Exploring Modeling with Data and Differential Equations Using R

Exploring Modeling with Data and Differential Equations Using R provides a unique introduction to differential equations with applications to the biological and other natural sciences. Additionally, model parameterization and simulation of stochastic differential equations are explored, providing ad...

Full description

Saved in:
Bibliographic Details
Main Author Zobitz, John M.
Format eBook Book
LanguageEnglish
Published Boca Raton, Fla CRC Press 2023
CRC Press LLC
Chapman & Hall
Edition1
Subjects
Online AccessGet full text
ISBN1032261811
9781032261812
9781032259482
1032259485
DOI10.1201/9781003286974

Cover

Abstract Exploring Modeling with Data and Differential Equations Using R provides a unique introduction to differential equations with applications to the biological and other natural sciences. Additionally, model parameterization and simulation of stochastic differential equations are explored, providing additional tools for model analysis and evaluation. This unified framework sits "at the intersection" of different mathematical subject areas, data science, statistics, and the natural sciences. The text throughout emphasizes data science workflows using the R statistical software program and the tidyverse constellation of packages. Only knowledge of calculus is needed; the text's integrated framework is a stepping stone for further advanced study in mathematics or as a comprehensive introduction to modeling for quantitative natural scientists. The text will introduce you to: modeling with systems of differential equations and developing analytical, computational, and visual solution techniques. the R programming language, the tidyverse syntax, and developing data science workflows. qualitative techniques to analyze a system of differential equations. data assimilation techniques (simple linear regression, likelihood or cost functions, and Markov Chain, Monte Carlo Parameter Estimation) to parameterize models from data. simulating and evaluating outputs for stochastic differential equation models. An associated R package provides a framework for computation and visualization of results.
AbstractList This book provides a unique introduction to differential equations with applications to the biological and other natural sciences. Additionally, model parameterization and simulation of stochastic differential equations are explored, providing additional tools for model analysis and evaluation.
Exploring Modeling with Data and Differential Equations Using R provides a unique introduction to differential equations with applications to the biological and other natural sciences. Additionally, model parameterization and simulation of stochastic differential equations are explored, providing additional tools for model analysis and evaluation. This unified framework sits "at the intersection" of different mathematical subject areas, data science, statistics, and the natural sciences. The text throughout emphasizes data science workflows using the R statistical software program and the tidyverse constellation of packages. Only knowledge of calculus is needed; the text's integrated framework is a stepping stone for further advanced study in mathematics or as a comprehensive introduction to modeling for quantitative natural scientists. The text will introduce you to: modeling with systems of differential equations and developing analytical, computational, and visual solution techniques. the R programming language, the tidyverse syntax, and developing data science workflows. qualitative techniques to analyze a system of differential equations. data assimilation techniques (simple linear regression, likelihood or cost functions, and Markov Chain, Monte Carlo Parameter Estimation) to parameterize models from data. simulating and evaluating outputs for stochastic differential equation models. An associated R package provides a framework for computation and visualization of results.
Provides a concise overview of differential equations focused on "modelling first" perspective. Introduces concepts from statistics, data science, and other mathematics courses in an accessible way, encouraging further study in mathematics, statistics, and data science. Includes models from biology, chemistry, physics, economics, and the social sciences. Integrates R and the tidyverse throughout the text without assuming extensive previous subject knowledge of the two. Includes a cohesive R package (demodelr) to supplement the material that is accessible for novice R users.
Author Zobitz, John M.
Author_xml – sequence: 1
  givenname: John M.
  surname: Zobitz
  fullname: Zobitz, John M.
BackLink https://cir.nii.ac.jp/crid/1130015553626874112$$DView record in CiNii
BookMark eNpVkU1P3DAQho3KVmUXjr3nUAlxWJixEzs-IVjSggSqhOBsTRK7uKQ2xIGl_75JgypVGs2H5tFo5p0l2w0xWMY-IxwjBzzRqkQAwUupVb7Dlv8K-WEqBOcSS8QFW3LgkyHHj2NHFJDnGnL8xA5S-gkAXCHmXO-x0-rtqYu9Dz-ym9jabkq2fnjILmigjEKbXXjnbG_D4KnLqucXGnwMKbtPE3q7zxaOumQP3uOK3X-t7jaX6-vv3642Z9drUkLqdaldAdBadKKRYEsupChdWystrFJkyYq64Lp2mkrBW5JYKOJNU7QNSqqtWLGjeS6lR7tND7EbknntbB3jYzKzMKCUVHk-socz-9TH5xebBvMXa8YbeupMdb5RKAA1juSXmQzem8ZPHscWYFEUQnJZqhyRj1g1Yz642P-ibey71gz0e1TO9RQan-Y9EMz0KPPfo8yr7dOoGRd_ALJjga0
ContentType eBook
Book
Copyright 2023 John M. Zobitz
Copyright_xml – notice: 2023 John M. Zobitz
DBID RYH
DEWEY 570.285
DOI 10.1201/9781003286974
DatabaseName CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISBN 1003286976
9781003286974
9781000776744
9781000776782
1000776743
1000776786
Edition 1
ExternalDocumentID 9781000776744
EBC7130191
BC16641374
10_1201_9781003286974_version2
GroupedDBID 38.
AABBV
AAOUW
ABDYN
ABEQL
ACDOW
ACGWR
ADIXB
ADMRP
ADYHE
AEOZX
AESSL
AEUHU
AFUZJ
AICXY
AIENH
AIOIU
AIOUF
AIXXW
AKSCQ
ALGFL
ALMA_UNASSIGNED_HOLDINGS
ALV
AXTGW
B0D
BBABE
CZZ
EBATF
ENU
INALI
JTX
NEQ
NEV
UCHLF
RYH
ABYSD
ID FETCH-LOGICAL-a7369-89f500de1f3c60e823638fdb793e77aeae3b529bf9a832da6157a2cc5dc16abe3
IEDL.DBID ENU
ISBN 1032261811
9781032261812
9781032259482
1032259485
IngestDate Fri Nov 08 02:45:44 EST 2024
Thu Feb 06 08:10:05 EST 2025
Thu Jun 26 22:48:38 EDT 2025
Fri Sep 12 03:55:03 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords visualization
simulation
Equilibrium Solutions
Unstable
Stochastic Differential Equations
Markov Chain Monte Carlo Methods
Data Science
Follow
Ensemble Average
SDE
Jacobian Matrix
Phase Plane
Likelihood Function
Euler's Method
tidyverse
Solution Curves
Differential Equation
Dataset Yeast
parameterization
Data Frame
Counterclockwise
Scatter Plot
computation
Solution Trajectories
Euler Maruyama Method
Spiral Source
Wo
Nullclines
Markov Chain Monte Carlo Parameter
Brownian Motion
Nonlinear Parameter Estimation
LCCN 2022022121
LCCallNum_Ident QH324.8 .Z635 2023
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a7369-89f500de1f3c60e823638fdb793e77aeae3b529bf9a832da6157a2cc5dc16abe3
Notes Includes bibliographical references (p. 351-354) and index
OCLC 1350449041
PQID EBC7130191
PageCount 379
ParticipantIDs askewsholts_vlebooks_9781000776744
proquest_ebookcentral_EBC7130191
nii_cinii_1130015553626874112
informaworld_taylorfrancisbooks_10_1201_9781003286974_version2
PublicationCentury 2000
PublicationDate 2023
2022
2022-11-29
PublicationDateYYYYMMDD 2023-01-01
2022-01-01
2022-11-29
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationPlace Boca Raton, Fla
PublicationPlace_xml – name: Boca Raton, Fla
– name: Milton
PublicationYear 2023
2022
Publisher CRC Press
CRC Press LLC
Chapman & Hall
Publisher_xml – name: CRC Press
– name: CRC Press LLC
– name: Chapman & Hall
SSID ssj0002711429
ssib052523918
Score 2.329751
Snippet Exploring Modeling with Data and Differential Equations Using R provides a unique introduction to differential equations with applications to the biological...
This book provides a unique introduction to differential equations with applications to the biological and other natural sciences. Additionally, model...
Provides a concise overview of differential equations focused on "modelling first" perspective. Introduces concepts from statistics, data science, and other...
SourceID askewsholts
proquest
nii
informaworld
SourceType Aggregation Database
Publisher
SubjectTerms Biological models
Biological models -- Data processing
Biological models -- Mathematical models
Differential equations
R (Computer program language)
TableOfContents 24.1. Random walk redux -- 24.2. Simulating Brownian motion -- 24.3. Exercises -- 25. Simulating Stochastic Differential Equations -- 25.1. The stochastic logistic model -- 25.2. The Euler-Maruyama method -- 25.3. Adding stochasticity to parameters -- 25.4. Systems of stochastic differential equations -- 25.5. Concluding thoughts -- 25.6. Exercises -- 26. Statistics of a Stochastic Differential Equation -- 26.1. Expected value of a stochastic process -- 26.2. Birth-death processes -- 26.3. Wrapping up -- 26.4. Exercises -- 27. Solutions to Stochastic Differential Equations -- 27.1. Meet the Fokker-Planck equation -- 27.2. Deterministically the end -- 27.3. Exercises -- References -- Index
8.2. Parameter estimation for global temperature data -- 8.3. Moving beyond linear models for parameter estimation -- 8.4. Parameter estimation with nonlinear models -- 8.5. Towards model-data fusion -- 8.6. Exercises -- 9. Probability and Likelihood Functions -- 9.1. Linear regression on a small dataset -- 9.2. Continuous probability density functions -- 9.3. Connecting probabilities to linear regression -- 9.4. Visualizing likelihood surfaces -- 9.5. Looking back and forward -- 9.6. Exercises -- 10. Cost Functions and Bayes' Rule -- 10.1. Cost functions and model-data residuals -- 10.2. Further extensions to the cost function -- 10.3. Conditional probabilities and Bayes' rule -- 10.4. Bayes' rule in action -- 10.5. Next steps -- 10.6. Exercises -- 11. Sampling Distributions and the Bootstrap Method -- 11.1. Histograms and their visualization -- 11.2. Statistical theory: sampling distributions -- 11.3. Summary and next steps -- 11.4. Exercises -- 12. The Metropolis-Hastings Algorithm -- 12.1. Estimating the growth of a dog -- 12.2. Likelihood ratios for parameter estimation -- 12.3. The Metropolis-Hastings algorithm for parameter estimation -- 12.4. Exercises -- 13. Markov Chain Monte Carlo Parameter Estimation -- 13.1. The recipe for MCMC -- 13.2. MCMC parameter estimation with an empirical model -- 13.3. MCMC parameter estimation with a differential equation model -- 13.4. Timing your code -- 13.5. Further extensions to MCMC -- 13.6. Exercises -- 14. Information Criteria -- 14.1. Model assessment guidelines -- 14.2. Information criteria for assessing competing models -- 14.3. A few cautionary notes -- 14.4. Exercises -- III. Stability Analysis for Differential Equations -- 15. Systems of Linear Differential Equations -- 15.1. Linear systems of differential equations and matrix notation -- 15.2. Equilibrium solutions -- 15.3. The phase plane
15.4. Non-equilibrium solutions and their stability -- 15.5. Exercises -- 16. Systems of Nonlinear Differential Equations -- 16.1. Introducing nonlinear systems of differential equations -- 16.2. Zooming in on the phase plane -- 16.3. Determining equilibrium solutions with nullclines -- 16.4. Stability of an equilibrium solution -- 16.5. Graphing nullclines in a phase plane -- 16.6. Exercises -- 17. Local Linearization and the Jacobian -- 17.1. Competing populations -- 17.2. Tangent plane approximations -- 17.3. The Jacobian matrix -- 17.4. Exercises -- 18. What are Eigenvalues? -- 18.1. Introduction -- 18.2. Straight line solutions -- 18.3. Computing eigenvalues and eigenvectors -- 18.4. What do eigenvalues tell us? -- 18.5. Concluding thoughts -- 18.6. Exercises -- 19. Qualitative Stability Analysis -- 19.1. The characteristic polynomial (again) -- 19.2. Stability with the trace and determinant -- 19.3. A workflow for stability analysis -- 19.4. Stability for higher-order systems of differential equations -- 19.5. Exercises -- 20. Bifurcation -- 20.1. A series of equations -- 20.2. Bifurcations with systems of equations -- 20.3. Functions as equilibrium solutions: limit cycles -- 20.4. Bifurcations as analysis tools -- 20.5. Exercises -- IV. Stochastic Differential Equations -- 21. Stochastic Biological Systems -- 21.1. Introducing stochastic effects -- 21.2. A discrete dynamical system -- 21.3. Environmental stochasticity -- 21.4. Discrete systems of equations -- 21.5. Exercises -- 22. Simulating and Visualizing Randomness -- 22.1. Ensemble averages -- 22.2. Repeated iteration -- 22.3. Exercises -- 23. Random Walks -- 23.1. Random walk on a number line -- 23.2. Iteration and ensemble averages -- 23.3. Random walk mathematics -- 23.4. Continuous random walks and diffusion -- 23.5. Exercises -- 24. Diffusion and Brownian Motion
Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- List of Figures -- Welcome -- I. Models with Differential Equations -- 1. Models of Rates with Data -- 1.1. Rates of change in the world: a model is born -- 1.2. Modeling in context: the spread of a disease -- 1.3. Model solutions -- 1.4. Which model is best? -- 1.5. Start here -- 1.6. Exercises -- 2. Introduction to R -- 2.1. R and RStudio -- 2.2. First steps: getting acquainted with R -- 2.3. Increasing functionality with packages -- 2.4. Working with R: variables, data frames, and datasets -- 2.5. Visualization with R -- 2.6. Defining functions -- 2.7. Concluding thoughts -- 2.8. Exercises -- 3. Modeling with Rates of Change -- 3.1. Competing plant species and equilibrium solutions -- 3.2. The Law of Mass Action -- 3.3. Coupled differential equations: lynx and hares -- 3.4. Functional responses -- 3.5. Exercises -- 4. Euler's Method -- 4.1. The flu and locally linear approximation -- 4.2. A workflow for approximation -- 4.3. Building an iterative method -- 4.4. Euler's method and beyond -- 4.5. Exercises -- 5. Phase Lines and Equilibrium Solutions -- 5.1. Equilibrium solutions -- 5.2. Phase lines for differential equations -- 5.3. A stability test for equilibrium solutions -- 5.4. Exercises -- 6. Coupled Systems of Equations -- 6.1. Flu with quarantine and equilibrium solutions -- 6.2. Nullclines -- 6.3. Phase planes -- 6.4. Generating a phase plane in R -- 6.5. Slope fields -- 6.6. Exercises -- 7. Exact Solutions to Differential Equations -- 7.1. Verify a solution -- 7.2. Separable differential equations -- 7.3. Integrating factors -- 7.4. Applying the verification method to coupled equations -- 7.5. Exercises -- II. Parameterizing Models with Data -- 8. Linear Regression and Curve Fitting -- 8.1. What is parameter estimation?
Title Exploring Modeling with Data and Differential Equations Using R
URI https://www.taylorfrancis.com/books/9781003286974
https://cir.nii.ac.jp/crid/1130015553626874112
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=7130191
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781000776744
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IOjFN64vgnitNH1kNxcFdUUEPYgL3krSJLAqFW0V9Nc7k7SyqyfxUggpNJ1J5pWZbwAOM-50zJWOzMDkUWZTGcmSkgCE0cLgrHAUh7y-EZej7Oo-v58B3tXCUFpl431VFxpLeGlNBmdNYLA8Jvw3gUbwLMyjJ5HRWRzejLotlCfoWMlW3D74ezUqFpVU0hXT3iUwlG4gULvxFvapm0wmxjSftLicqCenv78ES6p-REGEQqqpfwCdoqKqxuNf4t3rrItluO3-NqSqPB69Nfqo_PwBBPkncqzAvKXqiFWYsdUaLIROlh_rcPKdy8eouxrVuDMK8bJz1SimKsPO204sKFGe2PAlIIzXzKcssNsNGF0M784uo7Y3Q6T6qZDRQLo8jo3lLi1FbKltejpwRuNxt_2-ssqmOk-kdlKhzDAKDae-SsoyNyUXStt0E-aq58puAYuFS6R1cabzNDOq1JrKWzVaqr6jqezBwQSli_cnf41cF-H_AxxR1oPjSQYUU0QL75O7g2wspuhWvIewZNKDPWRZUY7pyemSDy2tnMB6Bmh0cZxnHTMLv4A2ebYYnp6ho4-WMt_-7xp2YJG62YcIzy7MNa9vdg9tnkbv-13-BTd68ks
linkProvider CRC Press LLC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Exploring+modeling+with+data+and+differential+equations+using+R&rft.au=Zobitz%2C+John+M&rft.date=2023-01-01&rft.pub=CRC+Press&rft.isbn=9781032259482&rft_id=info:doi/10.1201%2F9781003286974&rft.externalDocID=BC16641374
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97810007%2F9781000776744.jpg