Spatial modelling of topsoil properties in Romania using geostatistical methods and machine learning

Various research topics from the field of soil science or agriculture require digital maps of soil properties as input data. Such maps can be achieved by digital soil mapping (DSM) techniques which have developed consistently during the last decades. Our research focuses on the application of geosta...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 8; p. e0289286
Main Authors Patriche, Cristian Valeriu, Roşca, Bogdan, Pîrnău, Radu Gabriel, Vasiliniuc, Ionuţ
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 23.08.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0289286

Cover

Abstract Various research topics from the field of soil science or agriculture require digital maps of soil properties as input data. Such maps can be achieved by digital soil mapping (DSM) techniques which have developed consistently during the last decades. Our research focuses on the application of geostatistical methods (including ordinary kriging, regression-kriging and geographically weighted regression) and machine learning algorithms to produce high resolution digital maps of topsoil properties in Romania. Six continuous predictors were considered in our study (digital elevation model, topographic wetness index, normalized difference vegetation index, slope, latitude and longitude). A tolerance test was performed to ensure that all predictors can be used for the purpose of digital soil mapping. The input soil data was extracted from the LUCAS database and includes 7 chemical properties (pH, electrical conductivity, calcium carbonate, organic carbon, N, P, K) and the particle-size fractions (sand, silt, clay). The spatial autocorrelation is higher for pH, organic carbon and calcium carbonate, as indicated by the partial sill / nugget ratio of semivariograms, meaning that these properties are more predictable than the others by kriging interpolation. The optimal DSM method was selected by independent sample validation, using resampled statistics from 100 samples randomly extracted from the validation dataset. Also, an additional independent sample of soil profiles, comprising legacy soil data, and the 200k Romania soil map were used for a supplementary validation. The results show that machine learning and regression-kriging are the optimal methods in most cases. Among the machine learning tested algorithms, the best performance is associated with Support Vector Machines and Random Forests methods. The geographically weighted regression is also among the optimum methods for pH and calcium carbonates spatial prediction. Good predictions were achieved for pH (R 2 of 0.417–0.469, depending on the method), organic carbon (R 2 of 0.302–0.443), calcium carbonates (R 2 of 0.300–0.330) and moderate predictions for electric conductivity, total nitrogen, silt and sand (R 2 of 0.155–0.331), while the lowest prediction characterizes the phosphorous content (R 2 of 0.015–0.044). LUCAS proved to be a reliable and useful soil database and the achieved spatial distributions of soil properties can be further used for national and regional soil studies.
AbstractList Various research topics from the field of soil science or agriculture require digital maps of soil properties as input data. Such maps can be achieved by digital soil mapping (DSM) techniques which have developed consistently during the last decades. Our research focuses on the application of geostatistical methods (including ordinary kriging, regression-kriging and geographically weighted regression) and machine learning algorithms to produce high resolution digital maps of topsoil properties in Romania. Six continuous predictors were considered in our study (digital elevation model, topographic wetness index, normalized difference vegetation index, slope, latitude and longitude). A tolerance test was performed to ensure that all predictors can be used for the purpose of digital soil mapping. The input soil data was extracted from the LUCAS database and includes 7 chemical properties (pH, electrical conductivity, calcium carbonate, organic carbon, N, P, K) and the particle-size fractions (sand, silt, clay). The spatial autocorrelation is higher for pH, organic carbon and calcium carbonate, as indicated by the partial sill / nugget ratio of semivariograms, meaning that these properties are more predictable than the others by kriging interpolation. The optimal DSM method was selected by independent sample validation, using resampled statistics from 100 samples randomly extracted from the validation dataset. Also, an additional independent sample of soil profiles, comprising legacy soil data, and the 200k Romania soil map were used for a supplementary validation. The results show that machine learning and regression-kriging are the optimal methods in most cases. Among the machine learning tested algorithms, the best performance is associated with Support Vector Machines and Random Forests methods. The geographically weighted regression is also among the optimum methods for pH and calcium carbonates spatial prediction. Good predictions were achieved for pH (R.sup.2 of 0.417-0.469, depending on the method), organic carbon (R.sup.2 of 0.302-0.443), calcium carbonates (R.sup.2 of 0.300-0.330) and moderate predictions for electric conductivity, total nitrogen, silt and sand (R.sup.2 of 0.155-0.331), while the lowest prediction characterizes the phosphorous content (R.sup.2 of 0.015-0.044). LUCAS proved to be a reliable and useful soil database and the achieved spatial distributions of soil properties can be further used for national and regional soil studies.
Various research topics from the field of soil science or agriculture require digital maps of soil properties as input data. Such maps can be achieved by digital soil mapping (DSM) techniques which have developed consistently during the last decades. Our research focuses on the application of geostatistical methods (including ordinary kriging, regression-kriging and geographically weighted regression) and machine learning algorithms to produce high resolution digital maps of topsoil properties in Romania. Six continuous predictors were considered in our study (digital elevation model, topographic wetness index, normalized difference vegetation index, slope, latitude and longitude). A tolerance test was performed to ensure that all predictors can be used for the purpose of digital soil mapping. The input soil data was extracted from the LUCAS database and includes 7 chemical properties (pH, electrical conductivity, calcium carbonate, organic carbon, N, P, K) and the particle-size fractions (sand, silt, clay). The spatial autocorrelation is higher for pH, organic carbon and calcium carbonate, as indicated by the partial sill / nugget ratio of semivariograms, meaning that these properties are more predictable than the others by kriging interpolation. The optimal DSM method was selected by independent sample validation, using resampled statistics from 100 samples randomly extracted from the validation dataset. Also, an additional independent sample of soil profiles, comprising legacy soil data, and the 200k Romania soil map were used for a supplementary validation. The results show that machine learning and regression-kriging are the optimal methods in most cases. Among the machine learning tested algorithms, the best performance is associated with Support Vector Machines and Random Forests methods. The geographically weighted regression is also among the optimum methods for pH and calcium carbonates spatial prediction. Good predictions were achieved for pH (R2 of 0.417-0.469, depending on the method), organic carbon (R2 of 0.302-0.443), calcium carbonates (R2 of 0.300-0.330) and moderate predictions for electric conductivity, total nitrogen, silt and sand (R2 of 0.155-0.331), while the lowest prediction characterizes the phosphorous content (R2 of 0.015-0.044). LUCAS proved to be a reliable and useful soil database and the achieved spatial distributions of soil properties can be further used for national and regional soil studies.
