Fossil evidence unveils an early Cambrian origin for Bryozoa
Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton 1 – 3 . The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks...
Saved in:
Published in | Nature (London) Vol. 599; no. 7884; pp. 251 - 255 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.11.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/s41586-021-04033-w |
Cover
Abstract | Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton
1
–
3
. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum
2
,
4
–
8
. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil
Protomelission gatehousei
9
from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying
P. gatehousei
as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton
10
–
13
.
Interpretation of the early Cambrian fossil
Protomelission gatehousei
9
as a potential stem-group bryozoan realigns the fossil record with molecular clock estimations of the origins of Bryozoa. |
---|---|
AbstractList | Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton1-3. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum2,4-8. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton10-13.Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton1-3. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum2,4-8. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton10-13. Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton. Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton 1–3 . The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum 2,4–8 . However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei 9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton 10–13 . Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton 1 – 3 . The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum 2 , 4 – 8 . However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei 9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton 10 – 13 . Interpretation of the early Cambrian fossil Protomelission gatehousei 9 as a potential stem-group bryozoan realigns the fossil record with molecular clock estimations of the origins of Bryozoa. Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton.sup.1-3. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum.sup.2,4-8. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei.sup.9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton.sup.10-13. Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton.sup.1-3. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum.sup.2,4-8. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei.sup.9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton.sup.10-13. Interpretation of the early Cambrian fossil Protomelission gatehousei.sup.9 as a potential stem-group bryozoan realigns the fossil record with molecular clock estimations of the origins of Bryozoa. Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton1-3. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum2,4-8. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members ofthe group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P.gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton10-13. Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton . The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum . However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton . |
Audience | Academic |
Author | Taylor, Paul D. Brock, Glenn A. Zhang, Zhiliang Skovsted, Christian B. Ma, Junye Jacquet, Sarah M. Zhang, Zhifei Chen, Feiyang Strotz, Luke C. Han, Jian |
Author_xml | – sequence: 1 givenname: Zhiliang orcidid: 0000-0003-2296-5973 surname: Zhang fullname: Zhang, Zhiliang email: zhiliang.zhang@mq.edu.au organization: State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Department of Biological Sciences, Macquarie University – sequence: 2 givenname: Zhifei orcidid: 0000-0003-0325-5116 surname: Zhang fullname: Zhang, Zhifei email: elizf@nwu.edu.cn organization: State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University – sequence: 3 givenname: Junye surname: Ma fullname: Ma, Junye organization: State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS – sequence: 4 givenname: Paul D. orcidid: 0000-0002-3127-080X surname: Taylor fullname: Taylor, Paul D. organization: Department of Earth Sciences, Natural History Museum – sequence: 5 givenname: Luke C. orcidid: 0000-0002-8818-1832 surname: Strotz fullname: Strotz, Luke C. email: lukestrotz@nwu.edu.cn organization: State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University – sequence: 6 givenname: Sarah M. orcidid: 0000-0001-6673-4929 surname: Jacquet fullname: Jacquet, Sarah M. organization: Department of Geological Sciences, University of Missouri – sequence: 7 givenname: Christian B. orcidid: 0000-0001-7366-7680 surname: Skovsted fullname: Skovsted, Christian B. organization: Department of Palaeobiology, Swedish Museum of Natural History – sequence: 8 givenname: Feiyang orcidid: 0000-0001-8994-4187 surname: Chen fullname: Chen, Feiyang organization: State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Department of Biological Sciences, Macquarie University, School of Resources and Geosciences, China University of Mining and Technology – sequence: 9 givenname: Jian orcidid: 0000-0002-2134-4078 surname: Han fullname: Han, Jian organization: State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University – sequence: 10 givenname: Glenn A. orcidid: 0000-0002-2277-7350 surname: Brock fullname: Brock, Glenn A. organization: State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Department of Biological Sciences, Macquarie University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34707285$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4325$$DView record from Swedish Publication Index |
BookMark | eNp9kttv0zAUxi00xLrBP8ADiuAFhDJ8iS-REFIpbEyahMTt1XLTk-ApsTs7aSl_PS7tLp2qyQ-W7d_3Heuc7wgdOO8AoecEnxDM1LtYEK5EjinJcYEZy5eP0IgUUuSFUPIAjTCmKseKiUN0FOMlxpgTWTxBh6yQWFLFR-j9qY_Rthks7AxcBdngFmDbmBmXgQntKpuYbhpsOvpgG-uy2ofsY1j5v948RY9r00Z4tt2P0c_Tzz8mX_KLr2fnk_FFbkRZ9jkwJckUG8CsNDXjikCl1LSkSsmKS1A1McAB1wJAMFGbKS1krQRRmAEYzI7R241vXMJ8mOp5sJ0JK-2N1Z_sr7H2odEudLpglCf6w4ZOaAezClwfTLsj2n1x9rdu_EIrrrCiIhm83hoEfzVA7HVnYwVtaxz4IWrKlZRFQmlCX91DL_0QXGpGokrJKSOY31KNaUFbV_tUt1qb6rFQpCwVwSRR-R6qAQfpk2nytU3XO_zLPXw1t1f6LnSyB0prBp2t9rq-2REkpoc_fWOGGPX592-77Iu7nb5p8XW8EkA3QBVSzALUNwjBep1hvcmwThnW_zOsl0mk7okq25ve-vW0bPuwlG2Dkuq4BsLtOB5Q_QPXagJv |
CitedBy_id | crossref_primary_10_1038_d41586_021_02874_z crossref_primary_10_1111_pala_12586 crossref_primary_10_1130_G51663_1 crossref_primary_10_1111_pala_12688 crossref_primary_10_1016_j_earscirev_2024_104861 crossref_primary_10_1002_spp2_1483 crossref_primary_10_1007_s13127_022_00562_y crossref_primary_10_1017_pab_2024_21 crossref_primary_10_1016_j_sedgeo_2024_106740 crossref_primary_10_1134_S0869593824700126 crossref_primary_10_7554_eLife_88855 crossref_primary_10_3390_biology12070902 crossref_primary_10_1016_j_eve_2023_100018 crossref_primary_10_20935_AcadBiol6036 crossref_primary_10_3390_min13020246 crossref_primary_10_1126_sciadv_abm7452 crossref_primary_10_1126_sciadv_abm8465 crossref_primary_10_1021_acs_cgd_2c01149 crossref_primary_10_1038_s41598_022_14477_3 crossref_primary_10_1098_rsbl_2023_0157 crossref_primary_10_1144_jgs2023_231 crossref_primary_10_31857_S0869592X24050036 crossref_primary_10_1002_spp2_1473 crossref_primary_10_1016_j_xinn_2021_100195 crossref_primary_10_3799_dqkx_2023_052 crossref_primary_10_1007_s00114_022_01791_z crossref_primary_10_7554_eLife_88855_4 crossref_primary_10_1002_lom3_10563 crossref_primary_10_1126_sciadv_abp9344 crossref_primary_10_1186_s13227_022_00202_8 crossref_primary_10_15298_invertzool_19_4_04 crossref_primary_10_1016_j_palwor_2024_11_005 crossref_primary_10_1080_08912963_2023_2231975 crossref_primary_10_1134_S0031030122070048 crossref_primary_10_1017_pab_2022_31 crossref_primary_10_1017_pab_2022_36 crossref_primary_10_1017_jpa_2023_35 crossref_primary_10_3389_fevo_2023_1160530 crossref_primary_10_1007_s12549_023_00595_x crossref_primary_10_3390_min15020136 crossref_primary_10_1016_j_palaeo_2023_111453 crossref_primary_10_1080_03115518_2022_2130978 crossref_primary_10_1007_s12549_021_00520_0 crossref_primary_10_1016_j_geobios_2024_02_001 crossref_primary_10_1038_s41586_023_05775_5 crossref_primary_10_1098_rspb_2022_1504 crossref_primary_10_1101_gr_279636_124 |
Cites_doi | 10.1242/dev.182899 10.1017/S0022336000037045 10.1080/106351501753462876 10.1098/rstb.2015.0046 10.1126/science.1206375 10.1007/s10682-011-9513-7 10.1017/S1089332600002801 10.1016/j.palaeo.2019.109270 10.1111/pala.12189 10.3989/scimar.2005.69s1169 10.1144/M38.2 10.1017/S0016756813000150 10.1038/srep01066 10.1098/rstb.2015.0287 10.1038/s41559-019-0821-6 10.1111/brv.12148 10.1038/35059227 10.1002/9781118454961 10.1007/s12542-017-0385-1 10.1111/brv.12583 10.1016/j.earscirev.2018.06.005 10.1111/1475-4983.00067 10.1016/j.gr.2020.08.009 10.1111/pala.12170 10.1007/s12542-021-00568-5 10.1098/rspb.1986.0047 10.1038/nature21072 10.1515/9783110586312-002 10.1098/rsos.140413 10.1666/04-128.1 10.1111/let.12235 10.1080/08912963.2017.1301447 10.1016/j.earscirev.2018.01.013 10.1093/bioinformatics/btg180 10.1017/S0025315404009117h |
ContentType | Journal Article |
Copyright | Crown 2021 2021. Crown. COPYRIGHT 2021 Nature Publishing Group Copyright Nature Publishing Group Nov 11, 2021 |
Copyright_xml | – notice: Crown 2021 – notice: 2021. Crown. – notice: COPYRIGHT 2021 Nature Publishing Group – notice: Copyright Nature Publishing Group Nov 11, 2021 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM ADTPV AOWAS D8T ZZAVC |
DOI | 10.1038/s41586-021-04033-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Health Research Premium Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Psychology Database Proquest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 255 |
ExternalDocumentID | oai_DiVA_org_nrm_4325 PMC8580826 A681998101 34707285 10_1038_s41586_021_04033_w |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Australia China |
GeographicLocations_xml | – name: China – name: Australia |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAVBQ AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 FAC I-F J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PJZUB PM3 PPXIY PQGLB PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 SOI 7X8 AGSTI PUEGO 5PM ADTPV AFKWF AOWAS D8T ESTFP ZZAVC |
ID | FETCH-LOGICAL-a699t-e3871b0ae039af3581ec88b92887c57e8f1ae5e0f6ee636fab247f861803eea03 |
IEDL.DBID | C6C |
ISSN | 0028-0836 1476-4687 |
IngestDate | Sat Sep 13 03:13:46 EDT 2025 Thu Aug 21 14:09:19 EDT 2025 Fri Sep 05 09:27:01 EDT 2025 Sat Aug 23 12:55:37 EDT 2025 Tue Jun 17 20:25:09 EDT 2025 Thu Jun 12 23:47:30 EDT 2025 Tue Jun 10 15:32:56 EDT 2025 Tue Jun 10 20:46:54 EDT 2025 Fri Jun 27 05:10:32 EDT 2025 Mon Jul 21 04:15:34 EDT 2025 Thu Apr 24 23:08:31 EDT 2025 Tue Jul 01 02:32:30 EDT 2025 Fri Feb 21 02:36:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7884 |
Language | English |
License | 2021. Crown. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a699t-e3871b0ae039af3581ec88b92887c57e8f1ae5e0f6ee636fab247f861803eea03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3127-080X 0000-0002-2134-4078 0000-0002-2277-7350 0000-0003-0325-5116 0000-0001-8994-4187 0000-0001-6673-4929 0000-0003-2296-5973 0000-0002-8818-1832 0000-0001-7366-7680 |
OpenAccessLink | https://www.nature.com/articles/s41586-021-04033-w |
PMID | 34707285 |
PQID | 2597523105 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | swepub_primary_oai_DiVA_org_nrm_4325 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8580826 proquest_miscellaneous_2587740822 proquest_journals_2597523105 gale_infotracmisc_A681998101 gale_infotracgeneralonefile_A681998101 gale_infotraccpiq_681998101 gale_infotracacademiconefile_A681998101 gale_incontextgauss_ISR_A681998101 pubmed_primary_34707285 crossref_primary_10_1038_s41586_021_04033_w crossref_citationtrail_10_1038_s41586_021_04033_w springer_journals_10_1038_s41586_021_04033_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-11 |
PublicationDateYYYYMMDD | 2021-11-11 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | ErnstADiversity dynamics of Ordovician BryozoaLethaia20185119820610.1111/let.12235 LombardiCCocitoSGambiMCTaylorPDMorphological plasticity in a calcifying modular organism: evidence from an in situ transplant experiment in a natural CO2 vent systemR. Soc. Open Sci.201521404132015RSOS....240413L10.1098/rsos.140413 KoromyslovaAVMarthaSOPakhnevichAVThe internal morphology of Acoscinopleura Voigt, 1956 (Cheilostomata, Bryozoa) from the Campanian–Maastrichtian of Central and Eastern EuropePalZ20189224126610.1007/s12542-017-0385-1 TaylorPDLombardiCCocitoSBiomineralization in bryozoans: present, past and future: bryozoan biomineralization.Biol. Rev.2015901118115010.1111/brv.12148 PushkinVIPopovLEEarly Ordovician bryozoans from north-western RussiaPalaeontology19994217118910.1111/1475-4983.00067 CarrollSBChance and necessity: the evolution of morphological complexity and diversityNature2001409110211092001Natur.409.1102C1:CAS:528:DC%2BD3MXhs1Gjur4%3D10.1038/35059227 Zhang, X. & Shu, D. Current understanding on the Cambrian Explosion: questions and answers. PalZhttps://doi.org/10.1007/s12542-021-00568-5 (2021). LewisPOA likelihood approach to estimating phylogeny from discrete morphological character dataSyst. Biol.2001509139251:STN:280:DC%2BD38zntVKlsQ%3D%3D10.1080/106351501753462876 WrayGAMolecular clocks and the early evolution of metazoan nervous systemsPhilos. Trans. R.2015370201500462015004610.1098/rstb.2015.0046 BettsMJEarly Cambrian chronostratigraphy and geochronology of South AustraliaEarth Sci. Rev.20181854985432018ESRv..185..498B1:CAS:528:DC%2BC1cXhtlahtrvF10.1016/j.earscirev.2018.06.005 TaylorPDJenkinsHLEvolution of larval size in cyclostome bryozoansHist. Biol.20183053554510.1080/08912963.2017.1301447 ZhangZA sclerite-bearing stem group entoproct from the early Cambrian and its implicationsSci. Rep.201331:CAS:528:DC%2BC3sXpvFWnsrk%3D10.1038/srep01066 LandingEEarly evolution of colonial animals (Ediacaran Evolutionary Radiation–Cambrian Evolutionary Radiation–Great Ordovician Biodiversification Interval)Earth Sci. Rev.20181781051352018ESRv..178..105L10.1016/j.earscirev.2018.01.013 TaylorPDWaeschenbachAPhylogeny and diversification of bryozoansPalaeontology20155858559910.1111/pala.12170 Swofford, D. L. Phylogenetic Analysis Using Parsimony (*and Other Methods) (Sinauer Associates, 2003). PorterJSMorphological and genetic characteristics of erect subtidal species of Alcyonidium (Ctenostomata: Bryozoa)J. Mar. Biol. Assoc. UK20048424325210.1017/S0025315404009117h WoodRIntegrated records of environmental change and evolution challenge the Cambrian ExplosionNat. Ecol. Evol.2019352853810.1038/s41559-019-0821-6 TorsvikTHCocksLRMNew global palaeogeographical reconstructions for the Early Palaeozoic and their generationGeological Society, London, Memoirs20133852410.1144/M38.2 MaJTaylorPDXiaFZhanRThe oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central ChinaPalaeontology20155892593410.1111/pala.12189 ErwinDHThe Cambrian conundrum: early divergence and later ecological success in the early history of animalsScience2011334109110972011Sci...334.1091E1:CAS:528:DC%2BC3MXhsV2mu7jJ10.1126/science.1206375 HanJMorrisSCOuQShuDHuangHMeiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)Nature20175422282312017Natur.542..228H1:CAS:528:DC%2BC2sXhvV2htrw%3D10.1038/nature21072 McKinneyFKHistorical record of erect bryozoan growth formsProc. R. Soc. Lond. B19862281331491986RSPSB.228..133M10.1098/rspb.1986.0047 SchiffbauerJDWallaceAFBroceJXiaoSExceptional fossil conservation through phosphatizationPaleontol. Soc. Pap.201420598210.1017/S1089332600002801 McKinney, F. K. & Jackson, J. B. C. Bryozoan Evolution (Univ. Chicago Press, 1989). XiaFSZhangSGWangZZThe oldest bryozoans: new evidence from the Late Tremadocian (Early Ordovician) of east Yangtze gorges in ChinaJ. Paleontol.2007811308132610.1666/04-128.1 Taylor, P. D. Bryozoan Paleobiology (John Wiley & Sons, 2020). ZhangZLThe oldest Cambrian trilobite—brachiopod association in South ChinaGondwana Res.2021891471672021GondR..89..147Z10.1016/j.gr.2020.08.009 ErwinDHThe origin of animal body plans: a view from fossil evidence and the regulatory genomeDevelopment2020147dev1828991:CAS:528:DC%2BB3cXosVGgsb4%3D10.1242/dev.182899 HagemanSJErnstAThe last phylum: Occupation of Bryozoa morpho-ecospace (colony growth habits) during the early phase of the Great Ordovician Biodiversification EventPalaeogeogr. Palaeoclimatol. Palaeoecol.201953410927010.1016/j.palaeo.2019.109270 Hou, X. et al. The Cambrian fossils of Chengjiang, China: The Flowering of Early Animal Life (John Wiley & Sons, 2017). RonquistFHuelsenbeckJPMrBayes 3: Bayesian phylogenetic inference under mixed modelsBioinformatics200319157215741:CAS:528:DC%2BD3sXntlKms7k%3D10.1093/bioinformatics/btg180 SchwahaTFOstrovskyANWanningerAKey novelties in the evolution of the aquatic colonial phylum Bryozoa: evidence from soft body morphologyBiol. Rev.20209569672910.1111/brv.12583 BuddGEJacksonISCEcological innovations in the Cambrian and the origins of the crown group phylaPhilos. Trans. R. Soc. B20163712015028710.1098/rstb.2015.0287 MackieGOFrom aggregates to integrates: physiological aspects of modularity in colonial animalsPhilos. Trans. R. Soc. B19863131751961986RSPTB.313..175M Ernst, A. in Fossil Record and Evolution of Bryozoa (eds Helmcke, J.-G., Starck, D. & Wermuth, H.) 11–56 (De Gruyter, 2020). LidgardSZooid and colony growth in encrusting cheilostome bryozoansPalaeontology198528255291 Todd, J. A. The central role of ctenostomes in bryozoan phylogeny. In Proc. 11th Int. Bryozool. Assoc. Conf. 104, 104–135 (2000). ErnstABogolepovaOKHubmannBGolubkovaEYUGubanovAPDianulites (Trepostomata, Bryozoa) from the Early Ordovician of Severnaya Zemlya, Arctic RussiaGeol. Mag.20141513283382014GeoM..151..328E1:CAS:528:DC%2BC2cXivFeqsbo%3D10.1017/S0016756813000150 BrockGACooperBJShelly fossils from the early Cambrian (Toyonian) Wirrealpa, Aroona Creek, and Ramsay Limestones of South AustraliaJ. Paleontol.19936775878710.1017/S0022336000037045 HughesRNLessons in modularity: the evolutionary ecology of colonial invertebratesSci. Mar.20056916917910.3989/scimar.2005.69s1169 LidgardSCarterMCDickMHGordonDPOstrovskyANDivision of labor and recurrent evolution of polymorphisms in a group of colonial animalsEvol. Ecol.20122623325710.1007/s10682-011-9513-7 GA Wray (4033_CR11) 2015; 370 E Landing (4033_CR18) 2018; 178 FK McKinney (4033_CR27) 1986; 228 F Ronquist (4033_CR33) 2003; 19 PD Taylor (4033_CR5) 2015; 90 4033_CR19 PD Taylor (4033_CR2) 2015; 58 4033_CR17 J Ma (4033_CR4) 2015; 58 S Lidgard (4033_CR29) 1985; 28 4033_CR13 S Lidgard (4033_CR24) 2012; 26 DH Erwin (4033_CR12) 2020; 147 MJ Betts (4033_CR36) 2018; 185 4033_CR32 4033_CR30 PD Taylor (4033_CR37) 2018; 30 RN Hughes (4033_CR23) 2005; 69 TH Torsvik (4033_CR35) 2013; 38 4033_CR1 PO Lewis (4033_CR34) 2001; 50 A Ernst (4033_CR8) 2014; 151 JD Schiffbauer (4033_CR28) 2014; 20 JS Porter (4033_CR41) 2004; 84 TF Schwaha (4033_CR3) 2020; 95 SJ Hageman (4033_CR7) 2019; 534 SB Carroll (4033_CR25) 2001; 409 VI Pushkin (4033_CR40) 1999; 42 A Ernst (4033_CR6) 2018; 51 GA Brock (4033_CR9) 1993; 67 GO Mackie (4033_CR22) 1986; 313 C Lombardi (4033_CR26) 2015; 2 J Han (4033_CR14) 2017; 542 4033_CR20 GE Budd (4033_CR21) 2016; 371 FS Xia (4033_CR38) 2007; 81 Z Zhang (4033_CR16) 2013; 3 DH Erwin (4033_CR10) 2011; 334 R Wood (4033_CR15) 2019; 3 AV Koromyslova (4033_CR39) 2018; 92 ZL Zhang (4033_CR31) 2021; 89 34707263 - Nature. 2021 Nov;599(7884):203-204 |
References_xml | – reference: Hou, X. et al. The Cambrian fossils of Chengjiang, China: The Flowering of Early Animal Life (John Wiley & Sons, 2017). – reference: McKinney, F. K. & Jackson, J. B. C. Bryozoan Evolution (Univ. Chicago Press, 1989). – reference: TaylorPDWaeschenbachAPhylogeny and diversification of bryozoansPalaeontology20155858559910.1111/pala.12170 – reference: ErnstABogolepovaOKHubmannBGolubkovaEYUGubanovAPDianulites (Trepostomata, Bryozoa) from the Early Ordovician of Severnaya Zemlya, Arctic RussiaGeol. Mag.20141513283382014GeoM..151..328E1:CAS:528:DC%2BC2cXivFeqsbo%3D10.1017/S0016756813000150 – reference: Ernst, A. in Fossil Record and Evolution of Bryozoa (eds Helmcke, J.-G., Starck, D. & Wermuth, H.) 11–56 (De Gruyter, 2020). – reference: CarrollSBChance and necessity: the evolution of morphological complexity and diversityNature2001409110211092001Natur.409.1102C1:CAS:528:DC%2BD3MXhs1Gjur4%3D10.1038/35059227 – reference: MaJTaylorPDXiaFZhanRThe oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central ChinaPalaeontology20155892593410.1111/pala.12189 – reference: ErwinDHThe origin of animal body plans: a view from fossil evidence and the regulatory genomeDevelopment2020147dev1828991:CAS:528:DC%2BB3cXosVGgsb4%3D10.1242/dev.182899 – reference: PushkinVIPopovLEEarly Ordovician bryozoans from north-western RussiaPalaeontology19994217118910.1111/1475-4983.00067 – reference: LidgardSCarterMCDickMHGordonDPOstrovskyANDivision of labor and recurrent evolution of polymorphisms in a group of colonial animalsEvol. Ecol.20122623325710.1007/s10682-011-9513-7 – reference: HughesRNLessons in modularity: the evolutionary ecology of colonial invertebratesSci. Mar.20056916917910.3989/scimar.2005.69s1169 – reference: ErwinDHThe Cambrian conundrum: early divergence and later ecological success in the early history of animalsScience2011334109110972011Sci...334.1091E1:CAS:528:DC%2BC3MXhsV2mu7jJ10.1126/science.1206375 – reference: ZhangZLThe oldest Cambrian trilobite—brachiopod association in South ChinaGondwana Res.2021891471672021GondR..89..147Z10.1016/j.gr.2020.08.009 – reference: BuddGEJacksonISCEcological innovations in the Cambrian and the origins of the crown group phylaPhilos. Trans. R. Soc. B20163712015028710.1098/rstb.2015.0287 – reference: ErnstADiversity dynamics of Ordovician BryozoaLethaia20185119820610.1111/let.12235 – reference: McKinneyFKHistorical record of erect bryozoan growth formsProc. R. Soc. Lond. B19862281331491986RSPSB.228..133M10.1098/rspb.1986.0047 – reference: Todd, J. A. The central role of ctenostomes in bryozoan phylogeny. In Proc. 11th Int. Bryozool. Assoc. Conf. 104, 104–135 (2000). – reference: HanJMorrisSCOuQShuDHuangHMeiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)Nature20175422282312017Natur.542..228H1:CAS:528:DC%2BC2sXhvV2htrw%3D10.1038/nature21072 – reference: BettsMJEarly Cambrian chronostratigraphy and geochronology of South AustraliaEarth Sci. Rev.20181854985432018ESRv..185..498B1:CAS:528:DC%2BC1cXhtlahtrvF10.1016/j.earscirev.2018.06.005 – reference: WrayGAMolecular clocks and the early evolution of metazoan nervous systemsPhilos. Trans. R.2015370201500462015004610.1098/rstb.2015.0046 – reference: KoromyslovaAVMarthaSOPakhnevichAVThe internal morphology of Acoscinopleura Voigt, 1956 (Cheilostomata, Bryozoa) from the Campanian–Maastrichtian of Central and Eastern EuropePalZ20189224126610.1007/s12542-017-0385-1 – reference: Swofford, D. L. Phylogenetic Analysis Using Parsimony (*and Other Methods) (Sinauer Associates, 2003). – reference: Zhang, X. & Shu, D. Current understanding on the Cambrian Explosion: questions and answers. PalZhttps://doi.org/10.1007/s12542-021-00568-5 (2021). – reference: ZhangZA sclerite-bearing stem group entoproct from the early Cambrian and its implicationsSci. Rep.201331:CAS:528:DC%2BC3sXpvFWnsrk%3D10.1038/srep01066 – reference: TaylorPDJenkinsHLEvolution of larval size in cyclostome bryozoansHist. Biol.20183053554510.1080/08912963.2017.1301447 – reference: Taylor, P. D. Bryozoan Paleobiology (John Wiley & Sons, 2020). – reference: RonquistFHuelsenbeckJPMrBayes 3: Bayesian phylogenetic inference under mixed modelsBioinformatics200319157215741:CAS:528:DC%2BD3sXntlKms7k%3D10.1093/bioinformatics/btg180 – reference: XiaFSZhangSGWangZZThe oldest bryozoans: new evidence from the Late Tremadocian (Early Ordovician) of east Yangtze gorges in ChinaJ. Paleontol.2007811308132610.1666/04-128.1 – reference: HagemanSJErnstAThe last phylum: Occupation of Bryozoa morpho-ecospace (colony growth habits) during the early phase of the Great Ordovician Biodiversification EventPalaeogeogr. Palaeoclimatol. Palaeoecol.201953410927010.1016/j.palaeo.2019.109270 – reference: LombardiCCocitoSGambiMCTaylorPDMorphological plasticity in a calcifying modular organism: evidence from an in situ transplant experiment in a natural CO2 vent systemR. Soc. Open Sci.201521404132015RSOS....240413L10.1098/rsos.140413 – reference: LandingEEarly evolution of colonial animals (Ediacaran Evolutionary Radiation–Cambrian Evolutionary Radiation–Great Ordovician Biodiversification Interval)Earth Sci. Rev.20181781051352018ESRv..178..105L10.1016/j.earscirev.2018.01.013 – reference: LewisPOA likelihood approach to estimating phylogeny from discrete morphological character dataSyst. Biol.2001509139251:STN:280:DC%2BD38zntVKlsQ%3D%3D10.1080/106351501753462876 – reference: TorsvikTHCocksLRMNew global palaeogeographical reconstructions for the Early Palaeozoic and their generationGeological Society, London, Memoirs20133852410.1144/M38.2 – reference: LidgardSZooid and colony growth in encrusting cheilostome bryozoansPalaeontology198528255291 – reference: SchwahaTFOstrovskyANWanningerAKey novelties in the evolution of the aquatic colonial phylum Bryozoa: evidence from soft body morphologyBiol. Rev.20209569672910.1111/brv.12583 – reference: SchiffbauerJDWallaceAFBroceJXiaoSExceptional fossil conservation through phosphatizationPaleontol. Soc. Pap.201420598210.1017/S1089332600002801 – reference: BrockGACooperBJShelly fossils from the early Cambrian (Toyonian) Wirrealpa, Aroona Creek, and Ramsay Limestones of South AustraliaJ. Paleontol.19936775878710.1017/S0022336000037045 – reference: TaylorPDLombardiCCocitoSBiomineralization in bryozoans: present, past and future: bryozoan biomineralization.Biol. Rev.2015901118115010.1111/brv.12148 – reference: WoodRIntegrated records of environmental change and evolution challenge the Cambrian ExplosionNat. Ecol. Evol.2019352853810.1038/s41559-019-0821-6 – reference: MackieGOFrom aggregates to integrates: physiological aspects of modularity in colonial animalsPhilos. Trans. R. Soc. B19863131751961986RSPTB.313..175M – reference: PorterJSMorphological and genetic characteristics of erect subtidal species of Alcyonidium (Ctenostomata: Bryozoa)J. Mar. Biol. Assoc. UK20048424325210.1017/S0025315404009117h – volume: 147 start-page: dev182899 year: 2020 ident: 4033_CR12 publication-title: Development doi: 10.1242/dev.182899 – volume: 67 start-page: 758 year: 1993 ident: 4033_CR9 publication-title: J. Paleontol. doi: 10.1017/S0022336000037045 – volume: 50 start-page: 913 year: 2001 ident: 4033_CR34 publication-title: Syst. Biol. doi: 10.1080/106351501753462876 – volume: 370 start-page: 20150046 year: 2015 ident: 4033_CR11 publication-title: Philos. Trans. R. doi: 10.1098/rstb.2015.0046 – volume: 334 start-page: 1091 year: 2011 ident: 4033_CR10 publication-title: Science doi: 10.1126/science.1206375 – volume: 26 start-page: 233 year: 2012 ident: 4033_CR24 publication-title: Evol. Ecol. doi: 10.1007/s10682-011-9513-7 – volume: 20 start-page: 59 year: 2014 ident: 4033_CR28 publication-title: Paleontol. Soc. Pap. doi: 10.1017/S1089332600002801 – volume: 534 start-page: 109270 year: 2019 ident: 4033_CR7 publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. doi: 10.1016/j.palaeo.2019.109270 – volume: 58 start-page: 925 year: 2015 ident: 4033_CR4 publication-title: Palaeontology doi: 10.1111/pala.12189 – volume: 69 start-page: 169 year: 2005 ident: 4033_CR23 publication-title: Sci. Mar. doi: 10.3989/scimar.2005.69s1169 – volume: 38 start-page: 5 year: 2013 ident: 4033_CR35 publication-title: Geological Society, London, Memoirs doi: 10.1144/M38.2 – volume: 313 start-page: 175 year: 1986 ident: 4033_CR22 publication-title: Philos. Trans. R. Soc. B – volume: 151 start-page: 328 year: 2014 ident: 4033_CR8 publication-title: Geol. Mag. doi: 10.1017/S0016756813000150 – volume: 3 year: 2013 ident: 4033_CR16 publication-title: Sci. Rep. doi: 10.1038/srep01066 – volume: 371 start-page: 20150287 year: 2016 ident: 4033_CR21 publication-title: Philos. Trans. R. Soc. B doi: 10.1098/rstb.2015.0287 – volume: 3 start-page: 528 year: 2019 ident: 4033_CR15 publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-019-0821-6 – ident: 4033_CR17 – volume: 90 start-page: 1118 year: 2015 ident: 4033_CR5 publication-title: Biol. Rev. doi: 10.1111/brv.12148 – volume: 409 start-page: 1102 year: 2001 ident: 4033_CR25 publication-title: Nature doi: 10.1038/35059227 – ident: 4033_CR20 doi: 10.1002/9781118454961 – ident: 4033_CR32 – volume: 92 start-page: 241 year: 2018 ident: 4033_CR39 publication-title: PalZ doi: 10.1007/s12542-017-0385-1 – volume: 95 start-page: 696 year: 2020 ident: 4033_CR3 publication-title: Biol. Rev. doi: 10.1111/brv.12583 – ident: 4033_CR30 – volume: 185 start-page: 498 year: 2018 ident: 4033_CR36 publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2018.06.005 – volume: 42 start-page: 171 year: 1999 ident: 4033_CR40 publication-title: Palaeontology doi: 10.1111/1475-4983.00067 – volume: 89 start-page: 147 year: 2021 ident: 4033_CR31 publication-title: Gondwana Res. doi: 10.1016/j.gr.2020.08.009 – ident: 4033_CR1 – volume: 58 start-page: 585 year: 2015 ident: 4033_CR2 publication-title: Palaeontology doi: 10.1111/pala.12170 – ident: 4033_CR13 doi: 10.1007/s12542-021-00568-5 – volume: 228 start-page: 133 year: 1986 ident: 4033_CR27 publication-title: Proc. R. Soc. Lond. B doi: 10.1098/rspb.1986.0047 – volume: 542 start-page: 228 year: 2017 ident: 4033_CR14 publication-title: Nature doi: 10.1038/nature21072 – ident: 4033_CR19 doi: 10.1515/9783110586312-002 – volume: 2 start-page: 140413 year: 2015 ident: 4033_CR26 publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.140413 – volume: 81 start-page: 1308 year: 2007 ident: 4033_CR38 publication-title: J. Paleontol. doi: 10.1666/04-128.1 – volume: 51 start-page: 198 year: 2018 ident: 4033_CR6 publication-title: Lethaia doi: 10.1111/let.12235 – volume: 30 start-page: 535 year: 2018 ident: 4033_CR37 publication-title: Hist. Biol. doi: 10.1080/08912963.2017.1301447 – volume: 178 start-page: 105 year: 2018 ident: 4033_CR18 publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2018.01.013 – volume: 19 start-page: 1572 year: 2003 ident: 4033_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg180 – volume: 84 start-page: 243 year: 2004 ident: 4033_CR41 publication-title: J. Mar. Biol. Assoc. UK doi: 10.1017/S0025315404009117h – volume: 28 start-page: 255 year: 1985 ident: 4033_CR29 publication-title: Palaeontology – reference: 34707263 - Nature. 2021 Nov;599(7884):203-204 |
SSID | ssj0005174 |
Score | 2.5777152 |
Snippet | Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous... |
SourceID | swepub pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 251 |
SubjectTerms | 631/181/2480 631/181/414 Animals Aquatic animals Australia Biological Evolution Bryozoa Bryozoa - anatomy & histology Bryozoa - classification Budding Cambrian Carbonates China Den föränderliga jorden Ectoprocta Environmental aspects Fossils Humanities and Social Sciences Microscopy Modular construction Morphology multidisciplinary Ordovician Phenotype Phosphating (coating) Phylogenetics Phylogeny Physiological aspects Radiation Science Science (multidisciplinary) The changing Earth Time Factors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwED-NTkh8Qdt4hQ0U0MRDEC2p83AkEOpg1UCiQoOhfbMc1y6VuqRrWib467lLnHapUD9GPufhO59_ju9-B3CY-SaRwTD1mMqGuEExsSfDlHmhiSXieYWognKHvw7i0_Pwy0V0sQWDJheGwiobn1g56mGh6B_5EcL0JCIwEn2YXnlUNYpOV5sSGtKWVhi-ryjGbsE2uuTI78D28cng29kq6GONl9mm0fiMH5W4lHEKyMXtdUgVzq5bS9W6w76xYq1HUy6PVNfoR6slq78Ddy3WdHu1cezCls734HYV86nKPdi187p0X1ny6df34F0fX2U8cbWtNuou8t96PCldmbuayJDdOssLL-uaWi6iXvd49qf4W8j7cN4_-fHx1LMVFjwZp-nc0wz3S5kvtc9SaYgKTSvOs7SLrkdFieYmkDrSqEGtYxYbmXXDxPA44D7TWvrsAXTyItePwGUmRGyQhAhITJgMJe6sjeRSZn6SqoApB4JmMIWy9ONUBWMiqmNwxkWtAIEKEJUCxLUDb5Z9pjX5xkbp56QjQawWOYXNjOSiLMXn72eiF3PKJUT348BLK2QKfLySNgsBP4KIsFqS-y1JNR1fiRutL1qto1pP_7vNQUsQZ69qNzcWJaz3KMXK1h14tmymnhQRl-tiQTIckTvx9TvwsDbA5RixMPGTLsfeScs0lwLEKd5uyce_Km5xHnG8Z-zA28aIV6-1aegPa0NvPeHT-GdPFLORyGeXImTd6PHmj92HO12afhRkGRxAZz5b6CcI-ebZUzuP_wFUrFA_ priority: 102 providerName: ProQuest |
Title | Fossil evidence unveils an early Cambrian origin for Bryozoa |
URI | https://link.springer.com/article/10.1038/s41586-021-04033-w https://www.ncbi.nlm.nih.gov/pubmed/34707285 https://www.proquest.com/docview/2597523105 https://www.proquest.com/docview/2587740822 https://pubmed.ncbi.nlm.nih.gov/PMC8580826 https://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4325 |
Volume | 599 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8IDa-wkYV0MSHICKJk9iReGnLykCiQoOhvlmOa5dKJRlNywR_PXdJ2i3VNImXRJHPjuM7352Vu98BHGW-5SoYpx7T2RgPKDbxVJQyL7KJQn9eo1dBucOfh8nJWfRpFI-2IFzlwlRB-xWkZaWmV9Fhb0s0NILCZfHwG1H9sYtt2BWcxSTV_aR_GdaxgbzcJMr4TFwzRssYbarkKzZpM15y_dN0A2C0MkqDu3Cn8Sbdbj3_Pdgy-T7cqqI6dbkPe83OLd2XDbz0q3vwboBTmc5c09QTdZf5bzOdla7KXUNwx26dx4WPddUsF_1atzf_U_wt1H04Gxx_6594TQ0FTyVpuvAMwxNR5ivjs1RZAjszWogsDVG56JgbYQNlYoM8MiZhiVVZGHErkkD4zBjlswewkxe5eQQusxFafx6hy2EjPlZ4drZKKJX5PNUB0w4Eq8WUugEYpzoXM1n96GZC1gyQyABZMUBeOPB63ee8hte4kfoZ8UgSbkVOgTETtSxL-fHrqewmgrIFUcE48KIhsgW-XqsmzwA_gqCuWpQHLUp9Pv0lr7Q-b7VOaj5dN8xhixD3p243ryRKNvqhlHjo5DG51rEDT9fN1JNi3nJTLIlGoG9OiPwOPKwFcL1GLOI-DwX25i3RXBMQani7JZ_-qNDDRSxwzMSBNyshvpzWTUt_VAt66w3vp9-7sphPZD7_KSMWxo__b9QDuB3SdqSwyuAQdhbzpXmCTt4i68A2H3G8in5A18GHDux2B73eEO-94-GX00617_8B33BNpA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELdGJwRfEBuvsAEBjZcgWhLn4UhMqGOrWvbQNDa0b8ZxnVKpJF3TUo0_jr-Nu8Rplwr12z5GPjux73y-i-9-R8hWbCehcLqRRWXcBQclCSzhRdTykkCAPS_BqsDc4aPjoH3ufb3wL1bI3yoXBsMqK51YKOpuJvEf-TaY6aGPxoj_eXhpYdUovF2tSmgIXVqhu1NAjOnEjgN1NQUXLt_p7AG_X7tua__sS9vSVQYsEUTR2FIUfIbYFsqmkUgQDkxJxuLIhe0n_VCxxBHKVzALpQIaJCJ2vTBhgcNsqpSwKYx7i6x6-AOlQVZ3949PTudBJgs40Dptx6ZsO4ejk2EAMLjzHlZUm9aOxsUD4toJuRi9ObvCXYA7LY7I1n1yT9u2ZrMUxjWyotJ1cruIMZX5OlnTeiQ332mw6_cPyKcWfEp_YCpd3dScpL9Vf5CbIjUVgi-bZVYZPJY1vEywss3d0VX2JxMPyfmNrPUj0kizVD0hJk08sEVCDwygxAu7Ajz5RDAhYjuMpEOlQZxqMbnUcOdYdWPAi2t3ynjJAA4M4AUD-NQgH2Z9hiXYx1LqV8gjjigaKYbp9MQkz3nn2ylvBgxzF0HdGeStJkoyeL0UOusBJoHAWzXKjRqlHPYv-bXWN7XWXsmn_w2zWSMEbSHrzZVEca2tcj7fWwZ5OWvGnhiBl6psgjQMPAWsD2CQx6UAztaIeqEdugx6hzXRnBEghnm9Je3_LLDMmc9gzMAgHyshnn_WsqXfKgW99oa9_vcmz0Y9no5-cY-6_tPlk31B7rTPjg75Yef4YIPcdXErYoCns0ka49FEPQNzcxw_13vaJD9uWo38A6pLjYo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJhAviI2vsAEBDRiCqEmcxI7EhDq6amVQTYOhvRnHtUulknRNSzX-RP4qzonTLhXq2x4rn5PYd76P-u53CO0mriLc68UOFkkPAhQVOTyIsROoiIM_L8Cr0LXDX7rR0Vnw6Tw8X0N_q1oYnVZZ6cRCUfcyof8jb4CbTkLtjIQNZdIiTlrtD6MLR3eQ0jetVTsNbtos9PYLuDFT5HEsL2cQzuX7nRbw_qXvtw-_fTxyTMcBh0dxPHEkhvghcbl0ccyVhgaTgtIk9uEoipBIqjwuQwkrkjLCkeKJHxBFI4-6WEruYnjuDbRBwOpDILhxcNg9OV0knCxhQpsSHhfTRg5mlOpkYAjtA91dbVYzk8vG4oq1XM7knF_nLkGfFuayfRfdMX6u3SwFcxOtyXQL3SzyTUW-hTaNTsntPQN8_eYeet-GTxkMbWk6ndrT9LccDHObp7bUQMx2WWEGP8t-XjZ43PbB-DL7k_H76Oxa9voBWk-zVD5CNlYB-CUkAGdIBaTHIapXnHKeuCQWHhYW8qrNZMJAn-sOHENWXMFjykoGMGAAKxjAZhZ6O58zKoE_VlK_0DxiGlEj1bLZ59M8Z52vp6wZUV3HCKrPQq8Nkcrg9YKbCghYhAbhqlFu1yjFaHDBroy-qo32Sz797zE7NULQHKI-XEkUM5orZ4tzZqHn82E9U2fjpTKbahoKUYPuFWChh6UAzvcIB8QlPoXZpCaacwKNZ14fSQc_C1xzGlJ4ZmShd5UQLz5r1dbvloJee0Nr8L3JsnGfpeNfLMB--Hj1Yp-hW6BO2OdO93gb3fb1SdS5nt4OWp-Mp_IJeJ6T5Kk50jb6cd1a5B_fVZHO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fossil+evidence+unveils+an+early+Cambrian+origin+for+Bryozoa&rft.jtitle=Nature+%28London%29&rft.au=Zhang%2C+Zhiliang&rft.au=Zhang%2C+Zhifei&rft.au=Ma%2C+Junye&rft.au=Taylor%2C+Paul+D&rft.date=2021-11-11&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=599&rft.issue=7884&rft.spage=251&rft_id=info:doi/10.1038%2Fs41586-021-04033-w&rft.externalDocID=A681998101 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |