorithms -- 1.3 Properly posed and well-conditioned problems -- Problems -- Chapter 2. Basic analysis -- 2.1 Functions -- 2.2 Limits and derivatives -- 2.3 Sequences and series -- 2.4 Integration -- 2.5 Logarithmic and exponential functions -- Problems -- Chapter 3. Taylor's polynomial and series -- 3.1 Function approximation -- 3.2 Taylor's theorem -- 3.3 Convergence of Taylor series -- 3.4 Taylor series in two variables -- 3.5 Power series -- Problems -- Chapter 4. The interpolating polynomial -- 4.1 Linear interpolation -- 4.2 Polynomial interpolation -- 4.3 Accuracy of interpolation -- 4.4 The Neville-Aitken algorithm -- 4.5 Inverse interpolation -- 4.6 Divided differences -- 4.7 Equally spaced points -- 4.8 Derivatives and differences -- 4.9 Effect of rounding error -- 4.10 Choice of interpolating points -- 4.11 Examples of Bemstein and Runge -- Problems -- Chapter 5. 'Best' approximation -- 5.1 Norms of functions -- 5.2 Best approximations -- 5.3 Least squares approximation -- 5.4 Orthogonal functions -- 5.5 Orthogonal polynomials -- 5.6 Minimax approximation -- 5.7 Chebyshev series -- 5.8 Economization of power series -- 5.9 The Remez algorithms -- 5.10 Further results on minimax approximation -- Problems -- Chapter 6. Splines and other approximations -- 6.1 Introduction -- 6.2 B-splines -- 6.3 Equally spaced knots -- 6.4 Hermite interpolation -- 6.5 Padé and rational approximation -- Problems -- Chapter 7. Numerical integration and differentiation -- 7.1 Numerical integration -- 7.2 Romberg integration -- 7.3 Gaussian integration -- 7.4 Indefinite integrals -- 7.5 Improper integrals -- 7.6 Multiple integrals |
| Title | Theory and applications of numerical analysis |
| URI | https://cir.nii.ac.jp/crid/1130000797717377280 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=313790 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780080519128&uid=none |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9uT-7Fb5w6LeLb6Gia9COP25gbwnyaMp9KkqYwlA7W6oN_vZe0a4sORF9CW9pA79q7X-5-d0HoTrmUkzBRNsBdYtOAB7ZwhbR9R8aSMSo8btgWj_7siT4svWW9YZepLsnFQH7urCv5j1bhGuhVV8n-QbPVpHABjkG_MIKGYfwGfqvTSrk6N24arTYy0AUro8jB6BYARb-RXYH_6aA_H5gQgYmJ9-dyuMkN8asKDNRrecPhrUm7cVk09z1GUFPtG7SOYgUJ_snziF6W1Q6houmNhi7YQo2YWqgVBGZ_-ulLFcICuBSChTCNispZyi5a9awd1OHZK9hrsOV5Bg48Xa1-uD3jyxeHqK3rO47QnkqP0UGJwq3SxmUnyC6Ea4FwraZwrXViVcK1tsI9Rc_3k8V4ZpebStg8CD3m2IBfnZDFQhAmE6aE9JnAoc8TX_mEhjGlMk54QHxClDIFNIkrGfWx9htegskZaqfrVJ0jy0uE4BjHAp6hQjqhBIAsJFaKK8LdsItuGy8ffbyZBHgWaQkBUgfwjPVNPZBJJFd6xDq7CLANUDn8O4HeO6yLbrbSiszzJWs3mozGBJOAORe_zHCJ9uuP4gq188276gGUysW1UegX8ssZGg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Theory+and+applications+of+numerical+analysis&rft.au=Phillips%2C+G.+M.+%28George+McArtney%29&rft.au=Taylor%2C+Peter+John&rft.date=1996-01-01&rft.pub=Academic+Press&rft.isbn=9780125535601&rft.externalDocID=BA29116441 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97800805%2F9780080519128.jpg |