Fossil evidence unveils an early Cambrian origin for Bryozoa

Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton 1 – 3 . The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 599; no. 7884; pp. 251 - 255
Main Authors Zhang, Zhiliang, Zhang, Zhifei, Ma, Junye, Taylor, Paul D., Strotz, Luke C., Jacquet, Sarah M., Skovsted, Christian B., Chen, Feiyang, Han, Jian, Brock, Glenn A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.11.2021
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/s41586-021-04033-w

Cover

Abstract Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton 1 – 3 . The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum 2 , 4 – 8 . However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei 9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton 10 – 13 . Interpretation of the early Cambrian fossil Protomelission gatehousei 9 as a potential stem-group bryozoan realigns the fossil record with molecular clock estimations of the origins of Bryozoa.
AbstractList Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton1-3. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum2,4-8. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton10-13.Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton1-3. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum2,4-8. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton10-13.
Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton.
Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton 1–3 . The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum 2,4–8 . However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei 9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton 10–13 .
Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton 1 – 3 . The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum 2 , 4 – 8 . However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei 9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton 10 – 13 . Interpretation of the early Cambrian fossil Protomelission gatehousei 9 as a potential stem-group bryozoan realigns the fossil record with molecular clock estimations of the origins of Bryozoa.
Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton.sup.1-3. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum.sup.2,4-8. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei.sup.9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton.sup.10-13.
Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton.sup.1-3. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum.sup.2,4-8. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei.sup.9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton.sup.10-13. Interpretation of the early Cambrian fossil Protomelission gatehousei.sup.9 as a potential stem-group bryozoan realigns the fossil record with molecular clock estimations of the origins of Bryozoa.
Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton1-3. The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum2,4-8. However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members ofthe group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei9 from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P.gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton10-13.
Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous modular colonial (clonal) exoskeleton . The presence of six major orders of bryozoans with advanced polymorphisms in lower Ordovician rocks strongly suggests a Cambrian origin for the largest and most diverse lophophorate phylum . However, a lack of convincing bryozoan fossils from the Cambrian period has hampered resolution of the true origins and character assembly of the earliest members of the group. Here we interpret the millimetric, erect, bilaminate, secondarily phosphatized fossil Protomelission gatehousei from the early Cambrian of Australia and South China as a potential stem-group bryozoan. The monomorphic zooid capsules, modular construction, organic composition and simple linear budding growth geometry represent a mixture of organic Gymnolaemata and biomineralized Stenolaemata character traits, with phylogenetic analyses identifying P. gatehousei as a stem-group bryozoan. This aligns the origin of phylum Bryozoa with all other skeletonized phyla in Cambrian Age 3, pushing back its first occurrence by approximately 35 million years. It also reconciles the fossil record with molecular clock estimations of an early Cambrian origination and subsequent Ordovician radiation of Bryozoa following the acquisition of a carbonate skeleton .
Audience Academic
Author Taylor, Paul D.
Brock, Glenn A.
Zhang, Zhiliang
Skovsted, Christian B.
Ma, Junye
Jacquet, Sarah M.
Zhang, Zhifei
Chen, Feiyang
Strotz, Luke C.
Han, Jian
Author_xml – sequence: 1
  givenname: Zhiliang
  orcidid: 0000-0003-2296-5973
  surname: Zhang
  fullname: Zhang, Zhiliang
  email: zhiliang.zhang@mq.edu.au
  organization: State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Department of Biological Sciences, Macquarie University
– sequence: 2
  givenname: Zhifei
  orcidid: 0000-0003-0325-5116
  surname: Zhang
  fullname: Zhang, Zhifei
  email: elizf@nwu.edu.cn
  organization: State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University
– sequence: 3
  givenname: Junye
  surname: Ma
  fullname: Ma, Junye
  organization: State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS
– sequence: 4
  givenname: Paul D.
  orcidid: 0000-0002-3127-080X
  surname: Taylor
  fullname: Taylor, Paul D.
  organization: Department of Earth Sciences, Natural History Museum
– sequence: 5
  givenname: Luke C.
  orcidid: 0000-0002-8818-1832
  surname: Strotz
  fullname: Strotz, Luke C.
  email: lukestrotz@nwu.edu.cn
  organization: State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University
– sequence: 6
  givenname: Sarah M.
  orcidid: 0000-0001-6673-4929
  surname: Jacquet
  fullname: Jacquet, Sarah M.
  organization: Department of Geological Sciences, University of Missouri
– sequence: 7
  givenname: Christian B.
  orcidid: 0000-0001-7366-7680
  surname: Skovsted
  fullname: Skovsted, Christian B.
  organization: Department of Palaeobiology, Swedish Museum of Natural History
– sequence: 8
  givenname: Feiyang
  orcidid: 0000-0001-8994-4187
  surname: Chen
  fullname: Chen, Feiyang
  organization: State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Department of Biological Sciences, Macquarie University, School of Resources and Geosciences, China University of Mining and Technology
– sequence: 9
  givenname: Jian
  orcidid: 0000-0002-2134-4078
  surname: Han
  fullname: Han, Jian
  organization: State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University
– sequence: 10
  givenname: Glenn A.
  orcidid: 0000-0002-2277-7350
  surname: Brock
  fullname: Brock, Glenn A.
