Heat Transfer Enhancement Techniques Thermal Performance, Optimization and Applications
Saved in:
| Main Authors | , , |
|---|---|
| Format | eBook |
| Language | English |
| Published |
Newark
John Wiley & Sons, Incorporated
2024
|
| Edition | 1 |
| Online Access | Get full text |
| ISBN | 9781394270965 1394270968 |
| DOI | 10.1002/9781394270996 |
Cover
Table of Contents:
- 4.5 Conclusions -- References -- Chapter 5 Eco-Friendly Paint for Sustainable Building Applications to Enhance Thermal Life Comfort -- 5.1 Introduction -- 5.2 Advantages of Vedic Plaster Over Conventional Plaster -- 5.3 Need for Vedic Paints -- 5.4 Types of Vedic Paints -- 5.5 Chemical Properties of Vedic Paints -- 5.6 Factors Increasing Comfort -- 5.7 Conclusion -- 5.8 Future Outlook -- References -- Chapter 6 Augmentation of Solar, Geothermal, and Earth-Air Heat Exchanger in Sustainable Buildings -- 6.1 Introduction -- 6.2 Current State of Renewable Energy Technologies -- 6.3 Solar Augmentation Strategies -- 6.3.1 Advanced Solar Technologies -- 6.3.2 Integration Into Building Design -- 6.3.3 Energy Efficiency and Environmental Impact -- 6.3.3.1 Energy Efficiency -- 6.3.3.2 Environmental Impact -- 6.4 Geothermal Energy in Building Systems -- 6.4.1 Harnessing Subsurface Heat -- 6.4.2 Applications in Space Heating, Cooling, and Power Generation -- 6.4.3 Innovative Geothermal Solutions -- 6.5 Earth-Air Heat Exchangers: Passive and Active Cooling -- 6.5.1 Principles and Functionality of Earth-Air Heat Exchangers (EAHE) -- 6.5.2 Benefits of Earth-Air Heat Exchanger (EAHE) Systems -- 6.5.3 Practical Implementation Techniques for Earth-Air Heat Exchangers (EAHE) -- 6.6 Combined Augmentation Strategies for Sustainable Buildings -- 6.6.1 Synergies Among Solar, Geothermal, and Earth-Air Systems -- 6.6.2 Challenges and Considerations in the Integration of Solar, Geothermal, and Earth-Air Systems for Sustainable Buildings -- 6.6.3 Future Trends and Prospects in the Integration of Solar, Geothermal, and Earth-Air Systems for Sustainable Buildings -- 6.7 Conclusion -- 6.7.1 Implications for Sustainable Building Practices -- 6.7.2 Recommendations for Future Research -- References
- Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Aim and Scope -- Preface -- Acknowledgement -- Chapter 1 Recent Innovation in Heat Transfer Enhancement Techniques -- 1.1 Introduction -- 1.1.1 Industrial Application of Heat Transfer Enhancement Techniques -- 1.1.2 Standards and Regulations -- 1.2 Important Heat Transfer Enhancement Techniques and Their Effect -- 1.2.1 Effect of Fins and Extended Surfaces -- 1.2.2 Effect of Phase Change Materials (PCMs) -- 1.2.3 Effect of Heat Exchangers -- 1.2.4 Effect of Microchannels -- 1.2.5 Effect of Nanofluids -- 1.2.5.1 Analytical Approaches to Understanding Physical Characteristics of Nanofluids -- 1.2.6 Effect of Porous Media -- 1.2.6.1 Effect of Porosity -- 1.2.7 Effect of Jet Impingement -- 1.2.8 Effect of Heat Pipes -- 1.2.9 Effect of Vortex Generators -- 1.2.10 Effect of Ribbed Surfaces -- 1.2.11 Effect of Artificial Roughness-Based Turbulence -- 1.3 Numerical Analysis of Heat Transfer Problem -- 1.4 Conclusion -- References -- Chapter 2 Renewable Thermal Energy Systems: Sustainable, Modern and Reliable Energy -- 2.1 Introduction -- 2.2 Sustainable Development Goals (SDG) -- 2.3 Discussion -- References -- Chapter 3 HVAC System Efficiency Improvement Through Heat Transfer Enhancement Techniques -- 3.1 Introduction -- 3.2 Passive Heat Transfer Enhancement Techniques -- 3.2.1 Surfactants -- 3.2.2 Straight Microfins and Helical Microfins Tubes -- 3.2.3 Herringbone Tube -- 3.2.4 Twisted Tapes Insert Tube -- 3.2.5 Wired Coils -- 3.2.6 Dimpled Tubes -- 3.3 Electro-Passive Heat Transfer Enhancement Techniques -- 3.4 Conclusion -- References -- Chapter 4 Indoor Thermal Performance Enhancement of Sustainable Buildings -- List of Nomenclature -- 4.1 Introduction -- 4.2 Background of the Present Study -- 4.3 System Operation -- 4.4 Comparison of Desiccant Cooling with Traditional VCR Cooling
- 8.3 Mathematical Model -- 8.3.1 Formulation of Objective Function -- 8.3.2 Process Parameters -- 8.3.2.1 Hot Fluid Outlet Temperature -- 8.3.2.2 Mass Flow Rate of Hot Fluid -- 8.3.2.3 Cold Fluid Outlet Temperature -- 8.3.2.4 Mass Flow Rate of Cold Fluid -- 8.4 Implementation of Multi-Objective Type Optimization Technique [MOTOT] -- 8.4.1 Particle Swarm Optimization -- 8.4.1.1 Condition 1 -- 8.4.1.2 Condition 2 -- 8.4.2 Merits of PSO -- 8.4.3 Algorithm -- 8.4.4 Parameters of PSO -- 8.4.5 Numerical Illustration of PSO -- 8.4.5.1 Calculation of mh -- 8.4.5.2 Calculation of mc -- 8.4.5.3 Calculation of T2 -- 8.4.5.4 Calculation of t2 -- 8.4.5.5 Calculation of Objective Function -- 8.4.5.6 Calculation of Particle Best Value -- 8.4.5.7 Calculation of Global Best Value -- 8.4.6 Computational Result of PSO -- 8.5 Confirmation Experiments -- 8.6 Results and Discussion -- 8.6.1 Initial Experiments -- 8.6.2 The PSO Analysis -- 8.6.3 The Validation Experiments -- 8.7 Conclusions -- References -- Chapter 9 Application of Geothermal Energy-Based Earth-Air Heat Exchanger in Sustainable Buildings -- 9.1 Introduction to Sustainable Building -- 9.2 System Approach for Complex System Study -- 9.3 Earth-to-Air Heat Exchanger for Sustainable Buildings -- 9.4 EAHE Performance Evaluation: Numerical Method -- 9.5 Discussion -- References -- Chapter 10 Numerical Study of Solar Air Heater with Semi-Cylindrical Tube Roughness -- Nomenclature -- Abbreviations -- 10.1 Introduction -- 10.2 Numerical Simulation -- 10.2.1 Preprocessing -- 10.2.2 Processing -- 10.2.3 Postprocessing -- 10.2.4 Data Reduction -- 10.3 Validation -- 10.4 Results and Discussions -- 10.4.1 Effect of Roughness Height Ratio (er/H) -- 10.4.2 Effect of Tube Pitch Ratio (P/H) -- 10.4.3 Thermohydraulic Performance (THP) -- 10.5 Conclusions -- Declaration of Competing Interest -- Data Availability
- Chapter 7 CFD Numerical Investigation of Thermal Performance of Diamond Shape Micro Rectangular Heat Exchanger -- 7.1 Introduction -- 7.1.1 Heat Transfer Enhancement Method -- 7.1.2 Microchannel Heat Sink Method -- 7.1.3 Geometry of the Advanced Heat Sink Channel -- 7.2 Objective and Methodology -- 7.2.1 Methodology of the Microchannel Heat Exchanger Rectangular Channel -- 7.2.2 Methodology of Microchannel Diamond Fin Heat Sink -- 7.3 Parameters of Microchannel Fin Heat Sink -- 7.4 Governing Equation Used in Microchannel -- 7.4.1 K-e Model Used in Microchannel Heat Sink -- 7.4.2 Continuity Equation Applied -- 7.4.3 Momentum Equation -- 7.4.4 Energy Equation -- 7.4.5 Assumption for the Microchannel Heat Sink -- 7.5 Material Properties and Boundary Conditions -- 7.5.1 Thermophysical Properties of Copper-Inserted Diamond Fin Heat Sink -- 7.5.2 Boundary Conditions Applied in Diamond Microchannel -- 7.5.3 Mesh Generation of the Microchannel Heat Sink with Diamond Fin Shape -- 7.5.4 Validation for the Microplate Fin -- 7.6 Result and Discussion -- 7.6.1 The Smooth Microchannel and Dittus Boelter Equation -- 7.6.2 Smooth Microchannel and Blasius Friction Equation -- 7.6.3 Results and Effects of Microchannel with Diamond Fin Heat Sink -- 7.6.4 Results and Effects of the Velocity Contour -- 7.6.5 Results and Effects of the Temperature Contour -- 7.6.6 Effects of Inserted Diamond Fin with Reynolds Number -- 7.6.7 Friction Factor in the Roughened Microchannel Heat Sink -- 7.7 Thermal Hydraulic Efficiency of Diamond Shape Heat Exchanger Sink -- 7.8 Conclusion -- References -- Chapter 8 Particle Swarm Optimization Technique for Determining Optimal Process Parameters for Counter Flow Double Pipe Heat Exchanger -- Nomenclature -- Abbreviations -- 8.1 Introduction -- 8.1.1 Need for Optimization in Heat Exchangers -- 8.2 Experimental Setup -- 8.2.1 Data Reduction
- Acknowledgement -- References -- Chapter 11 Design and Analysis of Solar Tracking System for PV Thermal Performance Enhancement -- 11.1 Introduction -- 11.2 Background and Motivation -- 11.2.1 Types of Solar Tracking System -- 11.3 Fundamentals of Arduino-Based Solar Tracking System -- 11.3.1 Components of a Sun Tracking Solar Panel System -- 11.3.2 Working Procedure of Solar Tracking System -- 11.3.3 Development of Model -- 11.4 Benefits and Challenges -- 11.5 Conclusions -- References -- Chapter 12 An Overview on Thermal Characterization of Lithium-Ion Batteries for Enhancing the Durability -- 12.1 Introduction -- 12.1.1 Li-Ion Batteries -- 12.2 Thermal Behavior of Li-Ion Battery -- 12.3 Heat Generation Mechanism and Thermal Modeling -- 12.3.1 Ohmic Heating -- 12.3.2 Faradaic Heating -- 12.3.3 Concentration Polarization -- 12.3.4 Side Reactions -- 12.3.5 1D, 2D, or 3D Thermal Models -- 12.3.5.1 Multiphysics Coupling -- 12.3.5.2 Thermal Runaway Prediction Models -- 12.4 The Effect of Temperature on Li-Ion Batteries -- 12.4.1 Optimal Operating Temperature Range -- 12.4.2 Capacity and Power Output -- 12.4.3 Degradation and Aging -- 12.4.4 Safety Concerns -- 12.4.5 Thermal Management -- 12.4.6 Charging and Discharging Behavior -- 12.5 Thermal Runway Modeling and Safety Tests -- 12.5.1 Thermal Runaway Modeling -- 12.5.1.1 Multiphysics Simulations -- 12.5.1.2 Reaction Kinetics -- 12.5.1.3 Catastrophic Failure Prediction -- 12.5.2 Safety Tests -- 12.5.2.1 Accelerated Rate Calorimetry (ARC) -- 12.5.2.2 Differential Scanning Calorimetry (DSC) -- 12.5.2.3 Thermal Abuse Testing -- 12.5.2.4 Thermal Imaging and In-Situ Measurements -- 12.6 Interior Electrode Modifications -- 12.6.1 Nanostructured Materials -- 12.6.2 Coating and Additives -- 12.6.3 Conductive Networks -- 12.6.4 Porosity and Structure Control -- 12.6.5 Thermal Conductive Materials
- 12.6.6 Advanced Composite Structures