Design of experiments for engineers and scientists
The tools and technique used in the Design of Experiments (DOE) have been proved successful in meeting the challenge of continuous improvement over the last 15 years. However, research has shown that applications of these techniques in small and medium-sized manufacturing companies are limited due t...
Saved in:
| Main Author | |
|---|---|
| Format | eBook Book |
| Language | English |
| Published |
Oxford ; Tokyo
Butterworth-Heinemann
2003
Elsevier |
| Edition | 1 |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9780750647090 0750647094 |
| DOI | 10.1016/B978-0-7506-4709-0.X5000-5 |
Cover
Table of Contents:
- Cover -- Contents -- Preface -- Acknowledgements -- Introduction to industrial experimentation -- Introduction -- Some fundamental and practical issues in industrial experimentation -- Summary -- Exercises -- References -- Fundamentals of Design of Experiments -- Introduction -- Basic principles of Design of Experiments -- Randomization -- Replication -- Blocking -- Degrees of freedom -- Confounding -- Design resolution -- Metrology considerations for industrial designed experiments -- Measurement system capability -- Some tips for the development of a measurement system -- Selection of quality characteristics for industrial experiments -- Exercises -- References -- Understanding key interactions in processes -- Introduction -- Alternative method for calculating the two order interaction effect -- Synergistic interaction vs antagonistic interaction -- Scenario 1 -- Scenario 2 -- Summary -- Exercises -- References -- A systematic methodology for Design of Experiments -- Introduction -- Barriers in the successful application of DOE -- A practical methodology for DOE -- Planning phase -- Designing phase -- Conducting phase -- Analysing phase -- Analytical tools of DOE -- Main effects plot -- Interactions plots -- Cube plots -- Pareto plot of factor effects -- Normal Probability Plot of factor effects -- Normal Probability Plot of residuals -- Response surface plots and regression models -- Model building for predicting response function -- Confidence interval for the mean response -- Summary -- Exercises -- References -- Screening designs -- Introduction -- Geometric and non-geometric P-B designs -- Summary -- Exercises -- References -- Full factorial designs -- Introduction -- Example of a 22 full factorial design -- Objective 1: Determination of main/interaction effects which influence mean plating thickness
- Replicate to dampen the effect of noise or uncontrolled variation -- Improve the efficiency of experimentation using blocking strategy -- Understanding the confounding pattern of factor effects -- Perform confirmatory runs/experiments -- Summary -- Exercises -- References -- Case studies -- Introduction -- Case studies -- Optimization of a radiographic quality welding of cast iron -- Reducing process variability using Experimental Design technique objective of the experiment -- Slashing scrap rate using fractional factorial experiments -- Optimizing the time of flight of a paper helicopter -- Optimizing a wire bonding process using Design of Experiments -- Training for Design of Experiments using a catapult -- Optimization of core tube life using designed experiments -- Optimization of a spot welding process using Design of Experiments -- Summary -- References -- Index
- Objective 2: Determination of main/interaction effects which influence variability in plating thickness -- Objective 4: How to achieve a target plating thickness of 120 units? -- Example of a 23 full factorial design -- Objective 1: To identify the significant main/ interaction effects which affect the process yield -- Objective 2: To identify the significant main/ interaction effects which affect the variability in process yield -- Objective 3: What is the optimal process condition? -- Example of a 24 full factorial design -- Objective 1: Which of the main/interaction effects affect mean crack length? -- Objective 2: Which of the main/interaction effects affect variability in crack length? -- Objective 3: What is the optimal process condition to minimize mean crack length? -- Summary -- Exercises -- References -- Fractional factorial designs -- Introduction -- Construction of half-fractional factorial designs -- Example of a 2(7 4) factorial design 76 -- An application of 2-level fractional factorial design -- Example of a 2(5 - 1) factorial design -- Objective 1: To identify the factors which influence the mean free height -- Objective 2: To identify the factors which affect variability in the free height of leaf springs -- How do we select the optimal factor settings to minimize variability in free height? -- Summary -- Exercises -- References -- Some useful and practical tips for making your industrial experiments successful -- Introduction -- Get a clear understanding of the problem -- Project selection -- Conduct exhaustive and detailed brainstorming session -- Teamwork and selection of a team for experimentation -- Select the continuous measurable quality characteristics or responses for the experiment -- Choice of an appropriate Experimental Design -- Iterative experimentation -- Randomize the experimental trial order