  organization: State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Department of Biological Sciences, Macquarie University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34707285$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4325$$DView record from Swedish Publication Index
BookMark eNp9kttv0zAUxi00xLrBP8ADiuAFhDJ8iS-REFIpbEyahMTt1XLTk-ApsTs7aSl_PS7tLp2qyQ-W7d_3Heuc7wgdOO8AoecEnxDM1LtYEK5EjinJcYEZy5eP0IgUUuSFUPIAjTCmKseKiUN0FOMlxpgTWTxBh6yQWFLFR-j9qY_Rthks7AxcBdngFmDbmBmXgQntKpuYbhpsOvpgG-uy2ofsY1j5v948RY9r00Z4tt2P0c_Tzz8mX_KLr2fnk_FFbkRZ9jkwJckUG8CsNDXjikCl1LSkSsmKS1A1McAB1wJAMFGbKS1krQRRmAEYzI7R241vXMJ8mOp5sJ0JK-2N1Z_sr7H2odEudLpglCf6w4ZOaAezClwfTLsj2n1x9rdu_EIrrrCiIhm83hoEfzVA7HVnYwVtaxz4IWrKlZRFQmlCX91DL_0QXGpGokrJKSOY31KNaUFbV_tUt1qb6rFQpCwVwSRR-R6qAQfpk2nytU3XO_zLPXw1t1f6LnSyB0prBp2t9rq-2REkpoc_fWOGGPX592-77Iu7nb5p8XW8EkA3QBVSzALUNwjBep1hvcmwThnW_zOsl0mk7okq25ve-vW0bPuwlG2Dkuq4BsLtOB5Q_QPXagJv
CitedBy_id crossref_primary_10_1038_d41586_021_02874_z
crossref_primary_10_1111_pala_12586
crossref_primary_10_1130_G51663_1
crossref_primary_10_1111_pala_12688
crossref_primary_10_1016_j_earscirev_2024_104861
crossref_primary_10_1002_spp2_1483
crossref_primary_10_1007_s13127_022_00562_y
crossref_primary_10_1017_pab_2024_21
crossref_primary_10_1016_j_sedgeo_2024_106740
crossref_primary_10_1134_S0869593824700126
crossref_primary_10_7554_eLife_88855
crossref_primary_10_3390_biology12070902
crossref_primary_10_1016_j_eve_2023_100018
crossref_primary_10_20935_AcadBiol6036
crossref_primary_10_3390_min13020246
crossref_primary_10_1126_sciadv_abm7452
crossref_primary_10_1126_sciadv_abm8465
crossref_primary_10_1021_acs_cgd_2c01149
crossref_primary_10_1038_s41598_022_14477_3
crossref_primary_10_1098_rsbl_2023_0157
crossref_primary_10_1144_jgs2023_231
crossref_primary_10_31857_S0869592X24050036
crossref_primary_10_1002_spp2_1473
crossref_primary_10_1016_j_xinn_2021_100195
crossref_primary_10_3799_dqkx_2023_052
crossref_primary_10_1007_s00114_022_01791_z
crossref_primary_10_7554_eLife_88855_4
crossref_primary_10_1002_lom3_10563
crossref_primary_10_1126_sciadv_abp9344
crossref_primary_10_1186_s13227_022_00202_8
crossref_primary_10_15298_invertzool_19_4_04
crossref_primary_10_1016_j_palwor_2024_11_005
crossref_primary_10_1080_08912963_2023_2231975
crossref_primary_10_1134_S0031030122070048
crossref_primary_10_1017_pab_2022_31
crossref_primary_10_1017_pab_2022_36
crossref_primary_10_1017_jpa_2023_35
crossref_primary_10_3389_fevo_2023_1160530
crossref_primary_10_1007_s12549_023_00595_x
crossref_primary_10_3390_min15020136
crossref_primary_10_1016_j_palaeo_2023_111453
crossref_primary_10_1080_03115518_2022_2130978
crossref_primary_10_1007_s12549_021_00520_0
crossref_primary_10_1016_j_geobios_2024_02_001
crossref_primary_10_1038_s41586_023_05775_5
crossref_primary_10_1098_rspb_2022_1504
crossref_primary_10_1101_gr_279636_124
Cites_doi 10.1242/dev.182899
10.1017/S0022336000037045
10.1080/106351501753462876
10.1098/rstb.2015.0046
10.1126/science.1206375
10.1007/s10682-011-9513-7
10.1017/S1089332600002801
10.1016/j.palaeo.2019.109270
10.1111/pala.12189
10.3989/scimar.2005.69s1169
10.1144/M38.2
10.1017/S0016756813000150
10.1038/srep01066
10.1098/rstb.2015.0287
10.1038/s41559-019-0821-6
10.1111/brv.12148
10.1038/35059227
10.1002/9781118454961
10.1007/s12542-017-0385-1
10.1111/brv.12583
10.1016/j.earscirev.2018.06.005
10.1111/1475-4983.00067
10.1016/j.gr.2020.08.009
10.1111/pala.12170
10.1007/s12542-021-00568-5
10.1098/rspb.1986.0047
10.1038/nature21072
10.1515/9783110586312-002
10.1098/rsos.140413
10.1666/04-128.1
10.1111/let.12235
10.1080/08912963.2017.1301447
10.1016/j.earscirev.2018.01.013
10.1093/bioinformatics/btg180
10.1017/S0025315404009117h
ContentType Journal Article
Copyright Crown 2021
2021. Crown.
COPYRIGHT 2021 Nature Publishing Group
Copyright Nature Publishing Group Nov 11, 2021
Copyright_xml – notice: Crown 2021
– notice: 2021. Crown.
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Copyright Nature Publishing Group Nov 11, 2021
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1038/s41586-021-04033-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Psychology Database
Proquest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef





Agricultural Science Database
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 255
ExternalDocumentID oai_DiVA_org_nrm_4325
PMC8580826
A681998101
34707285
10_1038_s41586_021_04033_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Australia
China
GeographicLocations_xml – name: China
– name: Australia
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAVBQ
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
C6C
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
FAC
I-F
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PJZUB
PM3
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
SOI
7X8
AGSTI
PUEGO
5PM
ADTPV
AFKWF
AOWAS
D8T
ESTFP
ZZAVC
ID FETCH-LOGICAL-a699t-e3871b0ae039af3581ec88b92887c57e8f1ae5e0f6ee636fab247f861803eea03
IEDL.DBID C6C
ISSN 0028-0836
1476-4687
IngestDate Sat Sep 13 03:13:46 EDT 2025
Thu Aug 21 14:09:19 EDT 2025
Fri Sep 05 09:27:01 EDT 2025
Sat Aug 23 12:55:37 EDT 2025
Tue Jun 17 20:25:09 EDT 2025
Thu Jun 12 23:47:30 EDT 2025
Tue Jun 10 15:32:56 EDT 2025
Tue Jun 10 20:46:54 EDT 2025
Fri Jun 27 05:10:32 EDT 2025
Mon Jul 21 04:15:34 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
Tue Jul 01 02:32:30 EDT 2025
Fri Feb 21 02:36:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7884
Language English
License 2021. Crown.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a699t-e3871b0ae039af3581ec88b92887c57e8f1ae5e0f6ee636fab247f861803eea03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3127-080X
0000-0002-2134-4078
0000-0002-2277-7350
0000-0003-0325-5116
0000-0001-8994-4187
0000-0001-6673-4929
0000-0003-2296-5973
0000-0002-8818-1832
0000-0001-7366-7680
OpenAccessLink https://www.nature.com/articles/s41586-021-04033-w
PMID 34707285
PQID 2597523105
PQPubID 40569
PageCount 5
ParticipantIDs swepub_primary_oai_DiVA_org_nrm_4325
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8580826
proquest_miscellaneous_2587740822
proquest_journals_2597523105
gale_infotracmisc_A681998101
gale_infotracgeneralonefile_A681998101
gale_infotraccpiq_681998101
gale_infotracacademiconefile_A681998101
gale_incontextgauss_ISR_A681998101
pubmed_primary_34707285
crossref_primary_10_1038_s41586_021_04033_w
crossref_citationtrail_10_1038_s41586_021_04033_w
springer_journals_10_1038_s41586_021_04033_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-11
PublicationDateYYYYMMDD 2021-11-11
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References ErnstADiversity dynamics of Ordovician BryozoaLethaia20185119820610.1111/let.12235
LombardiCCocitoSGambiMCTaylorPDMorphological plasticity in a calcifying modular organism: evidence from an in situ transplant experiment in a natural CO2 vent systemR. Soc. Open Sci.201521404132015RSOS....240413L10.1098/rsos.140413
KoromyslovaAVMarthaSOPakhnevichAVThe internal morphology of Acoscinopleura Voigt, 1956 (Cheilostomata, Bryozoa) from the Campanian–Maastrichtian of Central and Eastern EuropePalZ20189224126610.1007/s12542-017-0385-1
TaylorPDLombardiCCocitoSBiomineralization in bryozoans: present, past and future: bryozoan biomineralization.Biol. Rev.2015901118115010.1111/brv.12148
PushkinVIPopovLEEarly Ordovician bryozoans from north-western RussiaPalaeontology19994217118910.1111/1475-4983.00067
CarrollSBChance and necessity: the evolution of morphological complexity and diversityNature2001409110211092001Natur.409.1102C1:CAS:528:DC%2BD3MXhs1Gjur4%3D10.1038/35059227
Zhang, X. & Shu, D. Current understanding on the Cambrian Explosion: questions and answers. PalZhttps://doi.org/10.1007/s12542-021-00568-5 (2021).
LewisPOA likelihood approach to estimating phylogeny from discrete morphological character dataSyst. Biol.2001509139251:STN:280:DC%2BD38zntVKlsQ%3D%3D10.1080/106351501753462876
WrayGAMolecular clocks and the early evolution of metazoan nervous systemsPhilos. Trans. R.2015370201500462015004610.1098/rstb.2015.0046
BettsMJEarly Cambrian chronostratigraphy and geochronology of South AustraliaEarth Sci. Rev.20181854985432018ESRv..185..498B1:CAS:528:DC%2BC1cXhtlahtrvF10.1016/j.earscirev.2018.06.005
TaylorPDJenkinsHLEvolution of larval size in cyclostome bryozoansHist. Biol.20183053554510.1080/08912963.2017.1301447
ZhangZA sclerite-bearing stem group entoproct from the early Cambrian and its implicationsSci. Rep.201331:CAS:528:DC%2BC3sXpvFWnsrk%3D10.1038/srep01066
LandingEEarly evolution of colonial animals (Ediacaran Evolutionary Radiation–Cambrian Evolutionary Radiation–Great Ordovician Biodiversification Interval)Earth Sci. Rev.20181781051352018ESRv..178..105L10.1016/j.earscirev.2018.01.013
TaylorPDWaeschenbachAPhylogeny and diversification of bryozoansPalaeontology20155858559910.1111/pala.12170
Swofford, D. L. Phylogenetic Analysis Using Parsimony (*and Other Methods) (Sinauer Associates, 2003).
PorterJSMorphological and genetic characteristics of erect subtidal species of Alcyonidium (Ctenostomata: Bryozoa)J. Mar. Biol. Assoc. UK20048424325210.1017/S0025315404009117h
WoodRIntegrated records of environmental change and evolution challenge the Cambrian ExplosionNat. Ecol. Evol.2019352853810.1038/s41559-019-0821-6
TorsvikTHCocksLRMNew global palaeogeographical reconstructions for the Early Palaeozoic and their generationGeological Society, London, Memoirs20133852410.1144/M38.2
MaJTaylorPDXiaFZhanRThe oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central ChinaPalaeontology20155892593410.1111/pala.12189
ErwinDHThe Cambrian conundrum: early divergence and later ecological success in the early history of animalsScience2011334109110972011Sci...334.1091E1:CAS:528:DC%2BC3MXhsV2mu7jJ10.1126/science.1206375
HanJMorrisSCOuQShuDHuangHMeiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)Nature20175422282312017Natur.542..228H1:CAS:528:DC%2BC2sXhvV2htrw%3D10.1038/nature21072
McKinneyFKHistorical record of erect bryozoan growth formsProc. R. Soc. Lond. B19862281331491986RSPSB.228..133M10.1098/rspb.1986.0047
SchiffbauerJDWallaceAFBroceJXiaoSExceptional fossil conservation through phosphatizationPaleontol. Soc. Pap.201420598210.1017/S1089332600002801
McKinney, F. K. & Jackson, J. B. C. Bryozoan Evolution (Univ. Chicago Press, 1989).
XiaFSZhangSGWangZZThe oldest bryozoans: new evidence from the Late Tremadocian (Early Ordovician) of east Yangtze gorges in ChinaJ. Paleontol.2007811308132610.1666/04-128.1
Taylor, P. D. Bryozoan Paleobiology (John Wiley & Sons, 2020).
ZhangZLThe oldest Cambrian trilobite—brachiopod association in South ChinaGondwana Res.2021891471672021GondR..89..147Z10.1016/j.gr.2020.08.009
ErwinDHThe origin of animal body plans: a view from fossil evidence and the regulatory genomeDevelopment2020147dev1828991:CAS:528:DC%2BB3cXosVGgsb4%3D10.1242/dev.182899
HagemanSJErnstAThe last phylum: Occupation of Bryozoa morpho-ecospace (colony growth habits) during the early phase of the Great Ordovician Biodiversification EventPalaeogeogr. Palaeoclimatol. Palaeoecol.201953410927010.1016/j.palaeo.2019.109270
Hou, X. et al. The Cambrian fossils of Chengjiang, China: The Flowering of Early Animal Life (John Wiley & Sons, 2017).
RonquistFHuelsenbeckJPMrBayes 3: Bayesian phylogenetic inference under mixed modelsBioinformatics200319157215741:CAS:528:DC%2BD3sXntlKms7k%3D10.1093/bioinformatics/btg180
SchwahaTFOstrovskyANWanningerAKey novelties in the evolution of the aquatic colonial phylum Bryozoa: evidence from soft body morphologyBiol. Rev.20209569672910.1111/brv.12583
BuddGEJacksonISCEcological innovations in the Cambrian and the origins of the crown group phylaPhilos. Trans. R. Soc. B20163712015028710.1098/rstb.2015.0287
MackieGOFrom aggregates to integrates: physiological aspects of modularity in colonial animalsPhilos. Trans. R. Soc. B19863131751961986RSPTB.313..175M
Ernst, A. in Fossil Record and Evolution of Bryozoa (eds Helmcke, J.-G., Starck, D. & Wermuth, H.) 11–56 (De Gruyter, 2020).
LidgardSZooid and colony growth in encrusting cheilostome bryozoansPalaeontology198528255291
Todd, J. A. The central role of ctenostomes in bryozoan phylogeny. In Proc. 11th Int. Bryozool. Assoc. Conf. 104, 104–135 (2000).
ErnstABogolepovaOKHubmannBGolubkovaEYUGubanovAPDianulites (Trepostomata, Bryozoa) from the Early Ordovician of Severnaya Zemlya, Arctic RussiaGeol. Mag.20141513283382014GeoM..151..328E1:CAS:528:DC%2BC2cXivFeqsbo%3D10.1017/S0016756813000150
BrockGACooperBJShelly fossils from the early Cambrian (Toyonian) Wirrealpa, Aroona Creek, and Ramsay Limestones of South AustraliaJ. Paleontol.19936775878710.1017/S0022336000037045
HughesRNLessons in modularity: the evolutionary ecology of colonial invertebratesSci. Mar.20056916917910.3989/scimar.2005.69s1169
LidgardSCarterMCDickMHGordonDPOstrovskyANDivision of labor and recurrent evolution of polymorphisms in a group of colonial animalsEvol. Ecol.20122623325710.1007/s10682-011-9513-7
GA Wray (4033_CR11) 2015; 370
E Landing (4033_CR18) 2018; 178
FK McKinney (4033_CR27) 1986; 228
F Ronquist (4033_CR33) 2003; 19
PD Taylor (4033_CR5) 2015; 90
4033_CR19
PD Taylor (4033_CR2) 2015; 58
4033_CR17
J Ma (4033_CR4) 2015; 58
S Lidgard (4033_CR29) 1985; 28
4033_CR13
S Lidgard (4033_CR24) 2012; 26
DH Erwin (4033_CR12) 2020; 147
MJ Betts (4033_CR36) 2018; 185
4033_CR32
4033_CR30
PD Taylor (4033_CR37) 2018; 30
RN Hughes (4033_CR23) 2005; 69
TH Torsvik (4033_CR35) 2013; 38
4033_CR1
PO Lewis (4033_CR34) 2001; 50
A Ernst (4033_CR8) 2014; 151
JD Schiffbauer (4033_CR28) 2014; 20
JS Porter (4033_CR41) 2004; 84
TF Schwaha (4033_CR3) 2020; 95
SJ Hageman (4033_CR7) 2019; 534
SB Carroll (4033_CR25) 2001; 409
VI Pushkin (4033_CR40) 1999; 42
A Ernst (4033_CR6) 2018; 51
GA Brock (4033_CR9) 1993; 67
GO Mackie (4033_CR22) 1986; 313
C Lombardi (4033_CR26) 2015; 2
J Han (4033_CR14) 2017; 542
4033_CR20
GE Budd (4033_CR21) 2016; 371
FS Xia (4033_CR38) 2007; 81
Z Zhang (4033_CR16) 2013; 3
DH Erwin (4033_CR10) 2011; 334
R Wood (4033_CR15) 2019; 3
AV Koromyslova (4033_CR39) 2018; 92
ZL Zhang (4033_CR31) 2021; 89
34707263 - Nature. 2021 Nov;599(7884):203-204
References_xml – reference: Hou, X. et al. The Cambrian fossils of Chengjiang, China: The Flowering of Early Animal Life (John Wiley & Sons, 2017).
– reference: McKinney, F. K. & Jackson, J. B. C. Bryozoan Evolution (Univ. Chicago Press, 1989).
– reference: TaylorPDWaeschenbachAPhylogeny and diversification of bryozoansPalaeontology20155858559910.1111/pala.12170
– reference: ErnstABogolepovaOKHubmannBGolubkovaEYUGubanovAPDianulites (Trepostomata, Bryozoa) from the Early Ordovician of Severnaya Zemlya, Arctic RussiaGeol. Mag.20141513283382014GeoM..151..328E1:CAS:528:DC%2BC2cXivFeqsbo%3D10.1017/S0016756813000150
– reference: Ernst, A. in Fossil Record and Evolution of Bryozoa (eds Helmcke, J.-G., Starck, D. & Wermuth, H.) 11–56 (De Gruyter, 2020).
– reference: CarrollSBChance and necessity: the evolution of morphological complexity and diversityNature2001409110211092001Natur.409.1102C1:CAS:528:DC%2BD3MXhs1Gjur4%3D10.1038/35059227
– reference: MaJTaylorPDXiaFZhanRThe oldest known bryozoan: Prophyllodictya (Cryptostomata) from the lower Tremadocian (Lower Ordovician) of Liujiachang, south-western Hubei, central ChinaPalaeontology20155892593410.1111/pala.12189
– reference: ErwinDHThe origin of animal body plans: a view from fossil evidence and the regulatory genomeDevelopment2020147dev1828991:CAS:528:DC%2BB3cXosVGgsb4%3D10.1242/dev.182899
– reference: PushkinVIPopovLEEarly Ordovician bryozoans from north-western RussiaPalaeontology19994217118910.1111/1475-4983.00067
– reference: LidgardSCarterMCDickMHGordonDPOstrovskyANDivision of labor and recurrent evolution of polymorphisms in a group of colonial animalsEvol. Ecol.20122623325710.1007/s10682-011-9513-7
– reference: HughesRNLessons in modularity: the evolutionary ecology of colonial invertebratesSci. Mar.20056916917910.3989/scimar.2005.69s1169
– reference: ErwinDHThe Cambrian conundrum: early divergence and later ecological success in the early history of animalsScience2011334109110972011Sci...334.1091E1:CAS:528:DC%2BC3MXhsV2mu7jJ10.1126/science.1206375
– reference: ZhangZLThe oldest Cambrian trilobite—brachiopod association in South ChinaGondwana Res.2021891471672021GondR..89..147Z10.1016/j.gr.2020.08.009
– reference: BuddGEJacksonISCEcological innovations in the Cambrian and the origins of the crown group phylaPhilos. Trans. R. Soc. B20163712015028710.1098/rstb.2015.0287
– reference: ErnstADiversity dynamics of Ordovician BryozoaLethaia20185119820610.1111/let.12235
– reference: McKinneyFKHistorical record of erect bryozoan growth formsProc. R. Soc. Lond. B19862281331491986RSPSB.228..133M10.1098/rspb.1986.0047
– reference: Todd, J. A. The central role of ctenostomes in bryozoan phylogeny. In Proc. 11th Int. Bryozool. Assoc. Conf. 104, 104–135 (2000).
– reference: HanJMorrisSCOuQShuDHuangHMeiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)Nature20175422282312017Natur.542..228H1:CAS:528:DC%2BC2sXhvV2htrw%3D10.1038/nature21072
– reference: BettsMJEarly Cambrian chronostratigraphy and geochronology of South AustraliaEarth Sci. Rev.20181854985432018ESRv..185..498B1:CAS:528:DC%2BC1cXhtlahtrvF10.1016/j.earscirev.2018.06.005
– reference: WrayGAMolecular clocks and the early evolution of metazoan nervous systemsPhilos. Trans. R.2015370201500462015004610.1098/rstb.2015.0046
– reference: KoromyslovaAVMarthaSOPakhnevichAVThe internal morphology of Acoscinopleura Voigt, 1956 (Cheilostomata, Bryozoa) from the Campanian–Maastrichtian of Central and Eastern EuropePalZ20189224126610.1007/s12542-017-0385-1
– reference: Swofford, D. L. Phylogenetic Analysis Using Parsimony (*and Other Methods) (Sinauer Associates, 2003).
– reference: Zhang, X. & Shu, D. Current understanding on the Cambrian Explosion: questions and answers. PalZhttps://doi.org/10.1007/s12542-021-00568-5 (2021).
– reference: ZhangZA sclerite-bearing stem group entoproct from the early Cambrian and its implicationsSci. Rep.201331:CAS:528:DC%2BC3sXpvFWnsrk%3D10.1038/srep01066
– reference: TaylorPDJenkinsHLEvolution of larval size in cyclostome bryozoansHist. Biol.20183053554510.1080/08912963.2017.1301447
– reference: Taylor, P. D. Bryozoan Paleobiology (John Wiley & Sons, 2020).
– reference: RonquistFHuelsenbeckJPMrBayes 3: Bayesian phylogenetic inference under mixed modelsBioinformatics200319157215741:CAS:528:DC%2BD3sXntlKms7k%3D10.1093/bioinformatics/btg180
– reference: XiaFSZhangSGWangZZThe oldest bryozoans: new evidence from the Late Tremadocian (Early Ordovician) of east Yangtze gorges in ChinaJ. Paleontol.2007811308132610.1666/04-128.1
– reference: HagemanSJErnstAThe last phylum: Occupation of Bryozoa morpho-ecospace (colony growth habits) during the early phase of the Great Ordovician Biodiversification EventPalaeogeogr. Palaeoclimatol. Palaeoecol.201953410927010.1016/j.palaeo.2019.109270
– reference: LombardiCCocitoSGambiMCTaylorPDMorphological plasticity in a calcifying modular organism: evidence from an in situ transplant experiment in a natural CO2 vent systemR. Soc. Open Sci.201521404132015RSOS....240413L10.1098/rsos.140413
– reference: LandingEEarly evolution of colonial animals (Ediacaran Evolutionary Radiation–Cambrian Evolutionary Radiation–Great Ordovician Biodiversification Interval)Earth Sci. Rev.20181781051352018ESRv..178..105L10.1016/j.earscirev.2018.01.013
– reference: LewisPOA likelihood approach to estimating phylogeny from discrete morphological character dataSyst. Biol.2001509139251:STN:280:DC%2BD38zntVKlsQ%3D%3D10.1080/106351501753462876
– reference: TorsvikTHCocksLRMNew global palaeogeographical reconstructions for the Early Palaeozoic and their generationGeological Society, London, Memoirs20133852410.1144/M38.2
– reference: LidgardSZooid and colony growth in encrusting cheilostome bryozoansPalaeontology198528255291
– reference: SchwahaTFOstrovskyANWanningerAKey novelties in the evolution of the aquatic colonial phylum Bryozoa: evidence from soft body morphologyBiol. Rev.20209569672910.1111/brv.12583
– reference: SchiffbauerJDWallaceAFBroceJXiaoSExceptional fossil conservation through phosphatizationPaleontol. Soc. Pap.201420598210.1017/S1089332600002801
– reference: BrockGACooperBJShelly fossils from the early Cambrian (Toyonian) Wirrealpa, Aroona Creek, and Ramsay Limestones of South AustraliaJ. Paleontol.19936775878710.1017/S0022336000037045
– reference: TaylorPDLombardiCCocitoSBiomineralization in bryozoans: present, past and future: bryozoan biomineralization.Biol. Rev.2015901118115010.1111/brv.12148
– reference: WoodRIntegrated records of environmental change and evolution challenge the Cambrian ExplosionNat. Ecol. Evol.2019352853810.1038/s41559-019-0821-6
– reference: MackieGOFrom aggregates to integrates: physiological aspects of modularity in colonial animalsPhilos. Trans. R. Soc. B19863131751961986RSPTB.313..175M
– reference: PorterJSMorphological and genetic characteristics of erect subtidal species of Alcyonidium (Ctenostomata: Bryozoa)J. Mar. Biol. Assoc. UK20048424325210.1017/S0025315404009117h
– volume: 147
  start-page: dev182899
  year: 2020
  ident: 4033_CR12
  publication-title: Development
  doi: 10.1242/dev.182899
– volume: 67
  start-page: 758
  year: 1993
  ident: 4033_CR9
  publication-title: J. Paleontol.
  doi: 10.1017/S0022336000037045
– volume: 50
  start-page: 913
  year: 2001
  ident: 4033_CR34
  publication-title: Syst. Biol.
  doi: 10.1080/106351501753462876
– volume: 370
  start-page: 20150046
  year: 2015
  ident: 4033_CR11
  publication-title: Philos. Trans. R.
  doi: 10.1098/rstb.2015.0046
– volume: 334
  start-page: 1091
  year: 2011
  ident: 4033_CR10
  publication-title: Science
  doi: 10.1126/science.1206375
– volume: 26
  start-page: 233
  year: 2012
  ident: 4033_CR24
  publication-title: Evol. Ecol.
  doi: 10.1007/s10682-011-9513-7
– volume: 20
  start-page: 59
  year: 2014
  ident: 4033_CR28
  publication-title: Paleontol. Soc. Pap.
  doi: 10.1017/S1089332600002801
– volume: 534
  start-page: 109270
  year: 2019
  ident: 4033_CR7
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/j.palaeo.2019.109270
– volume: 58
  start-page: 925
  year: 2015
  ident: 4033_CR4
  publication-title: Palaeontology
  doi: 10.1111/pala.12189
– volume: 69
  start-page: 169
  year: 2005
  ident: 4033_CR23
  publication-title: Sci. Mar.
  doi: 10.3989/scimar.2005.69s1169
– volume: 38
  start-page: 5
  year: 2013
  ident: 4033_CR35
  publication-title: Geological Society, London, Memoirs
  doi: 10.1144/M38.2
– volume: 313
  start-page: 175
  year: 1986
  ident: 4033_CR22
  publication-title: Philos. Trans. R. Soc. B
– volume: 151
  start-page: 328
  year: 2014
  ident: 4033_CR8
  publication-title: Geol. Mag.
  doi: 10.1017/S0016756813000150
– volume: 3
  year: 2013
  ident: 4033_CR16
  publication-title: Sci. Rep.
  doi: 10.1038/srep01066
– volume: 371
  start-page: 20150287
  year: 2016
  ident: 4033_CR21
  publication-title: Philos. Trans. R. Soc. B
  doi: 10.1098/rstb.2015.0287
– volume: 3
  start-page: 528
  year: 2019
  ident: 4033_CR15
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-019-0821-6
– ident: 4033_CR17
– volume: 90
  start-page: 1118
  year: 2015
  ident: 4033_CR5
  publication-title: Biol. Rev.
  doi: 10.1111/brv.12148
– volume: 409
  start-page: 1102
  year: 2001
  ident: 4033_CR25
  publication-title: Nature
  doi: 10.1038/35059227
– ident: 4033_CR20
  doi: 10.1002/9781118454961
– ident: 4033_CR32
– volume: 92
  start-page: 241
  year: 2018
  ident: 4033_CR39
  publication-title: PalZ
  doi: 10.1007/s12542-017-0385-1
– volume: 95
  start-page: 696
  year: 2020
  ident: 4033_CR3
  publication-title: Biol. Rev.