Various research topics from the field of soil science or agriculture require digital maps of soil properties as input data. Such maps can be achieved by digital soil mapping (DSM) techniques which have developed consistently during the last decades. Our research focuses on the application of geostatistical methods (including ordinary kriging, regression-kriging and geographically weighted regression) and machine learning algorithms to produce high resolution digital maps of topsoil properties in Romania. Six continuous predictors were considered in our study (digital elevation model, topographic wetness index, normalized difference vegetation index, slope, latitude and longitude). A tolerance test was performed to ensure that all predictors can be used for the purpose of digital soil mapping. The input soil data was extracted from the LUCAS database and includes 7 chemical properties (pH, electrical conductivity, calcium carbonate, organic carbon, N, P, K) and the particle-size fractions (sand, silt, clay). The spatial autocorrelation is higher for pH, organic carbon and calcium carbonate, as indicated by the partial sill / nugget ratio of semivariograms, meaning that these properties are more predictable than the others by kriging interpolation. The optimal DSM method was selected by independent sample validation, using resampled statistics from 100 samples randomly extracted from the validation dataset. Also, an additional independent sample of soil profiles, comprising legacy soil data, and the 200k Romania soil map were used for a supplementary validation. The results show that machine learning and regression-kriging are the optimal methods in most cases. Among the machine learning tested algorithms, the best performance is associated with Support Vector Machines and Random Forests methods. The geographically weighted regression is also among the optimum methods for pH and calcium carbonates spatial prediction. Good predictions were achieved for pH (R2 of 0.417-0.469, depending on the method), organic carbon (R2 of 0.302-0.443), calcium carbonates (R2 of 0.300-0.330) and moderate predictions for electric conductivity, total nitrogen, silt and sand (R2 of 0.155-0.331), while the lowest prediction characterizes the phosphorous content (R2 of 0.015-0.044). LUCAS proved to be a reliable and useful soil database and the achieved spatial distributions of soil properties can be further used for national and regional soil studies.Various research topics from the field of soil science or agriculture require digital maps of soil properties as input data. Such maps can be achieved by digital soil mapping (DSM) techniques which have developed consistently during the last decades. Our research focuses on the application of geostatistical methods (including ordinary kriging, regression-kriging and geographically weighted regression) and machine learning algorithms to produce high resolution digital maps of topsoil properties in Romania. Six continuous predictors were considered in our study (digital elevation model, topographic wetness index, normalized difference vegetation index, slope, latitude and longitude). A tolerance test was performed to ensure that all predictors can be used for the purpose of digital soil mapping. The input soil data was extracted from the LUCAS database and includes 7 chemical properties (pH, electrical conductivity, calcium carbonate, organic carbon, N, P, K) and the particle-size fractions (sand, silt, clay). The spatial autocorrelation is higher for pH, organic carbon and calcium carbonate, as indicated by the partial sill / nugget ratio of semivariograms, meaning that these properties are more predictable than the others by kriging interpolation. The optimal DSM method was selected by independent sample validation, using resampled statistics from 100 samples randomly extracted from the validation dataset. Also, an additional independent sample of soil profiles, comprising legacy soil data, and the 200k Romania soil map were used for a supplementary validation. The results show that machine learning and regression-kriging are the optimal methods in most cases. Among the machine learning tested algorithms, the best performance is associated with Support Vector Machines and Random Forests methods. The geographically weighted regression is also among the optimum methods for pH and calcium carbonates spatial prediction. Good predictions were achieved for pH (R2 of 0.417-0.469, depending on the method), organic carbon (R2 of 0.302-0.443), calcium carbonates (R2 of 0.300-0.330) and moderate predictions for electric conductivity, total nitrogen, silt and sand (R2 of 0.155-0.331), while the lowest prediction characterizes the phosphorous content (R2 of 0.015-0.044). LUCAS proved to be a reliable and useful soil database and the achieved spatial distributions of soil properties can be further used for national and regional soil studies.
Various research topics from the field of soil science or agriculture require digital maps of soil properties as input data. Such maps can be achieved by digital soil mapping (DSM) techniques which have developed consistently during the last decades. Our research focuses on the application of geostatistical methods (including ordinary kriging, regression-kriging and geographically weighted regression) and machine learning algorithms to produce high resolution digital maps of topsoil properties in Romania. Six continuous predictors were considered in our study (digital elevation model, topographic wetness index, normalized difference vegetation index, slope, latitude and longitude). A tolerance test was performed to ensure that all predictors can be used for the purpose of digital soil mapping. The input soil data was extracted from the LUCAS database and includes 7 chemical properties (pH, electrical conductivity, calcium carbonate, organic carbon, N, P, K) and the particle-size fractions (sand, silt, clay). The spatial autocorrelation is higher for pH, organic carbon and calcium carbonate, as indicated by the partial sill / nugget ratio of semivariograms, meaning that these properties are more predictable than the others by kriging interpolation. The optimal DSM method was selected by independent sample validation, using resampled statistics from 100 samples randomly extracted from the validation dataset. Also, an additional independent sample of soil profiles, comprising legacy soil data, and the 200k Romania soil map were used for a supplementary validation. The results show that machine learning and regression-kriging are the optimal methods in most cases. Among the machine learning tested algorithms, the best performance is associated with Support Vector Machines and Random Forests methods. The geographically weighted regression is also among the optimum methods for pH and calcium carbonates spatial prediction. Good predictions were achieved for pH (R 2 of 0.417–0.469, depending on the method), organic carbon (R 2 of 0.302–0.443), calcium carbonates (R 2 of 0.300–0.330) and moderate predictions for electric conductivity, total nitrogen, silt and sand (R 2 of 0.155–0.331), while the lowest prediction characterizes the phosphorous content (R 2 of 0.015–0.044). LUCAS proved to be a reliable and useful soil database and the achieved spatial distributions of soil properties can be further used for national and regional soil studies.
Various research topics from the field of soil science or agriculture require digital maps of soil properties as input data. Such maps can be achieved by digital soil mapping (DSM) techniques which have developed consistently during the last decades. Our research focuses on the application of geostatistical methods (including ordinary kriging, regression-kriging and geographically weighted regression) and machine learning algorithms to produce high resolution digital maps of topsoil properties in Romania. Six continuous predictors were considered in our study (digital elevation model, topographic wetness index, normalized difference vegetation index, slope, latitude and longitude). A tolerance test was performed to ensure that all predictors can be used for the purpose of digital soil mapping. The input soil data was extracted from the LUCAS database and includes 7 chemical properties (pH, electrical conductivity, calcium carbonate, organic carbon, N, P, K) and the particle-size fractions (sand, silt, clay). The spatial autocorrelation is higher for pH, organic carbon and calcium carbonate, as indicated by the partial sill / nugget ratio of semivariograms, meaning that these properties are more predictable than the others by kriging interpolation. The optimal DSM method was selected by independent sample validation, using resampled statistics from 100 samples randomly extracted from the validation dataset. Also, an additional independent sample of soil profiles, comprising legacy soil data, and the 200k Romania soil map were used for a supplementary validation. The results show that machine learning and regression-kriging are the optimal methods in most cases. Among the machine learning tested algorithms, the best performance is associated with Support Vector Machines and Random Forests methods. The geographically weighted regression is also among the optimum methods for pH and calcium carbonates spatial prediction. Good predictions were achieved for pH (R 2 of 0.417–0.469, depending on the method), organic carbon (R 2 of 0.302–0.443), calcium carbonates (R 2 of 0.300–0.330) and moderate predictions for electric conductivity, total nitrogen, silt and sand (R 2 of 0.155–0.331), while the lowest prediction characterizes the phosphorous content (R 2 of 0.015–0.044). LUCAS proved to be a reliable and useful soil database and the achieved spatial distributions of soil properties can be further used for national and regional soil studies.
Audience Academic
Author Pîrnău, Radu Gabriel
Patriche, Cristian Valeriu
Vasiliniuc, Ionuţ
Roşca, Bogdan
AuthorAffiliation 1 Geographic Research Center, Romanian Academy, Iaşi Branch, Iaşi, Romania
2 Department of Geography, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iaşi, Iaşi, Romania
Universiti Teknologi Malaysia, MALAYSIA
AuthorAffiliation_xml – name: 2 Department of Geography, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iaşi, Iaşi, Romania
– name: 1 Geographic Research Center, Romanian Academy, Iaşi Branch, Iaşi, Romania
– name: Universiti Teknologi Malaysia, MALAYSIA
Author_xml – sequence: 1
  givenname: Cristian Valeriu
  orcidid: 0000-0003-4970-0860
  surname: Patriche
  fullname: Patriche, Cristian Valeriu
– sequence: 2
  givenname: Bogdan
  surname: Roşca
  fullname: Roşca, Bogdan
– sequence: 3
  givenname: Radu Gabriel
  orcidid: 0000-0003-3368-6662
  surname: Pîrnău
  fullname: Pîrnău, Radu Gabriel
– sequence: 4
  givenname: Ionuţ
  orcidid: 0000-0003-0923-0358
  surname: Vasiliniuc
  fullname: Vasiliniuc, Ionuţ
BookMark eNqNku1r1TAUxotM3Iv-B4IFQfTDvaZJ2iZ-kTF8uTAYbOrXkDanvbmkSdek6v57090q6xgy8qHh9Pc8OSdPjpMD6ywkycsMrTNSZu93bhysNOs-ltcIM45Z8SQ5yjjBqwIjcnBnf5gce79DKCesKJ4lh6QssgwRdpSoq14GLU3aOQXGaNumrkmD673TJu0H18MQNPhU2_TSddJqmY5-wlpwPkStD7qe9BC2TvlUWpV2st5qC6kBOdjIPk-eNtJ4eDF_T5Lvnz99O_u6Or_4sjk7PV_JgpOwklwBq8qCNE1OsgZxWVagKtwgxaEsqpzXSAFqKFa0YFjximGkSsAVYyTDNTlJXu19e-O8mC_IC8zyArOSMh6JzZ5QTu5EP-hODjfCSS1uC25ohYzz1gYELXFdNkSxgnPaYFqVDDCFDDhijOY0euV7r9H28uaXNOafYYbElNHfFsSUkZgzirqPc5dj1YGqwYZBmkUzyz9Wb0XrfkZXSguM8-jwdnYY3PUIPohO-zrGJy248XbgklES44_o63vow9cyU62Mk2vbuHhwPZmK0_hUeBYHZpFaP0DFpaDTdRyx0bG-ELxbCCIT4Hdo5ei92FxdPp69-LFk39xhtyBN2HpnxqCd9UuQ7sF6cN4P0Dw2oQ_3ZLWenrqb8tDm_-I_ec4kmg
CitedBy_id crossref_primary_10_1371_journal_pone_0316940
crossref_primary_10_1016_j_geodrs_2024_e00874
crossref_primary_10_3390_agronomy14122828
crossref_primary_10_1080_10095020_2025_2454523
crossref_primary_10_1016_j_ecoinf_2024_102634
crossref_primary_10_1007_s12665_024_11468_7
crossref_primary_10_1590_1809_4430_eng_agric_v44e20240027_2024
Cites_doi 10.1016/j.geoderma.2015.07.017
10.1111/ejss.12499
10.1016/j.catena.2021.105258
10.1016/j.measurement.2022.111706
10.1016/j.scitotenv.2018.04.268
10.3390/su12135311
10.1016/j.geodrs.2016.02.006
10.1016/j.geoderma.2013.09.023
10.1111/ejss.12790
10.1016/j.geoderma.2015.06.024
10.1016/j.scitotenv.2012.10.017
10.1016/j.geoderma.2016.09.019
10.30638/eemj.2016.114
10.1016/j.geoderma.2016.12.017
10.1007/978-1-4020-8592-5_33
10.1111/j.1600-0587.2012.07348.x
10.2134/jeq2017.04.0178
10.1111/ejss.12193
10.2136/sssaj2012.0275
10.2136/sssaj2004.2042
10.1002/jpln.200421414
10.2136/sssaj1982.03615995004600050028x
10.1111/ejss.12797
10.1016/j.geoderma.2015.01.015
10.1016/j.geoderma.2015.07.006
10.1007/s10661-021-09543-8
10.1007/978-3-031-01899-2
10.1371/journal.pone.0125814
10.1016/S0016-7061(03)00223-4
10.7717/peerj.5518
10.1080/13658816.2019.1599122
10.1016/j.earscirev.2020.103359
10.1111/sum.12475
10.1016/j.scitotenv.2016.03.085
10.1016/j.scitotenv.2016.07.066
10.1007/s11069-015-1757-z
10.1016/0016-7061(94)90063-9
10.1111/ejss.12553
10.1134/S1064229319050107
10.1016/j.geoderma.2019.05.031
10.5194/soil-6-269-2020
10.1111/ejss.12862
10.1016/S1002-0160(10)60049-5
10.5194/soil-4-1-2018
10.1111/j.1365-2389.1980.tb02084.x
10.1016/j.ecolind.2019.02.026
10.1016/j.geoderma.2018.04.004
10.1371/journal.pone.0169748
10.1016/j.scitotenv.2017.02.116
10.1080/13658816.2015.1131828
10.1093/oso/9780195115383.001.0001
10.1016/j.geoderma.2019.113912
10.1016/j.geoderma.2003.08.018
ContentType Journal Article
Copyright COPYRIGHT 2023 Public Library of Science
2023 Patriche et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2023 Patriche et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2023 Patriche et al 2023 Patriche et al
2023 Patriche et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Patriche et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2023 Patriche et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2023 Patriche et al 2023 Patriche et al
– notice: 2023 Patriche et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0289286
DatabaseName CrossRef
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
CrossRef
Agricultural Science Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Geology
Agriculture
DocumentTitleAlternate Spatial modelling of topsoil properties in Romania
EISSN 1932-6203
ExternalDocumentID 2856287489
oai_doaj_org_article_472c7f3d86994f24b78e24e1e9088454
10.1371/journal.pone.0289286
PMC10446225
A761918458
10_1371_journal_pone_0289286
GeographicLocations Romania
Hungary
Belgium
Germany
GeographicLocations_xml – name: Romania
– name: Hungary
– name: Germany
– name: Belgium
GrantInformation_xml – fundername: ;
  grantid: PN-III-P4-PCE-2021-1350
– fundername: ;
  grantid: PN-III-P2-2.1-PED-2019-5436
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-a693t-a9de8b763ff531f09a7bedb2f0d9e76b59c0de0f42d4682d9b820d7e2b88312c3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Thu Nov 28 02:59:16 EST 2024
Tue Oct 14 19:03:16 EDT 2025
Sun Oct 26 04:12:16 EDT 2025
Tue Sep 30 17:11:58 EDT 2025
Thu Oct 02 05:59:43 EDT 2025
Tue Oct 07 08:03:41 EDT 2025
Mon Oct 20 23:01:00 EDT 2025
Mon Oct 20 17:18:43 EDT 2025
Thu Oct 16 16:29:08 EDT 2025
Thu Oct 16 16:11:19 EDT 2025
Thu May 22 21:12:34 EDT 2025
Wed Oct 01 01:56:38 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a693t-a9de8b763ff531f09a7bedb2f0d9e76b59c0de0f42d4682d9b820d7e2b88312c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist
ORCID 0000-0003-3368-6662
0000-0003-0923-0358
0000-0003-4970-0860
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0289286
PMID 37611038
PQID 2856287489
PQPubID 1436336
PageCount e0289286
ParticipantIDs plos_journals_2856287489
doaj_primary_oai_doaj_org_article_472c7f3d86994f24b78e24e1e9088454
unpaywall_primary_10_1371_journal_pone_0289286
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10446225
proquest_miscellaneous_2857843193
proquest_journals_2856287489
gale_infotracmisc_A761918458
gale_infotracacademiconefile_A761918458
gale_incontextgauss_ISR_A761918458
gale_incontextgauss_IOV_A761918458
gale_healthsolutions_A761918458
crossref_primary_10_1371_journal_pone_0289286
crossref_citationtrail_10_1371_journal_pone_0289286
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-23
PublicationDateYYYYMMDD 2023-08-23
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-23
  day: 23
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References N Florea (pone.0289286.ref022)
I Vasiliniuc (pone.0289286.ref026) 2013; 12
T Häring (pone.0289286.ref010) 2021
F Veronesi (pone.0289286.ref015) 2019; 101
IY Savin (pone.0289286.ref001) 2019; 52
EC Polley (pone.0289286.ref073) 2010
G Seni (pone.0289286.ref066) 2010
A Dumitrescu (pone.0289286.ref053) 2015; 78
EM Costa (pone.0289286.ref065) 2018; 47
CV Patriche (pone.0289286.ref025) 2013; 44
T. Hengl (pone.0289286.ref006) 2017; 12
G Illés (pone.0289286.ref009) 2011; 91
AM Wadoux (pone.0289286.ref062) 2019; 70
pone.0289286.ref068
JP Gonzales (pone.0289286.ref076) 2008
T Hengl (pone.0289286.ref071) 2018; 6
H Keskin (pone.0289286.ref036) 2018; 326
T Behrens (pone.0289286.ref008) 2005; 168
L Drăguţ (pone.0289286.ref028) 2016; 30
P Panagos (pone.0289286.ref044) 2014
HR Matinfar (pone.0289286.ref040) 2021; 202
I Vintilă (pone.0289286.ref079) 1984
CF Dormann (pone.0289286.ref075) 2013; 36
pone.0289286.ref063
Digital soil mapping: a state of the art (pone.0289286.ref037) 2008
D Zhu (pone.0289286.ref081); 110
AB McBratney (pone.0289286.ref032) 2003; 117
RG Pîrnău (pone.0289286.ref029) 2020; 189
T Hengl (pone.0289286.ref034) 2004; 120
D Zhu (pone.0289286.ref080) 2020; 34
M Lacoste (pone.0289286.ref018) 2016; 7
K Adhikari (pone.0289286.ref012) 2014
TM Burgess (pone.0289286.ref030) 1980; 31
IC Tanasă (pone.0289286.ref024) 2010; 67
CV Patriche (pone.0289286.ref078) 2019; 35
L Rodríguez-Lado (pone.0289286.ref016) 2015
P Panagos (pone.0289286.ref046) 2013; 442
pone.0289286.ref058
CV Patriche (pone.0289286.ref011) 2012; 21
K Vaysse (pone.0289286.ref020) 2017; 291
S Lamichhane (pone.0289286.ref014) 2019; 352
M Rostaminia (pone.0289286.ref039) 2021; 193
pone.0289286.ref055
R Vintila (pone.0289286.ref021) 2004; 34A
SR Mousavi (pone.0289286.ref041) 2022; 201
C Camera (pone.0289286.ref013) 2017; 285
P. Goovaerts (pone.0289286.ref059) 1997
I Vasiliniuc (pone.0289286.ref057) 2015; 10
IOA Odeh (pone.0289286.ref033) 1994; 63
B Bischl (pone.0289286.ref069) 2016; 17
C Ballabio (pone.0289286.ref005) 2016; 261
Y Ma (pone.0289286.ref007) 2019; 70
O Fernández-Ugalde (pone.0289286.ref056) 2020; 71
VL Mulder (pone.0289286.ref002) 2016; 573
AB Møller (pone.0289286.ref070) 2020; 6
pone.0289286.ref048
Q Zhu (pone.0289286.ref061) 2010; 20
Y Yigini (pone.0289286.ref052) 2016; 557
B Minasny (pone.0289286.ref038) 2016; 264
GC Rogozan (pone.0289286.ref027) 2016; 15
C Ballabio (pone.0289286.ref049) 2019; 355
T Hengl (pone.0289286.ref004) 2015; 10
C Ballabio (pone.0289286.ref047) 2018; 636
D de Brogniez (pone.0289286.ref045) 2015; 66
XD Song (pone.0289286.ref064) 2016; 261
P Kassai (pone.0289286.ref051) 2020; 12
A Orgiazzi (pone.0289286.ref054) 2018; 69
M Nussbaum (pone.0289286.ref019) 2018; 4
GlobalSoilMap-Digital Soil Mapping from Country to Globe (pone.0289286.ref023) 2018
AMJ Wadoux (pone.0289286.ref042) 2020; 210
pone.0289286.ref035
TG Mueller (pone.0289286.ref060) 2004; 68
SB Bai (pone.0289286.ref074) 2010; 115
F Castaldi (pone.0289286.ref050) 2018; 69
S Ottoy (pone.0289286.ref017) 2017; 589
G. Tóth (pone.0289286.ref043) 2016; 15
K Adhikari (pone.0289286.ref003) 2013; 77
pone.0289286.ref077
pone.0289286.ref072
Springer (pone.0289286.ref067) 2012
RS Yost (pone.0289286.ref031) 1982; 46
References_xml – volume-title: Ensemble machine learning: Methods and applications
  year: 2012
  ident: pone.0289286.ref067
– volume: 264
  start-page: 301
  issue: B
  year: 2016
  ident: pone.0289286.ref038
  article-title: Digital soil mapping: A brief history and some lessons
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.017
– volume: 69
  start-page: 140
  year: 2018
  ident: pone.0289286.ref054
  article-title: LUCAS Soil, the largest expandable soil dataset for Europe: a review
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12499
– volume: 202
  start-page: 105258
  year: 2021
  ident: pone.0289286.ref040
  article-title: Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105258
– volume: 201
  start-page: 111706
  year: 2022
  ident: pone.0289286.ref041
  article-title: Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semi-arid region of Iran
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111706
– ident: pone.0289286.ref035
– volume: 189
  start-page: 104506
  year: 2020
  ident: pone.0289286.ref029
  publication-title: Soil spatial patterns analysis at the ancient city of Ibida (Dobrogea, SE Romania), via portable X-ray fluorescence spectrometry and multivariate statistical methods, Catena.
– volume: 636
  start-page: 282
  year: 2018
  ident: pone.0289286.ref047
  article-title: Copper distribution in European topsoils: An assessment based on LUCAS soil survey
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.04.268
– volume: 12
  start-page: 457
  issue: 3
  year: 2013
  ident: pone.0289286.ref026
  article-title: Statistical spatial models of soil parameters
  publication-title: An approach using different methods at different scales, Environ Eng Manag J
– volume: 91
  start-page: 615
  issue: 4
  year: 2011
  ident: pone.0289286.ref009
  article-title: Comparing and evaluating digital soil mapping methods in a Hungarian forest reserve. Can
  publication-title: J. Soil Sci
– volume: 12
  start-page: 5311
  issue: 13
  year: 2020
  ident: pone.0289286.ref051
  article-title: Agricultural Soil Phosphorus in Hungary: High Resolution Mapping and Assessment of Socioeconomic and Pedological Factors of Spatiotemporal Variability
  publication-title: Sustainability
  doi: 10.3390/su12135311
– start-page: 3
  volume-title: Digital Soil Mapping with Limited Data
  year: 2008
  ident: pone.0289286.ref037
– ident: pone.0289286.ref058
– volume: 44
  start-page: 104
  issue: 1–4
  year: 2013
  ident: pone.0289286.ref025
  publication-title: Statistical Spatial Models for Soil Parameters: A Comparative Analysis of Several Methods Applied to Dobrovăţ Basin (Eastern Romania), Commun Soil Sci Plan
– volume: 7
  start-page: 137
  issue: 2
  year: 2016
  ident: pone.0289286.ref018
  article-title: Evaluating large-extent spatial modeling approaches: A case study for soil depth for France
  publication-title: Geoderma Regional
  doi: 10.1016/j.geodrs.2016.02.006
– ident: pone.0289286.ref077
– start-page: 101
  year: 2014
  ident: pone.0289286.ref012
  article-title: Constructing a soil class map of Denmark based on the FAO legend using digital techniques
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.023
– volume: 70
  start-page: 216
  issue: 2
  year: 2019
  ident: pone.0289286.ref007
  article-title: Pedology and digital soil mapping (DSM)
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12790
– volume: 261
  start-page: 11
  year: 2016
  ident: pone.0289286.ref064
  article-title: Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.06.024
– volume: 442
  start-page: 235
  year: 2013
  ident: pone.0289286.ref046
  article-title: Estimating the soil organic carbon content for European NUTS2 regions based on LUCAS data collection
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2012.10.017
– volume: 285
  start-page: 35
  year: 2017
  ident: pone.0289286.ref013
  article-title: A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.09.019
– volume: 15
  start-page: 1035
  issue: 5
  year: 2016
  ident: pone.0289286.ref027
  article-title: Maps of heavy metals in Cluj County soils developed using the regression-kriging method
  publication-title: Environ Eng Manag J
  doi: 10.30638/eemj.2016.114
– ident: pone.0289286.ref048
– volume: 291
  start-page: 55
  year: 2017
  ident: pone.0289286.ref020
  article-title: Using quantile regression forest to estimate uncertainty of digital soil mapping products
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.017
– volume: 115
  start-page: 23
  year: 2010
  ident: pone.0289286.ref074
  publication-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China, Geomorphol
– start-page: 367
  year: 2008
  ident: pone.0289286.ref076
  article-title: Chapter 33. Digital soil mapping of soil properties in Honduras using readily available biophysical datasets and Gaussian Process
  publication-title: Digital Soil Mapping With Limited Data. Springer Science & Business Media
  doi: 10.1007/978-1-4020-8592-5_33
– volume: 36
  start-page: 27
  year: 2013
  ident: pone.0289286.ref075
  article-title: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2012.07348.x
– volume: 47
  start-page: 718
  issue: 4
  year: 2018
  ident: pone.0289286.ref065
  article-title: Mapping soil organic carbon and organic matter fractions by geographically weighted regression
  publication-title: J Environ Qual
  doi: 10.2134/jeq2017.04.0178
– volume: 66
  start-page: 121
  year: 2015
  ident: pone.0289286.ref045
  article-title: A map of the topsoil organic carbon content of Europe generated by a generalized additive model
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12193
– volume: 17
  start-page: 1
  year: 2016
  ident: pone.0289286.ref069
  article-title: mlr: Machine Learning in R
  publication-title: J Mach Learn Res
– volume: 77
  start-page: 860
  year: 2013
  ident: pone.0289286.ref003
  article-title: High-resolution 3-D mapping of soil texture in Denmark
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2012.0275
– ident: pone.0289286.ref055
– volume: 68
  start-page: 2042
  issue: 6
  year: 2004
  ident: pone.0289286.ref060
  article-title: Map Quality for Ordinary Kriging and Inverse Distance Weighted Interpolation
  publication-title: Soil Science of America Journal
  doi: 10.2136/sssaj2004.2042
– volume: 110
  start-page: 408
  issue: 2
  ident: pone.0289286.ref081
  article-title: Understanding place characteristics in geographic contexts through graph convolutional neural networks
  publication-title: Ann Am Assoc Geogr
– volume: 10
  start-page: 225
  issue: 2
  year: 2015
  ident: pone.0289286.ref057
  publication-title: Validating soil bulk density pedotransfer functions using a Romanian dataset, Carpath J Earth Env
– volume: 168
  start-page: 21
  year: 2005
  ident: pone.0289286.ref008
  article-title: Digital soil mapping using artificial neural networks
  publication-title: J Plant Nutr Soil Sc
  doi: 10.1002/jpln.200421414
– volume: 46
  start-page: 1028
  issue: 5
  year: 1982
  ident: pone.0289286.ref031
  article-title: Geostatistical Analysis of Soil Chemical Properties of Large Land Areas
  publication-title: II. Kriging. Soil Sci Soc Am
  doi: 10.2136/sssaj1982.03615995004600050028x
– volume: 70
  start-page: 975
  year: 2019
  ident: pone.0289286.ref062
  article-title: Efficient sampling for geostatistical surveys
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12797
– start-page: 65
  year: 2015
  ident: pone.0289286.ref016
  article-title: Modelling and mapping organic carbon content of topsoils in an Atlantic area of southwestern Europe (Galicia, NW-Spain)
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.01.015
– start-page: 1963
  ident: pone.0289286.ref022
  publication-title: Harta Solurilor României, scara 1:200,000 (Soil Map of Romania, scale 1:200,000)
– volume: 261
  start-page: 110
  year: 2016
  ident: pone.0289286.ref005
  article-title: Mapping topsoil physical properties at European scale using the LUCAS database
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.07.006
– volume: 193
  start-page: 815
  year: 2021
  ident: pone.0289286.ref039
  article-title: Spatial prediction of soil organic carbon stocks in an arid rangeland using machine learning algorithms
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-021-09543-8
– volume-title: Ensemble methods in data mining: Improving accuracy through combining predictions
  year: 2010
  ident: pone.0289286.ref066
  doi: 10.1007/978-3-031-01899-2
– volume: 10
  start-page: 1
  issue: 6
  year: 2015
  ident: pone.0289286.ref004
  article-title: Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0125814
– volume: 117
  start-page: 3
  year: 2003
  ident: pone.0289286.ref032
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 6
  start-page: e5518
  year: 2018
  ident: pone.0289286.ref071
  article-title: Random Forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
  publication-title: PeerJ
  doi: 10.7717/peerj.5518
– volume: 34
  start-page: 735
  issue: 4
  year: 2020
  ident: pone.0289286.ref080
  article-title: Spatial interpolation using conditional generative adversarial neural networks
  publication-title: Int J Geogr Inf Sci
  doi: 10.1080/13658816.2019.1599122
– volume: 210
  start-page: 103359
  year: 2020
  ident: pone.0289286.ref042
  article-title: Machine learning for digital soil mapping: Applications, challenges and suggested solutions
  publication-title: Earth-Sci Rev
  doi: 10.1016/j.earscirev.2020.103359
– volume: 35
  start-page: 257
  year: 2019
  ident: pone.0289286.ref078
  article-title: Quantitative assessment of rill and interrill soil erosion in Romania
  publication-title: Soil Use Manage
  doi: 10.1111/sum.12475
– volume: 557
  start-page: 838
  year: 2016
  ident: pone.0289286.ref052
  article-title: Assessment of soil organic carbon stocks under future climate and land cover changes in Europe
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.03.085
– ident: pone.0289286.ref072
– volume: 573
  start-page: 1352
  year: 2016
  ident: pone.0289286.ref002
  article-title: GlobalSoilMap France: high-resolution spatial modelling the soils of France up to two meter depth
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.07.066
– volume: 15
  start-page: 2651
  issue: 12
  year: 2016
  ident: pone.0289286.ref043
  publication-title: The LUCAS 2012 topsoil survey and derived cropland and grassland soil properties of Bulgaria and Romania, Environ Eng Manag J
– volume: 78
  start-page: 1045
  issue: 2
  year: 2015
  ident: pone.0289286.ref053
  article-title: ROCADA: a gridded daily climatic dataset over Romania (1961–2013) for nine meteorological variables
  publication-title: Nat Hazards
  doi: 10.1007/s11069-015-1757-z
– volume: 21
  start-page: 46
  issue: 1
  year: 2012
  ident: pone.0289286.ref011
  article-title: Spatial prediction of soil qualitative variables using logistic regression and fuzzy techniques
  publication-title: Study region: Dobrovăţ basin (Central Moldavian Plateau), Georeview
– volume: 67
  issue: 1
  year: 2010
  ident: pone.0289286.ref024
  article-title: Pedometric techniques in spatialisation of soil properties for agricultural land evaluation. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca
  publication-title: Agriculture
– start-page: 35
  volume-title: First steps in Romania converging toward the GlobalSoilMap specifications
  year: 2018
  ident: pone.0289286.ref023
– volume: 63
  start-page: 197
  year: 1994
  ident: pone.0289286.ref033
  article-title: Spatial prediction of soil properties from landform attributes derived from a digital elevation model
  publication-title: Geoderma
  doi: 10.1016/0016-7061(94)90063-9
– volume: 69
  start-page: 592
  issue: 4
  year: 2018
  ident: pone.0289286.ref050
  article-title: Estimation of soil organic carbon in arable soil in Belgium and Luxembourg with the LUCAS topsoil database
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12553
– volume: 52
  start-page: 471
  year: 2019
  ident: pone.0289286.ref001
  article-title: Modern Trends and Problems of Soil Mapping
  publication-title: Eurasian Soil Sci
  doi: 10.1134/S1064229319050107
– volume: 352
  start-page: 395
  year: 2019
  ident: pone.0289286.ref014
  article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.031
– volume: 6
  start-page: 269
  issue: 2
  year: 2020
  ident: pone.0289286.ref070
  article-title: Oblique geographic coordinates as covariates for digital soil mapping
  publication-title: SOIL
  doi: 10.5194/soil-6-269-2020
– volume: 71
  start-page: 137
  year: 2020
  ident: pone.0289286.ref056
  article-title: Comparison of sampling with a spade and gouge auger for topsoil monitoring at the continental scale
  publication-title: Eur J Soil Sci
  doi: 10.1111/ejss.12862
– volume: 20
  start-page: 594
  issue: 5
  year: 2010
  ident: pone.0289286.ref061
  article-title: Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(10)60049-5
– volume: 4
  start-page: 1
  year: 2018
  ident: pone.0289286.ref019
  article-title: Evaluation of digital soil mapping approaches with large sets of environmental covariates
  publication-title: SOIL
  doi: 10.5194/soil-4-1-2018
– ident: pone.0289286.ref063
– year: 2010
  ident: pone.0289286.ref073
  article-title: Super learner in prediction
  publication-title: U.C. Berkeley Division of Biostatistics Working Paper Series
– volume: 34A
  start-page: 439
  year: 2004
  ident: pone.0289286.ref021
  article-title: The Geographic Information System of the Soil Resources of Romania SIGSTAR-200: Development and main types of applications
  publication-title: Proc. XVII-th Romanian National Conference of Soil Science
– volume: 31
  start-page: 315
  year: 1980
  ident: pone.0289286.ref030
  article-title: Optimal interpolation and isarithmic mapping of soil properties. I. The semivariogram and punctual kriging
  publication-title: J Soil Sci
  doi: 10.1111/j.1365-2389.1980.tb02084.x
– volume: 101
  start-page: 1032
  year: 2019
  ident: pone.0289286.ref015
  article-title: Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2019.02.026
– volume: 326
  start-page: 22
  year: 2018
  ident: pone.0289286.ref036
  article-title: Regression kriging as a workhorse in the digital soil mapper’s toolbox
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.04.004
– volume: 12
  start-page: e0169748
  issue: 2
  year: 2017
  ident: pone.0289286.ref006
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0169748
– volume: 589
  start-page: 153
  year: 2017
  ident: pone.0289286.ref017
  article-title: Assessing top- and subsoil organic carbon stocks of low-input high-diversity systems using soil and vegetation characteristics
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.02.116
– year: 2014
  ident: pone.0289286.ref044
  article-title: Soil erodibility in Europe: a high‐resolution dataset based on LUCAS
  publication-title: Sci. Total Environ
– volume: 30
  start-page: 1359
  issue: 7
  year: 2016
  ident: pone.0289286.ref028
  article-title: Land-surface segmentation as a method to create strata for spatial sampling and its potential for digital soil mapping
  publication-title: Int J Geogr Inf Sci
  doi: 10.1080/13658816.2015.1131828
– start-page: 185
  year: 2021
  ident: pone.0289286.ref010
  article-title: Spatial disaggregation of complex soil map units: A decision-tree based approach in Bavarian forest soils
  publication-title: Geoderma
– volume-title: Geostatistics for natural resources evaluation
  year: 1997
  ident: pone.0289286.ref059
  doi: 10.1093/oso/9780195115383.001.0001
– volume: 355
  year: 2019
  ident: pone.0289286.ref049
  article-title: Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.113912
– ident: pone.0289286.ref068
– volume: 120
  start-page: 75
  year: 2004
  ident: pone.0289286.ref034
  article-title: A generic framework for spatial prediction of soil variables based on regression-kriging
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2003.08.018
– year: 1984
  ident: pone.0289286.ref079
  article-title: Ţigănaş. Situaţia agrochimică a solurilor din România (Agrochemical state of soils in Romania)
  publication-title: Bucharest: Ceres
SSID ssj0053866
Score 2.4952626
Snippet Various research topics from the field of soil science or agriculture require digital maps of soil properties as input data. Such maps can be achieved by...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e0289286
SubjectTerms Agriculture
Algorithms
Analysis
Biology and Life Sciences
Calcium carbonate
Carbon
Carbonates
Chemical properties
Climate change
Computer and Information Sciences
Data mining
Digital Elevation Models
Digital mapping
Digital maps
Earth Sciences
Ecology and Environmental Sciences
Electric properties
Electrical conductivity
Electrical resistivity
Geographic information systems
Geology
Geostatistics
Interpolation
Kriging interpolation
Land use
Learning algorithms
Machine learning
Mapping
Methods
Mountains
Neural networks
Normalized difference vegetative index
Optimization
Organic carbon
People and Places
pH effects
Physical Sciences
Precipitation
Predictions
Properties
Regression
Regression analysis
Research and Analysis Methods
Sand
Silt
Software
Soil mapping
Soil maps
Soil profiles
Soil properties
Soil sciences
Spatial distribution
Statistical analysis
Statistical methods
Support vector machines
Taxonomy
Topsoil
Vegetation index
Wetness index
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKA81UMAgJOCQbdZ2HPtYEFVBAqRCUW-RHdvblUISNbtC_ff1ON5og5DaA1d7bCXzsMf2zDcIvRFaF5l1LKXa6JQxDe-7mqfKcN_Cc8oDbsHXb_zkjH05z893Sn1BTNgADzww7pAVpCocNYJLyRxhuhCWMLuwEKDD8oAEmgm5PUwNa7C3Ys5johwtFodRLvOubewc3tZC7vTORhTw-sdVedbVbT9xOf8OmLy7aTp19UfV9c5udPwA3Y9uJD4aPn8P3bHNQ7QXDbXH7yKa9PtHyEDRYa9kONS8geRz3Dq8bru-XdW4g7v4SwBVxasGn7aAhqEwBMMv8dK2kG4UkJxhfKg13WPVGPw7hGBaHGtOLB-js-NPPz-epLG0Qqq4pOtUSWOF9muLc94IXSZVoa3RxGVG2oLrXFaZsZljxDAuiJHaewqmsEQLQRekok_QrPHM3EeY5ZXUORfMcsu09v4OBKL4KThTNHMyQXTL57KKuONQ_qIuw2Na4c8fA89KkE4ZpZOgdBzVDbgbN9B_ABGOtICaHRq8LpVRl8qbdClBL0EByiEFdbT98gjuevxROBcJeh0oADmjgdCcpdr0ffn5-69bEP04nRC9jUSu9eyoVEyH8P8EiFwTyoMJpbf_atK9D-q65UpfEuF9WgGoQn7kVoX_3f1q7IZJIdyuse0m0BTCu5aSJkhMVH_C4GlPs7oI8OQLiBHw20SC5qOV3EqGT_-HDJ-he8T7oXDtT-gBmq0vN_a59xvX-kVYIq4Ba4BtzQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wA8IDZACwwwCAl4SJc6jmM_INShTQOJggpDe4vs2AmVShKaVoj_Hp_rhAUh2Gt8tpL78sW--x1Cz7hSaWQKGsZKq5BSBfe7ioVSM_uEJTFzuAXvZ-zsnL67SC520KyrhYG0ys4nOket6xzOyI8Itzs1B6yU1833ELpGwe1q10JD-tYK-pWDGLuGdgkgY43Q7vHJ7OO8883WuhnzBXRxOjny8ho3dWXGcOfmaqovbVAOx7_31qNmWbeDUPTPRMrrm6qRP3_I5fLSLnV6G93y4SWebvVhD-2Yah_dnJYrD7Fh9tGeN-cWv_CY0y_vIA2tia0qYtcZB0rUcV3gdd209WKJGzixXwH0Kl5UeF4DZobEkDJf4tLUUJTk8J5hvutI3WJZafzNJWoa7DtTlHfR-enJ5zdnoW_AEEom4nUohTZcWQ9UFNZUi0jIVBmtSBFpYVKmEpFH2kQFJZoyTrRQNp7QqSGK83hC8vgeGlWWtQcI0yQXKmGcGmaoUjYqgnQVuwSjMo4KEaC443qWe3RyaJKxzNyVW2r_UrYczEBWmZdVgMJ-VrNF5_gP_TEItKcFbG33oF6VmTfVjKYkT4tYcyYELQhVKTeEmomBlDCa0AA9BnXItoWqvYfIpnAiZH-YEx6gp44C8DUqSOAp5aZts7cfvlyB6NN8QPTcExW1ZUcufdGE_SbA7RpQHg4orZfIB8MHoLwdV9rstz3ZmZ1C_334ST8Mi0JSXmXqjaNJuQ1ARRwgPjCEAYOHI9XiqwMxn0Amgd1MAjTubeZKMrz_79d9gG4QG4fCsT-JD9FovdqYhzZuXKtH3hn8Ar_ncb8
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoDzUQAGDEI9D0qztOM5xQVQFiYIKReVQRXbsLCuWZNVkheDAb8fjOBGpQJQDt1X82dqM7fE4M_MNQg-FUmlsShZSpVXImAL_ruKh1Nw-4Qnljrfg9QHfP2KvjpPjDXTS58J4Cdo74rJunCcfftSV2fWS3AW-os57Gk1pOu17RCsLisBvRgR_5BiH4MtYCwlIF9AmT6ypPkGbRwdvZx87TzMJOYmpT6f700ij48qx-g-6ewL_bGSYng2rvLiuVvLbV7lc_nJm7V1BP_q37UJVPkfrVkXF9zNEkP9NHFfRZW_t4lk3yhbaMNU1tOX1SYOfeNLrp9eRhtrIdi9gV5oHcuRxXeK2XjX1YolX4DI4Be5XvKjwYQ2kHRJDzP4cz00NWVGOcBr6u5LYDZaVxl9cpKjBvjTG_AY62nvx_vl-6CtAhJJntA1lpo1QVgWWpdUVZZzJVBmtSBnrzKRcJVkRaxOXjGjGBdGZsgaNTg1RQtApKehNNKmsILYRZkmRqYQLZrhhSlmzDOJl7BCcSRqXWYBoP9F54enRoUrHMnc-v9RekzqZ5SDZ3Es2QOHQa9XRg_wF_wzW0IAFcm_3wE5t7qc0Zykp0pJqwbOMlYSpVBjCzNRATBpLWIDuwQrMu0zZQUXlM_gkZW_siQjQA4cAgo8KIojmct00-cs3H84Benc4Aj32oLK24iikz9qw7wQrb4TcGSGtmipGzduwdHupNDkR1vQWQH5ke_Z76PfN94dmGBSiAitTrx0mFdYCzmiAxGjvjQQ8bqkWnxyL-hRCGexpFqBo2KbnmsNb_9rhNrpErGkMnghCd9CkPV2bO9aUbdVdr5B-AnPCpk0
  priority: 102
  providerName: Unpaywall
Title Spatial modelling of topsoil properties in Romania using geostatistical methods and machine learning
URI https://www.proquest.com/docview/2856287489
https://www.proquest.com/docview/2857843193
https://pubmed.ncbi.nlm.nih.gov/PMC10446225
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0289286&type=printable
https://doaj.org/article/472c7f3d86994f24b78e24e1e9088454
http://dx.doi.org/10.1371/journal.pone.0289286
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa2TgheEBugBUYxCAl4SJU6jn88INRN6wbSylQoGk9RHDulUkhK0wr63-Nz04igoe0lD_bZUs4---w7fx9Cr4RSPDAZ9UOllU-pgviuYn6imS1hUcgcbsHFiJ1P6Mer6GoHbTlbawVW1x7tgE9qssh7v3-u31uDf-dYG3h_26g3LwvTg8gZEWwX7dm9SgKZwwVt4grWul30ErwWn5EgrB_T_a-X1mblMP2blbszz8uq5Zb-m1R5d1XMk_WvJM__2rGGD9D92tXEg83c2Ec7pjhAd84cle_6AO3XZl3hNzX29NuHSANFsZ2S2DHkwFN1XGZ4Wc6rcpbjOdzcLwCCFc8KPC4BOyPBkDo_xVNTwuMkh_sM7R0zdYWTQuMfLmHT4JqhYvoITYanX07O_ZqIwU-YDJd-IrURyq5EWWZNNgtkwpXRimSBloYzFck00CbIKNGUCaKlsn6F5oYoIcI-ScPHqFNYtR4iTKNUqogJapihSlnvCNJWbBeMJmGQSQ-FW43HaY1SDmQZeexCb9yeVjbai2Gc4nqcPOQ3reYblI4b5I9hMBtZwNh2BeViGtcmG1NOUp6FWjApaUao4sIQavoGUsNoRD30HKZCvHmw2qwU8QBuhuzBORIeeukkAGejgESeabKqqvjDp6-3EPo8bgm9roWy0qojTerHE_afAL-rJXnUkrSrRdqqPoSJu9VKFRNhPWABGES25XYyX1_9oqmGTiE5rzDlyslwYR1RGXpItIygpeB2TTH77sDM-5BRYDcVD_Uae7nVGD65Uf1P0T1iXVKIAJDwCHWWi5V5Zl3IpeqiXX7F7Vec9OE7POuivePT0eW46y5lum7VsGWT0eXg2x8zBnkV
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeRg8IDZAKwxmEAh4SNc6juM8IFQ-ppZ9II1t6luIY6dUKkloWk37p_gbuXPdsCAEe9lrfI7au_PdOXf3O0KeS6XCrsm45yutPM4V5neV8BIt4IkIfGFxCw6PxOCUfxoFozXyc9ULg2WVK5toDbUuUvxGvsskeGqJWClvyx8eTo3C7OpqhMZSLfbNxTlc2ao3ww8g3xeM7X08eT_w3FQBLxGRP_eSSBup4FhlGehf1o2SUBmtWNbVkQmFCqK0q00340xzIZmOFDhJHRqmpPR7LPXhvTfITe6DLYHzE47qCx7YDiFce54f9nadNnTKIjcdzOjZju1L7s9OCah9QaucFlUj0P2zTHN9kZfJxXkynV7ygXt3yR0XvNL-Uts2yJrJN8nt_njmADzMJtlwxqKirxyi9et7ROPgY1B0aufuYAM8LTI6L8qqmExpifmAGQK70klOjwtE5EgoFuSP6dgU2PJk0aRxv513XdEk1_S7LQM11M29GN8np9ciiAeklQNrtwjlQRqpQEhuhOFKQcyFxTDwCsETv5tFbeKvuB6nDvscR3BMY5vQC-EOtORgjLKKnazaxKt3lUvsj__Qv0OB1rSI3G0fFLNx7AxBzEOWhpmvpYginjGuQmkYNz2DBWc84G2yg-oQL9tga_sT9_F7E1zHA9kmzywFonfkWB40ThZVFQ8_n12B6Mtxg-ilI8oKYEeauJYM-E-ICtag3G5Qgg1KG8tbqLwrrlTx79MKO1cK_fflp_UyvhRL_nJTLCxNKCG8jfw2kY2D0GBwcyWffLMQ6T2sUwBX1Sad-sxcSYYP__1zd8j64OTwID4YHu0_IrcYRLyYYGD-NmnNZwvzGCLUuXpizQIlX6_bDv0CrPGpGA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkfh4QGyAVhjMIBDwkH7YjuM8IFQY1cpgoMFQ30IcO6FSSULTatq_xl-Hz3XCghDsZa_xOWrvznfn3N3vEHospAwGOmUelUp6jEnI70ruxYqbJ9yn3OIWvD_k-8fs7dSfbqCfdS8MlFXWNtEaalUk8I28T4Tx1AKwUvqpK4v4uDd-Wf7wYIIUZFrrcRprFTnQpyfm-la9mOwZWT8hZPzm8-t9z00Y8GIe0qUXh0oLaY5YmhpdTAdhHEitJEkHKtQBl36YDJQepIwoxgVRoTQOUwWaSCHokCTUvPcSuhxQGkI5YTBtLnvGjnDuWvVoMOw7zeiVRa57kN2z3dtnXKGdGND4hU45L6pW0PtnyebVVV7GpyfxfH7GH45vohsukMWjteZtog2db6Hro2zhwDz0Ftp0hqPCzxy69fNbSMEQZKP02M7ggWZ4XKR4WZRVMZvjEnIDCwB5xbMcHxWAzhFjKM7PcKYLaH-yyNKw386-rnCcK_zdloRq7GZgZLfR8YUI4g7q5Ia12wgzPwmlzwXTXDMpTfwFhTHmFZzFdJCGXURrrkeJw0GHcRzzyCb3AnMfWnMwAllFTlZd5DW7yjUOyH_oX4FAG1pA8bYPikUWOaMQsYAkQUqV4GHIUsJkIDRheqih-Iz5rIt2QR2idUtsY4uiEXx7MldzX3TRI0sBSB45nIksXlVVNPnw5RxEn45aRE8dUVoYdiSxa88w_wkQwlqUOy1KY4-S1vI2KG_NlSr6fXLNzlqh_778sFmGl0L5X66LlaUJhAl1Q9pFonUQWgxur-SzbxYufQg1C8ZtdVGvOTPnkuHdf__cXXTFWKDo3eTw4B66RkzwC7kGQndQZ7lY6fsmWF3KB9YqYPT1os3QL6cWrVs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoDzUQAGDEI9D0qztOM5xQVQFiYIKReVQRXbsLCuWZNVkheDAb8fjOBGpQJQDt1X82dqM7fE4M_MNQg-FUmlsShZSpVXImAL_ruKh1Nw-4Qnljrfg9QHfP2KvjpPjDXTS58J4Cdo74rJunCcfftSV2fWS3AW-os57Gk1pOu17RCsLisBvRgR_5BiH4MtYCwlIF9AmT6ypPkGbRwdvZx87TzMJOYmpT6f700ij48qx-g-6ewL_bGSYng2rvLiuVvLbV7lc_nJm7V1BP_q37UJVPkfrVkXF9zNEkP9NHFfRZW_t4lk3yhbaMNU1tOX1SYOfeNLrp9eRhtrIdi9gV5oHcuRxXeK2XjX1YolX4DI4Be5XvKjwYQ2kHRJDzP4cz00NWVGOcBr6u5LYDZaVxl9cpKjBvjTG_AY62nvx_vl-6CtAhJJntA1lpo1QVgWWpdUVZZzJVBmtSBnrzKRcJVkRaxOXjGjGBdGZsgaNTg1RQtApKehNNKmsILYRZkmRqYQLZrhhSlmzDOJl7BCcSRqXWYBoP9F54enRoUrHMnc-v9RekzqZ5SDZ3Es2QOHQa9XRg_wF_wzW0IAFcm_3wE5t7qc0Zykp0pJqwbOMlYSpVBjCzNRATBpLWIDuwQrMu0zZQUXlM_gkZW_siQjQA4cAgo8KIojmct00-cs3H84Benc4Aj32oLK24iikz9qw7wQrb4TcGSGtmipGzduwdHupNDkR1vQWQH5ke_Z76PfN94dmGBSiAitTrx0mFdYCzmiAxGjvjQQ8bqkWnxyL-hRCGexpFqBo2KbnmsNb_9rhNrpErGkMnghCd9CkPV2bO9aUbdVdr5B-AnPCpk0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+modelling+of+topsoil+properties+in+Romania+using+geostatistical+methods+and+machine+learning&rft.jtitle=PloS+one&rft.au=Vasiliniuc%2C+Ionut&rft.au=Rosca%2C+Bogdan&rft.au=P%C3%AErnau%2C+Radu+Gabriel&rft.au=Patriche%2C+Cristian+Valeriu&rft.date=2023-08-23&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=18&rft.issue=8&rft.spage=e0289286&rft_id=info:doi/10.1371%2Fjournal.pone.0289286&rft.externalDBID=n%2Fa&rft.externalDocID=A761918458
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon