On the stability of fissured slopes subject to seismic action
Summary A set of analytical solutions achieved by the upper bound theorem of limit analysis and the pseudo‐static approach is presented for the assessment of the stability of homogeneous c, ϕ slopes manifesting vertical cracks and subject to seismic action. Rotational failure mechanisms are consider...
Saved in:
| Published in | International journal for numerical and analytical methods in geomechanics Vol. 40; no. 5; pp. 785 - 806 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Bognor Regis
Blackwell Publishing Ltd
10.04.2016
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0363-9061 1096-9853 1096-9853 |
| DOI | 10.1002/nag.2498 |
Cover
| Abstract | Summary
A set of analytical solutions achieved by the upper bound theorem of limit analysis and the pseudo‐static approach is presented for the assessment of the stability of homogeneous c, ϕ slopes manifesting vertical cracks and subject to seismic action. Rotational failure mechanisms are considered for slopes with cracks of either known or unknown depth and location. A validation exercise was carried out based on numerical limit analyses and displacement‐based finite‐element analyses with strength reduction technique.
Charts providing the stability factor for fissured slopes subject to both horizontal and vertical accelerations for any combination of c, ϕ and slope inclination are provided. The effect of the direction of the vertical acceleration on slope stability is specifically analysed. Yield seismic coefficients are also provided.
When the presence of cracks within the slope can be ascertained with reasonable confidence, maps showing the zones within the slope where they have no destabilising effect are provided.
Finally, Newmark's method was employed to assess the effect of cracks on earthquake induced displacements. To this end, displacement coefficients are provided in chart form as a function of the slope characteristics. Two examples of slopes subjected to known earthquakes are illustrated. © 2016 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd. |
|---|---|
| AbstractList | Summary A set of analytical solutions achieved by the upper bound theorem of limit analysis and the pseudo-static approach is presented for the assessment of the stability of homogeneous c, slopes manifesting vertical cracks and subject to seismic action. Rotational failure mechanisms are considered for slopes with cracks of either known or unknown depth and location. A validation exercise was carried out based on numerical limit analyses and displacement-based finite-element analyses with strength reduction technique. Charts providing the stability factor for fissured slopes subject to both horizontal and vertical accelerations for any combination of c, and slope inclination are provided. The effect of the direction of the vertical acceleration on slope stability is specifically analysed. Yield seismic coefficients are also provided. When the presence of cracks within the slope can be ascertained with reasonable confidence, maps showing the zones within the slope where they have no destabilising effect are provided. Finally, Newmark's method was employed to assess the effect of cracks on earthquake induced displacements. To this end, displacement coefficients are provided in chart form as a function of the slope characteristics. Two examples of slopes subjected to known earthquakes are illustrated. © 2016 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd. A set of analytical solutions achieved by the upper bound theorem of limit analysis and the pseudo-static approach is presented for the assessment of the stability of homogeneous c, slopes manifesting vertical cracks and subject to seismic action. Rotational failure mechanisms are considered for slopes with cracks of either known or unknown depth and location. A validation exercise was carried out based on numerical limit analyses and displacement-based finite-element analyses with strength reduction technique. Charts providing the stability factor for fissured slopes subject to both horizontal and vertical accelerations for any combination of c, and slope inclination are provided. The effect of the direction of the vertical acceleration on slope stability is specifically analysed. Yield seismic coefficients are also provided. When the presence of cracks within the slope can be ascertained with reasonable confidence, maps showing the zones within the slope where they have no destabilising effect are provided. Finally, Newmark's method was employed to assess the effect of cracks on earthquake induced displacements. To this end, displacement coefficients are provided in chart form as a function of the slope characteristics. Two examples of slopes subjected to known earthquakes are illustrated. copyright 2016 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd. A set of analytical solutions achieved by the upper bound theorem of limit analysis and the pseudo‐static approach is presented for the assessment of the stability of homogeneous c , ϕ slopes manifesting vertical cracks and subject to seismic action. Rotational failure mechanisms are considered for slopes with cracks of either known or unknown depth and location. A validation exercise was carried out based on numerical limit analyses and displacement‐based finite‐element analyses with strength reduction technique. Charts providing the stability factor for fissured slopes subject to both horizontal and vertical accelerations for any combination of c , ϕ and slope inclination are provided. The effect of the direction of the vertical acceleration on slope stability is specifically analysed. Yield seismic coefficients are also provided. When the presence of cracks within the slope can be ascertained with reasonable confidence, maps showing the zones within the slope where they have no destabilising effect are provided. Finally, Newmark's method was employed to assess the effect of cracks on earthquake induced displacements. To this end, displacement coefficients are provided in chart form as a function of the slope characteristics. Two examples of slopes subjected to known earthquakes are illustrated. © 2016 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd. Summary A set of analytical solutions achieved by the upper bound theorem of limit analysis and the pseudo‐static approach is presented for the assessment of the stability of homogeneous c, ϕ slopes manifesting vertical cracks and subject to seismic action. Rotational failure mechanisms are considered for slopes with cracks of either known or unknown depth and location. A validation exercise was carried out based on numerical limit analyses and displacement‐based finite‐element analyses with strength reduction technique. Charts providing the stability factor for fissured slopes subject to both horizontal and vertical accelerations for any combination of c, ϕ and slope inclination are provided. The effect of the direction of the vertical acceleration on slope stability is specifically analysed. Yield seismic coefficients are also provided. When the presence of cracks within the slope can be ascertained with reasonable confidence, maps showing the zones within the slope where they have no destabilising effect are provided. Finally, Newmark's method was employed to assess the effect of cracks on earthquake induced displacements. To this end, displacement coefficients are provided in chart form as a function of the slope characteristics. Two examples of slopes subjected to known earthquakes are illustrated. © 2016 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd. |
| Author | Utili, S. Abd, A.H. |
| Author_xml | – sequence: 1 givenname: S. surname: Utili fullname: Utili, S. email: Correspondence to: S. Utili, School of Engineering, University of Warwick, CV4 7AL Coventry, U.K., s.utili@warwick.ac.uk organization: School of Engineering, University of Warwick, CV4 7AL, Coventry, U.K – sequence: 2 givenname: A.H. surname: Abd fullname: Abd, A.H. organization: School of Engineering, University of Warwick, CV4 7AL, Coventry, U.K |
| BookMark | eNqF0M9LHDEUwPFQLHS1hf4JAS_2MOvLZPJjDh5E7SqIUrD1GDIzbzRrdrJNMuj-951li9BC7SmH93kh3-yTvSEMSMhnBnMGUB4P9mFeVrV-R2YMalnUWvA9MgMueVGDZB_IfkpLABDTdEZObgeaH5GmbBvnXd7Q0NPepTRG7GjyYY2JprFZYptpDjShSyvXUttmF4aP5H1vfcJPv88D8v3rxd3ZZXF9u7g6O70urOKgi9oi6wSwxla66lvkTaNZWTZqGmipuoapSqNgEjlDrRoUHVNSQGt1pW2H_IB82d07Dmu7ebbem3V0Kxs3hoHZdpup22y7J3u0s-sYfo6Yslm51KL3dsAwJsM0QFULAPZ_qpSUQouqnOjhX3QZxjhM0ZOStdZa6WpS851qY0gpYm9al-32p3K0zr_x2NeFN7qKHX12Hjf_dObmdPGndynjy6u38clIxZUw9zcLo87lt7vL8t784L8AqKCvEw |
| CODEN | IJNGDZ |
| CitedBy_id | crossref_primary_10_1061__ASCE_GM_1943_5622_0001548 crossref_primary_10_1016_j_enggeo_2019_105450 crossref_primary_10_1016_j_compgeo_2016_04_007 crossref_primary_10_1038_s41598_023_33373_y crossref_primary_10_1007_s00603_023_03281_8 crossref_primary_10_1007_s11771_019_4137_0 crossref_primary_10_1007_s12665_021_09932_9 crossref_primary_10_1016_j_soildyn_2022_107180 crossref_primary_10_1061_IJGNAI_GMENG_7821 crossref_primary_10_1680_jgeen_20_00085 crossref_primary_10_1016_j_soildyn_2021_106917 crossref_primary_10_1080_19475705_2024_2442020 crossref_primary_10_1016_j_geotexmem_2017_08_004 crossref_primary_10_1007_s11440_021_01192_y crossref_primary_10_1016_j_soildyn_2018_01_047 crossref_primary_10_1016_j_soildyn_2018_01_048 crossref_primary_10_1016_j_soildyn_2021_106599 crossref_primary_10_1007_s10064_019_01584_1 crossref_primary_10_1016_j_compgeo_2019_04_029 crossref_primary_10_1680_jgeot_17_D_014 crossref_primary_10_1139_cgj_2022_0566 crossref_primary_10_1080_17486025_2019_1648880 crossref_primary_10_1680_jgeot_21_00119 crossref_primary_10_1155_2021_9986509 crossref_primary_10_1007_s11629_017_4753_9 crossref_primary_10_1007_s11629_017_4759_3 crossref_primary_10_1155_2020_8812277 crossref_primary_10_1016_j_soildyn_2020_106147 crossref_primary_10_1016_j_jrmge_2018_09_007 crossref_primary_10_1155_2020_5196303 crossref_primary_10_1007_s10064_020_01975_9 crossref_primary_10_1139_cgj_2017_0713 crossref_primary_10_1016_j_compgeo_2024_106564 crossref_primary_10_1061_IJGNAI_GMENG_8697 crossref_primary_10_1016_j_soildyn_2018_04_015 crossref_primary_10_1016_j_soildyn_2018_04_014 crossref_primary_10_1016_j_soildyn_2017_04_019 crossref_primary_10_1016_j_enggeo_2019_03_001 crossref_primary_10_18311_jmmf_2024_36463 crossref_primary_10_1002_eqe_3851 crossref_primary_10_1061__ASCE_GM_1943_5622_0002578 crossref_primary_10_1016_j_geotexmem_2020_04_003 crossref_primary_10_1061_IJGNAI_GMENG_9868 crossref_primary_10_1007_s11770_024_1176_6 crossref_primary_10_1061__ASCE_GM_1943_5622_0001487 crossref_primary_10_1007_s10706_019_00806_3 crossref_primary_10_1680_jgeot_20_P_355 crossref_primary_10_1016_j_proeng_2017_05_140 crossref_primary_10_3390_math9243256 crossref_primary_10_1016_j_geotexmem_2019_02_003 crossref_primary_10_1155_2021_9262138 crossref_primary_10_3389_feart_2022_830371 crossref_primary_10_1155_2020_6582787 crossref_primary_10_1016_j_trgeo_2021_100583 crossref_primary_10_1016_j_enggeo_2016_09_005 crossref_primary_10_1016_j_enggeo_2019_105212 crossref_primary_10_1016_j_enggeo_2019_105213 crossref_primary_10_1016_j_compgeo_2020_103544 crossref_primary_10_3390_app12073224 |
| Cites_doi | 10.1061/(ASCE)0733-9410(1984)110:7(860) 10.1002/(SICI)1096-9853(19990425)23:5<439::AID-NAG976>3.0.CO;2-N 10.1061/(ASCE)GT.1943-5606.0001215 10.1139/cgj-2012-0448 10.1002/nag.728 10.1680/geot.1998.48.3.411 10.1130/Berkey.1950.83 10.1029/2009JF001557 10.1061/(ASCE)GT.1943-5606.0000866 10.1016/j.compgeo.2007.01.005 10.1002/9780470172766 10.1680/geot.11.P.068 10.1097/00010694-194808000-00008 10.1029/2006JF000616 10.1680/geot.2003.53.5.463 10.1016/j.geoderma.2011.07.018 10.1029/2009JF001559 10.1016/j.soildyn.2014.04.007 10.1680/geot.1965.15.2.139 10.1680/geot.1999.49.6.835 10.1016/S0020-7683(03)00075-1 10.1139/T08-039 10.1016/j.epsl.2013.11.053 10.3208/sandf.47.717 10.1002/nme.1406 10.1016/j.compgeo.2010.04.010 10.1016/S0266-352X(99)00016-6 10.1002/(SICI)1096-9845(199712)26:12<1231::AID-EQE707>3.0.CO;2-Z 10.1139/t97-015 |
| ContentType | Journal Article |
| Copyright | 2016 The Authors. published by John Wiley & Sons Ltd. Copyright © 2016 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2016 The Authors. published by John Wiley & Sons Ltd. – notice: Copyright © 2016 John Wiley & Sons, Ltd. |
| DBID | BSCLL 24P AAYXX CITATION 7SC 7UA 8FD C1K F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D 7SM ADTOC UNPAY |
| DOI | 10.1002/nag.2498 |
| DatabaseName | Istex Wiley Online Library Open Access CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Earthquake Engineering Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Earthquake Engineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Earthquake Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-9853 |
| EndPage | 806 |
| ExternalDocumentID | 10.1002/nag.2498 3969302301 10_1002_nag_2498 NAG2498 ark_67375_WNG_7D6QTH2W_V |
| Genre | article |
| GrantInformation_xml | – fundername: H2020 Marie Skłodowska‐Curie Actions RISE 2014 ‘Geo‐ramp’ funderid: 645665 – fundername: Higher Committee for Education Development in Iraq (HCED) |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT 24P AAYXX CITATION 7SC 7UA 8FD C1K F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D 7SM .Y3 31~ 41~ AANHP ABEML ACRPL ACSCC ADNMO ADTOC AFZJQ AI. AIQQE ASPBG AVWKF AZFZN BDRZF FEDTE GBZZK HF~ HVGLF M6O PALCI RIWAO RJQFR SAMSI UNPAY VH1 ZY4 |
| ID | FETCH-LOGICAL-a7308-9ae1d501ba484fce3bb8122b79ae867db1748e516e31e87be5d17650ca848ade3 |
| IEDL.DBID | DR2 |
| ISSN | 0363-9061 1096-9853 |
| IngestDate | Mon Oct 27 10:40:44 EDT 2025 Thu Oct 02 05:35:31 EDT 2025 Tue Oct 07 09:27:53 EDT 2025 Fri Jul 25 12:15:36 EDT 2025 Wed Oct 01 03:41:35 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Tue Sep 09 05:08:27 EDT 2025 Tue Sep 09 05:32:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Attribution http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a7308-9ae1d501ba484fce3bb8122b79ae867db1748e516e31e87be5d17650ca848ade3 |
| Notes | Supporting info item ArticleID:NAG2498 istex:25D4C73749600305211538878BACD3F6E50EDB06 H2020 Marie Skłodowska-Curie Actions RISE 2014 'Geo-ramp' - No. 645665 Higher Committee for Education Development in Iraq (HCED) ark:/67375/WNG-7D6QTH2W-V ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnag.2498 |
| PQID | 1769888784 |
| PQPubID | 996377 |
| PageCount | 22 |
| ParticipantIDs | unpaywall_primary_10_1002_nag_2498 proquest_miscellaneous_1800495001 proquest_miscellaneous_1776658542 proquest_journals_1769888784 crossref_citationtrail_10_1002_nag_2498 crossref_primary_10_1002_nag_2498 wiley_primary_10_1002_nag_2498_NAG2498 istex_primary_ark_67375_WNG_7D6QTH2W_V |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 10 April 2016 |
| PublicationDateYYYYMMDD | 2016-04-10 |
| PublicationDate_xml | – month: 04 year: 2016 text: 10 April 2016 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal for numerical and analytical methods in geomechanics |
| PublicationTitleAlternate | Int. J. Numer. Anal. Meth. Geomech |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Gao Y, Zhang F, Lei GH, Li D, Wu Y, Zhang N. Stability charts for 3D failures of homogeneous slopes. Journal of Geotechnical and Geoenvironmental Engineering 2013; 139(9):1528-1538. Yang XG, Chi SC. Seismic stability of earth-rock dams using finite element limit analysis. Soil Dynamics and Earthquake Engineering 2014; 64:1-10. Cao J, Zaman MM. Analytical method for analysis of slope stability. International Journal for Numerical and Analytical Methods in Geomechanics 1999; 23(5):439-449. Chen WF, Liu XL. Limit Analysis in Soil Mechanics. Elsevier: Amsterdam, Netherlands, 1990. Crespellani T, Madiai C, Vannucchi G. Earthquake destructiveness potential factor and slope stability. Geotechnique 1998; 48(3):411-419. Newmark NM. Effect of earthquakes on dams and embankments. Geotechnique 1965; 15(2):139-159. Dawson EM, Roth WH, Drescher A. Slope stability analysis by strength reduction. Geotechnique 1999; 49(6):835-840. Shukha R, Baker R. Design implications of the vertical pseudo-static coefficient in slope analysis. Computers and Geotechnics 2008; 35(1):86-96. Vanicek I, Vanicek M. Earth Structures in Transport, Water and Environmental Engineering. Springer: Prague, 2008. Konrad JM, Ayad R. An idealized framework for the analysis of cohesive soils undergoing desiccation. Canadian Geotechnical Journal 1997; 34(4):477-488. Utili S. Investigation by limit analysis on the stability of slopes with cracks. Geotechnique 2013; 63(2):140-154. Tang CS, Cui YJ, Shi B, Tang AM, Liu C. Desiccation and cracking behavior of clay layer from slurry state under wetting-drying cycles. Geoderma 2011; 166(1):111-118. Taylor DW. Fundamentals of Soil Mechanics. John Wiley & Sons: New York, USA, 1948. Utili S, Crosta GB. Modeling the evolution of natural cliffs subject to weathering: 1. Limit analysis approach. Journal of Geophysics Research: Earth Surface 2011; 116:F01016. doi:10.1029/2009JF001557. Dyer M, Utili S, Zielinski M. Field survey of desiccation fissuring of flood embankment. Proceedings of the ICE-Water Management 2009; 162(3):221-232. Antao AN, Costa Guerra NM, Fernandes MM, Cardoso AS. Influence of tension cut-off on the stability of anchored concrete soldier-pile walls in clay. Canadian Geotechnical Journal 2008; 45(7):1036-1044. Baker R. Sufficient conditions for existence of physically significant solutions in limiting equilibrium slope stability analysis. International Journal of Solids and Structures 2003; 40(13-14):3717-3735. Utili S, Nova R. DEM analysis of bonded granular geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics 2008; 32(17):1997-2031. Terzaghi K. Theoretical Soil Mechanics. John Wiley & Sons: New York, USA, 1943. Chen WF. Limit Analysis and Soil Plasticity. Elsevier: Amsterdam, Netherlands, 1975. You L, Michalowski RL. Displacement charts for slopes subjected to seismic loads. Computers and Geotechnics 1999; 25(1):45-55. Conte E, Silvestri F, Troncone A. Stability analysis of slopes in soils with strain-softening behaviour. Computers and Geotechnics 2010; 37(5):710-722. Utili S, Castellanza R, Galli A, Sentenac P. Novel approach for health monitoring of earthen embankments. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2015; 141(3):04014111. doi:10.1061/(ASCE)GT.1943-5606.0001215. Utili S, Crosta GB. Modelling the evolution of natural slopes subject to weathering part II. Discrete Element Approach. Journal of Geophysical Research: Earth Surface 2011; 116:F01017. Zheng H, Liu DF, Li CG. Slope stability analysis based on elasto-plastic finite element method. International Journal for Numerical Methods in Engineering 2005; 64(14):1871-1888. Michalowski RL. Stability assessment of slopes with cracks using limit analysis. Canadian Geotechnical Journal 2013; 50(10):1011-1021. Chang CJ, Chen WF, Yao JP. Seismic displacements in slopes by limit analysis. Journal of Geotechnical Engineering 1984; 110(7):860-874. Utili S, Nova R. On the optimal profile of a slope. Soils and Foundations 2007; 47(4):717-729. Tang CS, Cui YJ, Tang AM, Shi B. Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils. Engineering Geology 2009; 114(3-4):261-266. Loukidis D, Bandini P, Salgado R. Stability of seismically loaded slopes using limit analysis. Geotechnique 2003; 53(5):463-479. Hales TC, Roering JJ. Climatic controls on frost cracking and implications for the evolution of bedrock landscapes. Journal of Geophysics Research: Earth Surface (2003-2012) 2007; 112(F2). doi:10.1029/2006JF000616. Ling HI, Leshchinsky D, Mohri Y. Soil slopes under combined horizontal and vertical seismic acceleration. Earthquake Engineering & Structural Dynamics 1997; 26(12):1231-1241. Crosta GB, Utili S, Blasi D, Castellanza R. Reassessing rock mass properties and slopes instability triggering conditions in Valles Marineris, Mars. Earth and Planetary Science Letters 2014; 388:329-342. 2011; 116 1998; 48 2015; 141 2010; 37 1997; 26 1999; 49 1999; 25 2013; 63 1999; 23 1975 2008 2007 2005; 64 2006 2008; 35 1950 2008; 32 1965; 15 2003; 53 2009; 114 2014; 64 2007; 112 1984; 110 1990 2013; 50 2013; 139 1997; 34 1943 2008; 45 2009; 162 2014 2003; 40 1948 2011; 166 2007; 47 2014; 388 e_1_2_12_3_1 Crespellani T (e_1_2_12_6_1) 1998; 48 Dyer M (e_1_2_12_18_1) 2009; 162 e_1_2_12_2_1 e_1_2_12_17_1 Chen WF (e_1_2_12_5_1) 1990 e_1_2_12_20_1 Chang CJ (e_1_2_12_4_1) 1984; 110 e_1_2_12_21_1 e_1_2_12_22_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_25_1 Tang CS (e_1_2_12_19_1) 2009; 114 e_1_2_12_26_1 You L (e_1_2_12_10_1) 1999; 25 Chen WF (e_1_2_12_13_1) 1975 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 Vanicek I (e_1_2_12_16_1) 2008 Utili S (e_1_2_12_38_1) 2011; 116 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_9_1 |
| References_xml | – reference: Hales TC, Roering JJ. Climatic controls on frost cracking and implications for the evolution of bedrock landscapes. Journal of Geophysics Research: Earth Surface (2003-2012) 2007; 112(F2). doi:10.1029/2006JF000616. – reference: Utili S. Investigation by limit analysis on the stability of slopes with cracks. Geotechnique 2013; 63(2):140-154. – reference: Chang CJ, Chen WF, Yao JP. Seismic displacements in slopes by limit analysis. Journal of Geotechnical Engineering 1984; 110(7):860-874. – reference: Utili S, Castellanza R, Galli A, Sentenac P. Novel approach for health monitoring of earthen embankments. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2015; 141(3):04014111. doi:10.1061/(ASCE)GT.1943-5606.0001215. – reference: Michalowski RL. Stability assessment of slopes with cracks using limit analysis. Canadian Geotechnical Journal 2013; 50(10):1011-1021. – reference: Conte E, Silvestri F, Troncone A. Stability analysis of slopes in soils with strain-softening behaviour. Computers and Geotechnics 2010; 37(5):710-722. – reference: Taylor DW. Fundamentals of Soil Mechanics. John Wiley & Sons: New York, USA, 1948. – reference: Ling HI, Leshchinsky D, Mohri Y. Soil slopes under combined horizontal and vertical seismic acceleration. Earthquake Engineering & Structural Dynamics 1997; 26(12):1231-1241. – reference: Cao J, Zaman MM. Analytical method for analysis of slope stability. International Journal for Numerical and Analytical Methods in Geomechanics 1999; 23(5):439-449. – reference: Konrad JM, Ayad R. An idealized framework for the analysis of cohesive soils undergoing desiccation. Canadian Geotechnical Journal 1997; 34(4):477-488. – reference: Crespellani T, Madiai C, Vannucchi G. Earthquake destructiveness potential factor and slope stability. Geotechnique 1998; 48(3):411-419. – reference: Shukha R, Baker R. Design implications of the vertical pseudo-static coefficient in slope analysis. Computers and Geotechnics 2008; 35(1):86-96. – reference: Tang CS, Cui YJ, Tang AM, Shi B. Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils. Engineering Geology 2009; 114(3-4):261-266. – reference: Vanicek I, Vanicek M. Earth Structures in Transport, Water and Environmental Engineering. Springer: Prague, 2008. – reference: Utili S, Nova R. DEM analysis of bonded granular geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics 2008; 32(17):1997-2031. – reference: Terzaghi K. Theoretical Soil Mechanics. John Wiley & Sons: New York, USA, 1943. – reference: Chen WF, Liu XL. Limit Analysis in Soil Mechanics. Elsevier: Amsterdam, Netherlands, 1990. – reference: Baker R. Sufficient conditions for existence of physically significant solutions in limiting equilibrium slope stability analysis. International Journal of Solids and Structures 2003; 40(13-14):3717-3735. – reference: Zheng H, Liu DF, Li CG. Slope stability analysis based on elasto-plastic finite element method. International Journal for Numerical Methods in Engineering 2005; 64(14):1871-1888. – reference: Newmark NM. Effect of earthquakes on dams and embankments. Geotechnique 1965; 15(2):139-159. – reference: Gao Y, Zhang F, Lei GH, Li D, Wu Y, Zhang N. Stability charts for 3D failures of homogeneous slopes. Journal of Geotechnical and Geoenvironmental Engineering 2013; 139(9):1528-1538. – reference: Tang CS, Cui YJ, Shi B, Tang AM, Liu C. Desiccation and cracking behavior of clay layer from slurry state under wetting-drying cycles. Geoderma 2011; 166(1):111-118. – reference: Dawson EM, Roth WH, Drescher A. Slope stability analysis by strength reduction. Geotechnique 1999; 49(6):835-840. – reference: Loukidis D, Bandini P, Salgado R. Stability of seismically loaded slopes using limit analysis. Geotechnique 2003; 53(5):463-479. – reference: Chen WF. Limit Analysis and Soil Plasticity. Elsevier: Amsterdam, Netherlands, 1975. – reference: Dyer M, Utili S, Zielinski M. Field survey of desiccation fissuring of flood embankment. Proceedings of the ICE-Water Management 2009; 162(3):221-232. – reference: Utili S, Crosta GB. Modeling the evolution of natural cliffs subject to weathering: 1. Limit analysis approach. Journal of Geophysics Research: Earth Surface 2011; 116:F01016. doi:10.1029/2009JF001557. – reference: Yang XG, Chi SC. Seismic stability of earth-rock dams using finite element limit analysis. Soil Dynamics and Earthquake Engineering 2014; 64:1-10. – reference: Crosta GB, Utili S, Blasi D, Castellanza R. Reassessing rock mass properties and slopes instability triggering conditions in Valles Marineris, Mars. Earth and Planetary Science Letters 2014; 388:329-342. – reference: Utili S, Nova R. On the optimal profile of a slope. Soils and Foundations 2007; 47(4):717-729. – reference: Antao AN, Costa Guerra NM, Fernandes MM, Cardoso AS. Influence of tension cut-off on the stability of anchored concrete soldier-pile walls in clay. Canadian Geotechnical Journal 2008; 45(7):1036-1044. – reference: You L, Michalowski RL. Displacement charts for slopes subjected to seismic loads. Computers and Geotechnics 1999; 25(1):45-55. – reference: Utili S, Crosta GB. Modelling the evolution of natural slopes subject to weathering part II. Discrete Element Approach. Journal of Geophysical Research: Earth Surface 2011; 116:F01017. – volume: 63 start-page: 140 issue: 2 year: 2013 end-page: 154 article-title: Investigation by limit analysis on the stability of slopes with cracks publication-title: Geotechnique – volume: 25 start-page: 45 issue: 1 year: 1999 end-page: 55 article-title: Displacement charts for slopes subjected to seismic loads publication-title: Computers and Geotechnics – year: 2007 – volume: 47 start-page: 717 issue: 4 year: 2007 end-page: 729 article-title: On the optimal profile of a slope publication-title: Soils and Foundations – year: 1948 – volume: 162 start-page: 221 issue: 3 year: 2009 end-page: 232 article-title: Field survey of desiccation fissuring of flood embankment publication-title: Proceedings of the ICE‐Water Management – year: 1975 – volume: 116 start-page: F01017 year: 2011 article-title: Modelling the evolution of natural slopes subject to weathering part II. Discrete Element Approach publication-title: Journal of Geophysical Research: Earth Surface – year: 1950 – volume: 64 start-page: 1871 issue: 14 year: 2005 end-page: 1888 article-title: Slope stability analysis based on elasto‐plastic finite element method publication-title: International Journal for Numerical Methods in Engineering – volume: 49 start-page: 835 issue: 6 year: 1999 end-page: 840 article-title: Slope stability analysis by strength reduction publication-title: Geotechnique – year: 1990 – year: 2014 – volume: 48 start-page: 411 issue: 3 year: 1998 end-page: 419 article-title: Earthquake destructiveness potential factor and slope stability publication-title: Geotechnique – volume: 388 start-page: 329 year: 2014 end-page: 342 article-title: Reassessing rock mass properties and slopes instability triggering conditions in Valles Marineris, Mars publication-title: Earth and Planetary Science Letters – volume: 45 start-page: 1036 issue: 7 year: 2008 end-page: 1044 article-title: Influence of tension cut‐off on the stability of anchored concrete soldier‐pile walls in clay publication-title: Canadian Geotechnical Journal – volume: 112 issue: F2 year: 2007 article-title: Climatic controls on frost cracking and implications for the evolution of bedrock landscapes publication-title: Journal of Geophysics Research: Earth Surface (2003‐2012) – volume: 40 start-page: 3717 issue: 13–14 year: 2003 end-page: 3735 article-title: Sufficient conditions for existence of physically significant solutions in limiting equilibrium slope stability analysis publication-title: International Journal of Solids and Structures – volume: 34 start-page: 477 issue: 4 year: 1997 end-page: 488 article-title: An idealized framework for the analysis of cohesive soils undergoing desiccation publication-title: Canadian Geotechnical Journal – volume: 23 start-page: 439 issue: 5 year: 1999 end-page: 449 article-title: Analytical method for analysis of slope stability publication-title: International Journal for Numerical and Analytical Methods in Geomechanics – volume: 26 start-page: 1231 issue: 12 year: 1997 end-page: 1241 article-title: Soil slopes under combined horizontal and vertical seismic acceleration publication-title: Earthquake Engineering & Structural Dynamics – volume: 139 start-page: 1528 issue: 9 year: 2013 end-page: 1538 article-title: Stability charts for 3D failures of homogeneous slopes publication-title: Journal of Geotechnical and Geoenvironmental Engineering – volume: 141 issue: 3 year: 2015 article-title: Novel approach for health monitoring of earthen embankments publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE – volume: 32 start-page: 1997 issue: 17 year: 2008 end-page: 2031 article-title: DEM analysis of bonded granular geomaterials publication-title: International Journal for Numerical and Analytical Methods in Geomechanics – volume: 37 start-page: 710 issue: 5 year: 2010 end-page: 722 article-title: Stability analysis of slopes in soils with strain‐softening behaviour publication-title: Computers and Geotechnics – volume: 116 start-page: F01016 year: 2011 article-title: Modeling the evolution of natural cliffs subject to weathering: 1. Limit analysis approach publication-title: Journal of Geophysics Research: Earth Surface – year: 2008 – year: 2006 – volume: 50 start-page: 1011 issue: 10 year: 2013 end-page: 1021 article-title: Stability assessment of slopes with cracks using limit analysis publication-title: Canadian Geotechnical Journal – volume: 35 start-page: 86 issue: 1 year: 2008 end-page: 96 article-title: Design implications of the vertical pseudo‐static coefficient in slope analysis publication-title: Computers and Geotechnics – volume: 53 start-page: 463 issue: 5 year: 2003 end-page: 479 article-title: Stability of seismically loaded slopes using limit analysis publication-title: Geotechnique – year: 1943 – volume: 166 start-page: 111 issue: 1 year: 2011 end-page: 118 article-title: Desiccation and cracking behavior of clay layer from slurry state under wetting–drying cycles publication-title: Geoderma – volume: 15 start-page: 139 issue: 2 year: 1965 end-page: 159 article-title: Effect of earthquakes on dams and embankments publication-title: Geotechnique – volume: 110 start-page: 860 issue: 7 year: 1984 end-page: 874 article-title: Seismic displacements in slopes by limit analysis publication-title: Journal of Geotechnical Engineering – volume: 114 start-page: 261 issue: 3‐4 year: 2009 end-page: 266 article-title: Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils publication-title: Engineering Geology – volume: 64 start-page: 1 year: 2014 end-page: 10 article-title: Seismic stability of earth‐rock dams using finite element limit analysis publication-title: Soil Dynamics and Earthquake Engineering – volume: 110 start-page: 860 issue: 7 year: 1984 ident: e_1_2_12_4_1 article-title: Seismic displacements in slopes by limit analysis publication-title: Journal of Geotechnical Engineering doi: 10.1061/(ASCE)0733-9410(1984)110:7(860) – ident: e_1_2_12_3_1 doi: 10.1002/(SICI)1096-9853(19990425)23:5<439::AID-NAG976>3.0.CO;2-N – ident: e_1_2_12_21_1 doi: 10.1061/(ASCE)GT.1943-5606.0001215 – ident: e_1_2_12_27_1 doi: 10.1139/cgj-2012-0448 – ident: e_1_2_12_32_1 – ident: e_1_2_12_37_1 doi: 10.1002/nag.728 – ident: e_1_2_12_24_1 – volume: 48 start-page: 411 issue: 3 year: 1998 ident: e_1_2_12_6_1 article-title: Earthquake destructiveness potential factor and slope stability publication-title: Geotechnique doi: 10.1680/geot.1998.48.3.411 – ident: e_1_2_12_11_1 doi: 10.1130/Berkey.1950.83 – ident: e_1_2_12_28_1 doi: 10.1029/2009JF001557 – volume: 162 start-page: 221 issue: 3 year: 2009 ident: e_1_2_12_18_1 article-title: Field survey of desiccation fissuring of flood embankment publication-title: Proceedings of the ICE‐Water Management – ident: e_1_2_12_7_1 doi: 10.1061/(ASCE)GT.1943-5606.0000866 – ident: e_1_2_12_31_1 doi: 10.1016/j.compgeo.2007.01.005 – ident: e_1_2_12_2_1 doi: 10.1002/9780470172766 – ident: e_1_2_12_26_1 doi: 10.1680/geot.11.P.068 – ident: e_1_2_12_12_1 doi: 10.1097/00010694-194808000-00008 – volume-title: Earth Structures in Transport, Water and Environmental Engineering year: 2008 ident: e_1_2_12_16_1 – ident: e_1_2_12_22_1 doi: 10.1029/2006JF000616 – volume-title: Limit Analysis in Soil Mechanics year: 1990 ident: e_1_2_12_5_1 – ident: e_1_2_12_23_1 – ident: e_1_2_12_8_1 doi: 10.1680/geot.2003.53.5.463 – ident: e_1_2_12_20_1 doi: 10.1016/j.geoderma.2011.07.018 – volume: 116 start-page: F01017 year: 2011 ident: e_1_2_12_38_1 article-title: Modelling the evolution of natural slopes subject to weathering part II. Discrete Element Approach publication-title: Journal of Geophysical Research: Earth Surface doi: 10.1029/2009JF001559 – ident: e_1_2_12_9_1 doi: 10.1016/j.soildyn.2014.04.007 – ident: e_1_2_12_25_1 doi: 10.1680/geot.1965.15.2.139 – ident: e_1_2_12_33_1 doi: 10.1680/geot.1999.49.6.835 – volume-title: Limit Analysis and Soil Plasticity year: 1975 ident: e_1_2_12_13_1 – ident: e_1_2_12_15_1 doi: 10.1016/S0020-7683(03)00075-1 – ident: e_1_2_12_14_1 doi: 10.1139/T08-039 – ident: e_1_2_12_36_1 doi: 10.1016/j.epsl.2013.11.053 – ident: e_1_2_12_29_1 doi: 10.3208/sandf.47.717 – ident: e_1_2_12_34_1 doi: 10.1002/nme.1406 – ident: e_1_2_12_35_1 doi: 10.1016/j.compgeo.2010.04.010 – volume: 25 start-page: 45 issue: 1 year: 1999 ident: e_1_2_12_10_1 article-title: Displacement charts for slopes subjected to seismic loads publication-title: Computers and Geotechnics doi: 10.1016/S0266-352X(99)00016-6 – volume: 114 start-page: 261 issue: 3 year: 2009 ident: e_1_2_12_19_1 article-title: Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils publication-title: Engineering Geology – ident: e_1_2_12_30_1 doi: 10.1002/(SICI)1096-9845(199712)26:12<1231::AID-EQE707>3.0.CO;2-Z – ident: e_1_2_12_17_1 doi: 10.1139/t97-015 |
| SSID | ssj0005096 |
| Score | 2.3858979 |
| Snippet | Summary
A set of analytical solutions achieved by the upper bound theorem of limit analysis and the pseudo‐static approach is presented for the assessment of... A set of analytical solutions achieved by the upper bound theorem of limit analysis and the pseudo‐static approach is presented for the assessment of the... Summary A set of analytical solutions achieved by the upper bound theorem of limit analysis and the pseudo-static approach is presented for the assessment of... A set of analytical solutions achieved by the upper bound theorem of limit analysis and the pseudo-static approach is presented for the assessment of the... |
| SourceID | unpaywall proquest crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 785 |
| SubjectTerms | Acceleration Charts crack Cracks earthquake Earthquakes kinematic approach landslide limit analysis Mathematical analysis Mathematical models Seismic activity Slope stability Slopes Stability stability chart upper bound |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5BewAOvBGFBRmE4JRSu3biHDhUwG6FRAFpyy4ny6-g1ZakahrB8usZ56UtghXilIMnie3xjD_P2J8BnjmWOS8SHukpwjdujIw0tT4SVGqZMWq5D3HI94t4vuTvjsVxG3ALZ2Eafog-4BYso_bXwcDXLmv8fJvdZy9z_XWM6wd5GYaxQCw-gOFy8XH2pUtQppOGMBVxepTixNSxz557dWc-Goau_bEDNq9U-Vqffder1S58reef_Rugupo3205Ox9XWjO3P30gd_79pN-F6C03JrBlLt-CSz2_DtXOEhXfg1YecIGIkCCnrTbVnpMhIFnS38Y6Uq2LtS1JWJgR3yLYgpT8pv51Y0pyeuAvL_beHr-dRewFDpNHw0RFqT52YUKO55Jn1U1QlZcwkWCDjxBlczkgvaOyn1MvEeOFogpDPasmldn56DwZ5kfv7QMJVMlZoz7RMuWWpjhEYuQAoUy60YSN40alB2ZadPFySsVINrzJT2CEqdMgInvSS64aR4w8yz2tN9gJ6cxp2sCVCHS0OVPIm_nQ4Z0fq8wj2OlWr1nhLhW1IJTpfyfFffTGaXcil6NwXVZBJYgRvgrMLZGRYfwkEAiN42g-jiypdD4q_CqjF7CA8H_zL1x7CVcR2cUh80ckeDLabyj9C_LQ1j1sj-QUJDhhd priority: 102 providerName: Unpaywall |
| Title | On the stability of fissured slopes subject to seismic action |
| URI | https://api.istex.fr/ark:/67375/WNG-7D6QTH2W-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnag.2498 https://www.proquest.com/docview/1769888784 https://www.proquest.com/docview/1776658542 https://www.proquest.com/docview/1800495001 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nag.2498 |
| UnpaywallVersion | publishedVersion |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0363-9061 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1096-9853 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005096 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPQAH3oiFsjIIwSnbtWMnzoHDCmhXSCwFdWkRB8t2HFR1SVabjaD8embyoougQpxy8FixPR7PN_b4MyFPU56lXsYiMCHAN2GtCgxzPpBMGZVx5oTHfci3s2g6F2-O5XGbVYl3YRp-iH7DDS2jXq_RwI0td8-RhpovI4gd8J4vC6M6mvrwizkKWU26Y8oEfFbHOzvmu13FDU-0jYP6fQNmXqnypTn7ZhaLTeBae569G-Rz1-Ym4eR0VK3tyP34jc7x_zp1k1xvASmdNDPoFrnk89vk2jmawjvkxbucAk6kACTrVNozWmQ0Q42tfErLRbH0JS0ri1s6dF3Q0p-UX08cbe5M3CXzvdeHL6dB--xCYMDcYfkznqVyzKwRSmTOh6BAxrmNoUBFcWohiFFessiHzKvYepmyGICeM0ook_rwHtnKi9zfJxQfkHHSeG5UIhxPTARwKEUYmQhpLB-Q550KtGs5yfFpjIVu2JS5hgHROCAD8riXXDY8HH-QeVZrsRcwq1PMW4ulPprt6_hV9P5wyo_0xwHZ6dSsW5MtNfQhUbDkKgH_6ovB2PAExeS-qFAmjgCyScEvkFEYdUlw_wPypJ9CFzW6nhB_FdCzyT5-H_yr4ENyFVBdhEdebLxDttaryj8C5LS2Q3KZi4NhbSlDsj2fHUw-_QS93BYp |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbG9jB4mPgpygYYhOAprHbt2BHiYQK2AlsBqWN7s-zkMk0rSdW0gv333CVNWCWYeMqDvyjJXc733Z19ZuxFJvMMtFGRHyB9UyHYyIsUIi2st7kUqQLKQx6N4uGx-nSqT9fYm3YvTNMfoku4kWXU8zUZOCWkd690DfVnrzF4sDfYhopFTJGXVF__rO_oJ12hMkGv1Xae7cvd9s4VX7RBYv21QjQ3F8XUX_70k8kqda19z_5ttrUkjXyv0fIdtgbFXXbrSivBe-ztl4Ijl-NI9urlrpe8zHlOUp1BxqtJOYWKV4tAaRc-L3kF59WP85Q3-xrus-P9D-N3w2h5NELk0SRxivIgMt0XwSur8hQGKGQhZTA4YGOTBQw0LGgRw0CANQF0JgySsdRbZX0GgwdsvSgLeMg4HfKSag_S20SlMvExUpaMqF6itA-yx161QnLpsm84HV8xcU3HY-lQnI7E2WPPOuS06ZXxF8zLWs4dwM8uaG2Z0e5kdODM-_jbeChP3Pce22kV4ZZmVTn8hgRDdmMVPqsbRoOgKocvoFwQxsRIq7SS12AsRUYaXXSPPe-UfN1L19r_J8CN9g7o-uh_gU_Z5nB8dOgOP44-b7ObyMJiKlGJ_g5bn88W8BiZzjw8qf_o32mA9zQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am8TlgTuiMMAgBE_patdOHCEeJkpXbuWi3R6QLDs5QdNKUjWNYPx6jpOmrAgmxFMe_FmxfXzsz_bxZ4DHqchSVJEMbJ_om3ROB5YnGCiurc4ETyT6fch343C0J18fqsM1eNbehWn0IZYbbt4z6vHaOzhO02zrlGqo_dKlxYM-BxtSxdrH8w0-_dKO8rom7UFlTLNWqzzbE1ttzpW5aMM36_cVonmhyqf25JudTFapaz33DK_A57bUTcjJcbeau27y4zdBx_-s1lW4vOCkbLvpRNdgDfPrcOmUUuENeP4-Z0QVGXHJOpr2hBUZy7zRZpiyclJMsWRl5fyuDpsXrMSj8utRwpprEzdhb_hy98UoWLy8EFjyeBoBLfJU9bizUssswT7ZkAvhIkrQYZQ6WsdoVDzEPkcdOVQpj4jrJVZLbVPs34L1vMjxNjD_hkyiLAqrY5mI2IbEiFLPJGOprBMdeNrawCQLWXL_OsbENILKwlCDGN8gHXi4RE4bKY4_YJ7UZlwC7OzYh65FyhyMd0w0CD_ujsSB2e_AZmtns_Da0lAdYk2jrpb0r2Uy-Zs_RLE5FpXHRCGxNiXFGRjtF16KGEAHHi370FmFrnvEXwFmvL3jv3f-FfgAzn8YDM3bV-M3d-EicbzQH4Dx3iasz2cV3iMeNXf3a3_5CWCqF0c |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5BewAOvBGFBRmE4JRSu3biHDhUwG6FRAFpyy4ny6-g1ZakahrB8usZ56UtghXilIMnie3xjD_P2J8BnjmWOS8SHukpwjdujIw0tT4SVGqZMWq5D3HI94t4vuTvjsVxG3ALZ2Eafog-4BYso_bXwcDXLmv8fJvdZy9z_XWM6wd5GYaxQCw-gOFy8XH2pUtQppOGMBVxepTixNSxz557dWc-Goau_bEDNq9U-Vqffder1S58reef_Rugupo3205Ox9XWjO3P30gd_79pN-F6C03JrBlLt-CSz2_DtXOEhXfg1YecIGIkCCnrTbVnpMhIFnS38Y6Uq2LtS1JWJgR3yLYgpT8pv51Y0pyeuAvL_beHr-dRewFDpNHw0RFqT52YUKO55Jn1U1QlZcwkWCDjxBlczkgvaOyn1MvEeOFogpDPasmldn56DwZ5kfv7QMJVMlZoz7RMuWWpjhEYuQAoUy60YSN40alB2ZadPFySsVINrzJT2CEqdMgInvSS64aR4w8yz2tN9gJ6cxp2sCVCHS0OVPIm_nQ4Z0fq8wj2OlWr1nhLhW1IJTpfyfFffTGaXcil6NwXVZBJYgRvgrMLZGRYfwkEAiN42g-jiypdD4q_CqjF7CA8H_zL1x7CVcR2cUh80ckeDLabyj9C_LQ1j1sj-QUJDhhd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+stability+of+fissured+slopes+subject+to+seismic+action&rft.jtitle=International+journal+for+numerical+and+analytical+methods+in+geomechanics&rft.au=Utili%2C+S.&rft.au=Abd%2C+A.H.&rft.date=2016-04-10&rft.issn=0363-9061&rft.eissn=1096-9853&rft.volume=40&rft.issue=5&rft.spage=785&rft.epage=806&rft_id=info:doi/10.1002%2Fnag.2498&rft.externalDBID=10.1002%252Fnag.2498&rft.externalDocID=NAG2498 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-9061&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-9061&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-9061&client=summon |