  doi: 10.1111/brv.12583
– ident: 4033_CR30
– volume: 185
  start-page: 498
  year: 2018
  ident: 4033_CR36
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2018.06.005
– volume: 42
  start-page: 171
  year: 1999
  ident: 4033_CR40
  publication-title: Palaeontology
  doi: 10.1111/1475-4983.00067
– volume: 89
  start-page: 147
  year: 2021
  ident: 4033_CR31
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2020.08.009
– ident: 4033_CR1
– volume: 58
  start-page: 585
  year: 2015
  ident: 4033_CR2
  publication-title: Palaeontology
  doi: 10.1111/pala.12170
– ident: 4033_CR13
  doi: 10.1007/s12542-021-00568-5
– volume: 228
  start-page: 133
  year: 1986
  ident: 4033_CR27
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.1986.0047
– volume: 542
  start-page: 228
  year: 2017
  ident: 4033_CR14
  publication-title: Nature
  doi: 10.1038/nature21072
– ident: 4033_CR19
  doi: 10.1515/9783110586312-002
– volume: 2
  start-page: 140413
  year: 2015
  ident: 4033_CR26
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.140413
– volume: 81
  start-page: 1308
  year: 2007
  ident: 4033_CR38
  publication-title: J. Paleontol.
  doi: 10.1666/04-128.1
– volume: 51
  start-page: 198
  year: 2018
  ident: 4033_CR6
  publication-title: Lethaia
  doi: 10.1111/let.12235
– volume: 30
  start-page: 535
  year: 2018
  ident: 4033_CR37
  publication-title: Hist. Biol.
  doi: 10.1080/08912963.2017.1301447
– volume: 178
  start-page: 105
  year: 2018
  ident: 4033_CR18
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2018.01.013
– volume: 19
  start-page: 1572
  year: 2003
  ident: 4033_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg180
– volume: 84
  start-page: 243
  year: 2004
  ident: 4033_CR41
  publication-title: J. Mar. Biol. Assoc. UK
  doi: 10.1017/S0025315404009117h
– volume: 28
  start-page: 255
  year: 1985
  ident: 4033_CR29
  publication-title: Palaeontology
– reference: 34707263 - Nature. 2021 Nov;599(7884):203-204
SSID ssj0005174
Score 2.5777152
Snippet Bryozoans (also known as ectoprocts or moss animals) are aquatic, dominantly sessile, filter-feeding lophophorates that construct an organic or calcareous...
SourceID swepub
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 251
SubjectTerms 631/181/2480
631/181/414
Animals
Aquatic animals
Australia
Biological Evolution
Bryozoa
Bryozoa - anatomy & histology
Bryozoa - classification
Budding
Cambrian
Carbonates
China
Den föränderliga jorden
Ectoprocta
Environmental aspects
Fossils
Humanities and Social Sciences
Microscopy
Modular construction
Morphology
multidisciplinary
Ordovician
Phenotype
Phosphating (coating)
Phylogenetics
Phylogeny
Physiological aspects
Radiation
Science
Science (multidisciplinary)
The changing Earth
Time Factors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwED-NTkh8Qdt4hQ0U0MRDEC2p83AkEOpg1UCiQoOhfbMc1y6VuqRrWib467lLnHapUD9GPufhO59_ju9-B3CY-SaRwTD1mMqGuEExsSfDlHmhiSXieYWognKHvw7i0_Pwy0V0sQWDJheGwiobn1g56mGh6B_5EcL0JCIwEn2YXnlUNYpOV5sSGtKWVhi-ryjGbsE2uuTI78D28cng29kq6GONl9mm0fiMH5W4lHEKyMXtdUgVzq5bS9W6w76xYq1HUy6PVNfoR6slq78Ddy3WdHu1cezCls734HYV86nKPdi187p0X1ny6df34F0fX2U8cbWtNuou8t96PCldmbuayJDdOssLL-uaWi6iXvd49qf4W8j7cN4_-fHx1LMVFjwZp-nc0wz3S5kvtc9SaYgKTSvOs7SLrkdFieYmkDrSqEGtYxYbmXXDxPA44D7TWvrsAXTyItePwGUmRGyQhAhITJgMJe6sjeRSZn6SqoApB4JmMIWy9ONUBWMiqmNwxkWtAIEKEJUCxLUDb5Z9pjX5xkbp56QjQawWOYXNjOSiLMXn72eiF3PKJUT348BLK2QKfLySNgsBP4KIsFqS-y1JNR1fiRutL1qto1pP_7vNQUsQZ69qNzcWJaz3KMXK1h14tmymnhQRl-tiQTIckTvx9TvwsDbA5RixMPGTLsfeScs0lwLEKd5uyce_Km5xHnG8Z-zA28aIV6-1aegPa0NvPeHT-GdPFLORyGeXImTd6PHmj92HO12afhRkGRxAZz5b6CcI-ebZUzuP_wFUrFA_
  priority: 102
  providerName: ProQuest
Title Fossil evidence unveils an early Cambrian origin for Bryozoa
URI https://link.springer.com/article/10.1038/s41586-021-04033-w
https://www.ncbi.nlm.nih.gov/pubmed/34707285
https://www.proquest.com/docview/2597523105
https://www.proquest.com/docview/2587740822
https://pubmed.ncbi.nlm.nih.gov/PMC8580826
https://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-4325
Volume 599
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8IDa-wkYV0MSHICKJk9iReGnLykCiQoOhvlmOa5dKJRlNywR_PXdJ2i3VNImXRJHPjuM7352Vu98BHGW-5SoYpx7T2RgPKDbxVJQyL7KJQn9eo1dBucOfh8nJWfRpFI-2IFzlwlRB-xWkZaWmV9Fhb0s0NILCZfHwG1H9sYtt2BWcxSTV_aR_GdaxgbzcJMr4TFwzRssYbarkKzZpM15y_dN0A2C0MkqDu3Cn8Sbdbj3_Pdgy-T7cqqI6dbkPe83OLd2XDbz0q3vwboBTmc5c09QTdZf5bzOdla7KXUNwx26dx4WPddUsF_1atzf_U_wt1H04Gxx_6594TQ0FTyVpuvAMwxNR5ivjs1RZAjszWogsDVG56JgbYQNlYoM8MiZhiVVZGHErkkD4zBjlswewkxe5eQQusxFafx6hy2EjPlZ4drZKKJX5PNUB0w4Eq8WUugEYpzoXM1n96GZC1gyQyABZMUBeOPB63ee8hte4kfoZ8UgSbkVOgTETtSxL-fHrqewmgrIFUcE48KIhsgW-XqsmzwA_gqCuWpQHLUp9Pv0lr7Q-b7VOaj5dN8xhixD3p243ryRKNvqhlHjo5DG51rEDT9fN1JNi3nJTLIlGoG9OiPwOPKwFcL1GLOI-DwX25i3RXBMQani7JZ_-qNDDRSxwzMSBNyshvpzWTUt_VAt66w3vp9-7sphPZD7_KSMWxo__b9QDuB3SdqSwyuAQdhbzpXmCTt4i68A2H3G8in5A18GHDux2B73eEO-94-GX00617_8B33BNpA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELdGJwRfEBuvsAEBjZcgWhLn4UhMqGOrWvbQNDa0b8ZxnVKpJF3TUo0_jr-Nu8Rplwr12z5GPjux73y-i-9-R8hWbCehcLqRRWXcBQclCSzhRdTykkCAPS_BqsDc4aPjoH3ufb3wL1bI3yoXBsMqK51YKOpuJvEf-TaY6aGPxoj_eXhpYdUovF2tSmgIXVqhu1NAjOnEjgN1NQUXLt_p7AG_X7tua__sS9vSVQYsEUTR2FIUfIbYFsqmkUgQDkxJxuLIhe0n_VCxxBHKVzALpQIaJCJ2vTBhgcNsqpSwKYx7i6x6-AOlQVZ3949PTudBJgs40Dptx6ZsO4ejk2EAMLjzHlZUm9aOxsUD4toJuRi9ObvCXYA7LY7I1n1yT9u2ZrMUxjWyotJ1cruIMZX5OlnTeiQ332mw6_cPyKcWfEp_YCpd3dScpL9Vf5CbIjUVgi-bZVYZPJY1vEywss3d0VX2JxMPyfmNrPUj0kizVD0hJk08sEVCDwygxAu7Ajz5RDAhYjuMpEOlQZxqMbnUcOdYdWPAi2t3ynjJAA4M4AUD-NQgH2Z9hiXYx1LqV8gjjigaKYbp9MQkz3nn2ylvBgxzF0HdGeStJkoyeL0UOusBJoHAWzXKjRqlHPYv-bXWN7XWXsmn_w2zWSMEbSHrzZVEca2tcj7fWwZ5OWvGnhiBl6psgjQMPAWsD2CQx6UAztaIeqEdugx6hzXRnBEghnm9Je3_LLDMmc9gzMAgHyshnn_WsqXfKgW99oa9_vcmz0Y9no5-cY-6_tPlk31B7rTPjg75Yef4YIPcdXErYoCns0ka49FEPQNzcxw_13vaJD9uWo38A6pLjYo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJhAviI2vsAEBDRiCqEmcxI7EhDq6amVQTYOhvRnHtUulknRNSzX-RP4qzonTLhXq2x4rn5PYd76P-u53CO0mriLc68UOFkkPAhQVOTyIsROoiIM_L8Cr0LXDX7rR0Vnw6Tw8X0N_q1oYnVZZ6cRCUfcyof8jb4CbTkLtjIQNZdIiTlrtD6MLR3eQ0jetVTsNbtos9PYLuDFT5HEsL2cQzuX7nRbw_qXvtw-_fTxyTMcBh0dxPHEkhvghcbl0ccyVhgaTgtIk9uEoipBIqjwuQwkrkjLCkeKJHxBFI4-6WEruYnjuDbRBwOpDILhxcNg9OV0knCxhQpsSHhfTRg5mlOpkYAjtA91dbVYzk8vG4oq1XM7knF_nLkGfFuayfRfdMX6u3SwFcxOtyXQL3SzyTUW-hTaNTsntPQN8_eYeet-GTxkMbWk6ndrT9LccDHObp7bUQMx2WWEGP8t-XjZ43PbB-DL7k_H76Oxa9voBWk-zVD5CNlYB-CUkAGdIBaTHIapXnHKeuCQWHhYW8qrNZMJAn-sOHENWXMFjykoGMGAAKxjAZhZ6O58zKoE_VlK_0DxiGlEj1bLZ59M8Z52vp6wZUV3HCKrPQq8Nkcrg9YKbCghYhAbhqlFu1yjFaHDBroy-qo32Sz797zE7NULQHKI-XEkUM5orZ4tzZqHn82E9U2fjpTKbahoKUYPuFWChh6UAzvcIB8QlPoXZpCaacwKNZ14fSQc_C1xzGlJ4ZmShd5UQLz5r1dbvloJee0Nr8L3JsnGfpeNfLMB--Hj1Yp-hW6BO2OdO93gb3fb1SdS5nt4OWp-Mp_IJeJ6T5Kk50jb6cd1a5B_fVZHO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fossil+evidence+unveils+an+early+Cambrian+origin+for+Bryozoa&rft.jtitle=Nature+%28London%29&rft.au=Zhang%2C+Zhiliang&rft.au=Zhang%2C+Zhifei&rft.au=Ma%2C+Junye&rft.au=Taylor%2C+Paul+D&rft.date=2021-11-11&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=599&rft.issue=7884&rft.spage=251&rft_id=info:doi/10.1038%2Fs41586-021-04033-w&rft.externalDocID=A681998101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon