The physics of the Z and W bosons

This book describes the memorable theoretical work that motivated the construction of the electron–positron accelerators at CERN and SLAC, and the monumental experimental effort that led to a verification of the main theoretical expectations at these laboratories and at Fermilab.

Saved in:
Bibliographic Details
Main Authors Tenchini, Roberto, Verzegnassi, Claudio
Format eBook Book
LanguageEnglish
Published New Jersey World Scientific Publishing Co. Pte. Ltd 2007
World Scientific
World Scientific Publishing Company
WORLD SCIENTIFIC
World Scientific Publishing
Edition1
Subjects
Online AccessGet full text
ISBN9789812707024
9812707026
9789812779908
9812779906
DOI10.1142/6465

Cover

Table of Contents:
  • The physics of the Z and W bosons -- Preface -- Contents -- Chapter 1: The Standard Model of Electroweak Interactions -- Chapter 2: Z Physics at Tree Level -- Chapter 3: Z Physics at One Loop for Final Leptonic States -- Chapter 4: Z Physics at One Loop for Final Hadronic States -- Chapter 5: Accelerators and Detectors for Z and W Physics -- Chapter 6: The Z Lineshape -- Chapter 7: Z Decays to Heavy Quarks -- Chapter 8: Asymmetries at the Z pole -- Chapter 9: Electroweak Measurements with W Bosons -- Chapter 10: The Top Quark and Its Mass -- Chapter 11: The Search for the Higgs Boson and Tests of the Electroweak Interaction -- Chapter 12: Conclusions and Perspectives -- Bibliography -- Index
  • 4.1.2 Observable effects of the Zb vertex at the Z peak: the large mt limit -- 4.1.3 Operative definition of the Zb vertex at the Z peak: the bV parameter -- 4.2 The r^ole of strong interactions in Z physics -- 4.2.1 Strong interactions effects at the Z peak -- 4.2.2 Higher order strong coupling contributions -- 5. Accelerators and Detectors for Z and W Physics -- 5.1 LEP -- 5.2 SLC -- 5.3 Tevatron -- 5.4 Beyond LEP, SLC and Tevatron: next colliders -- 5.5 Detectors -- 6. The Z Lineshape -- 6.1 Initial state radiation in e+e collision -- 6.2 The reduced cross sections -- 6.3 Luminosity -- 6.4 Centre-of-mass energy calibration in e+e- collision -- 6.5 Selection of hadronic and leptonic Z decays -- 6.6 Measuring the Z lineshape parameters -- 7. Z Decays to Heavy Quarks -- 7.1 General properties of hadronic events at the Z -- 7.2 Tagging Z decays to b and c quarks -- 7.2.1 Lepton tagging -- 7.2.2 Lifetime tagging -- 7.2.3 Reconstruction of charmed hadrons -- 7.2.4 Event shape tagging -- 7.2.5 Gluon splitting to heavy quarks -- 7.3 Rb measurements -- 7.3.1 The single/double tag method -- 7.3.2 Multi-tag methods -- 7.3.3 Rb results -- 7.4 Rc measurements -- 7.4.1 Single/double tag -- 7.4.2 Inclusive/exclusive tag -- 7.4.3 Lepton analyses -- 7.4.4 Charm counting -- 7.4.5 R0 c results -- 8. Asymmetries at the Z pole -- 8.1 Measurement of the left-right asymmetry (ALR) -- 8.2 Measurement of the tau polarization in Z decays -- 8.3 Forward-backward asymmetries -- 8.3.1 Lepton forward-backward asymmetries -- 8.3.2 Heavy quark asymmetries -- 8.3.2.1 Lepton tagging -- 8.3.2.2 Inclusive measurements -- 8.3.2.3 Measurement of the jet charge asymmetry using all avours -- 8.3.2.4 D meson measurements at LEP -- 8.3.2.5 Heavy quark asymmetries: combined results and QCD corrections -- 8.3.2.6 HF asymmetries with polarized beams -- 8.4 Interpretations
  • 8.4.1 The determinations of sin2 W -- eff -- 8.4.2 Extraction of the neutral current couplings -- 9. Electroweak Measurements with W Bosons -- 9.1 W mass measurement at hadron colliders -- 9.2 W production in e+e- collision -- 9.3 W mass measurement in e+e- colliders -- 9.4 Triple gauge couplings -- 9.4.1 The e+e- W+W- angular analysis and the W polarization -- 9.4.2 The effective TGC lagrangian and the couplings -- 10. The Top Quark and Its Mass -- 10.1 Top-quark properties -- 10.2 Direct measurement of the top mass -- 10.3 Electroweak constraints on the top mass -- 11. The Search for the Higgs Boson and Tests of the Electroweak Interaction -- 11.1 Search for the Higgs boson before LEP -- 11.2 Higgs production at LEP -- 11.3 Searching the Higgs at LEP1 -- 11.4 Setting confidence levels -- 11.5 Higgs searches at LEP2 -- 11.6 The Higgs mass from electroweak fits -- 11.7 Model independent analysis of electroweak data -- 12. Conclusions and Perspectives -- Bibliography -- Index
  • 3.1.6 Charge renormalization and de nition in the MSM -- 3.1.7 The `running' of QED in the MSM -- 3.2 Theoretical description of the Z physics observables at one loop in the MSM -- 3.2.1 Choice of the most convenient input parameters: definition of the physical GF -- 3.2.2 Derivation of Sirlin's equation: introduction and definition of the fundamental parameter r -- 3.2.3 Calculation of r(f): identification of four classes of physical effects -- 3.2.4 Numerical estimate of (m2 Z)(f) -- 3.2.5 Determination of rW and calculation of the W mass -- 3.2.5.1 Numerical estimate of 1(0) -- 3.2.5.2 Numerical estimate of 3(m2 Z) -- 3.2.5.3 Numerical estimate of 2 -- 3.2.5.4 Calculation of the W mass -- 3.3 Formulation of Z physics at one loop: introduction of the effective weak parameter sin2 W -- eff -- 3.3.1 Operative definition of the electroweak mixing angle: the longitudinal polarization asymmetry -- 3.3.2 Calculation of sin2 W -- eff at one loop: fermion pairs contributions to self-energies -- 3.3.3 Relationship between sin2 (f) and mZ -- 3.3.4 The Z leptonic width at one loop in the `fermion pairs' approximation -- 3.4 The complete expression of sin2 W -- eff at one loop -- 3.4.1 A gauge-invariant classi cation of one-loop effects -- 3.4.2 Operative definition of sin2 W -- eff : the leptonic asymmetries at the Z peak -- 3.5 A two-parameters description of Z physics for final leptonic states -- 3.5.1 Complete expression of the Z leptonic width at one-loop -- 3.5.2 The Z peak leptonic observables in terms of the 1, 3 parameters -- 3.5.3 Dependence of the weak parameters 1, 3 on the Higgs mass -- 3.5.4 The 2 parameter and the complete expression of the W mass -- 4. Z Physics at One Loop for Final Hadronic States -- 4.1 The r^ole of the Zb vertex in Z physics -- 4.1.1 Calculation of the electroweak component of the Zb vertex
  • Intro -- Contents -- Preface -- 1. The Standard Model of Electroweak Interactions -- 1.1 Weak interactions in the original Fermi approach -- 1.2 Weak interactions and the intermediate vector bosons -- 1.3 The Higgs mechanism in the local SU(2) gauge symmetry case -- 1.4 Unification of weak and electromagnetic interactions in the Standard Model -- 1.4.1 The SU(2) U(1) description of electroweak interactions -- 1.4.2 Gauge boson masses in the SU(2)L U(1)YL scheme -- 1.4.3 The (W -- Z) mass relationship and the 0 parameter -- 1.4.4 Electroweak uni cation and weak neutral currents -- 1.4.5 Numerical prediction for the gauge boson masses in the Minimal Standard Model -- 1.5 Z physics as a test of the MSM -- 1.5.1 The Higgs scalar mass in the MSM -- 1.5.2 A more complete formulation of the MSM -- 1.5.2.1 Inclusion of strong interactions -- 1.5.2.2 Masses of leptons and quarks -- 1.5.2.3 Family replication -- 1.5.3 Tests of the MSM at LEP1/SLC -- 1.5.4 Universality of weak interactions and number of fermion families -- 2. Z Physics at Tree Level -- 2.1 Conventions, spinors and basic cross sections -- 2.2 Chiral fermions and polarized cross sections in the one-photon exchange -- 2.3 Interaction involving a Z boson -- 2.4 Computation of Z partial widths -- 2.5 Angular and polarization asymmetries -- 2.6 Asymmetries in the vicinity of the Z pole -- 3. Z Physics at One Loop for Final Leptonic States -- 3.1 Definition of physical input parameters and removal of infinities at one loop in e+e annihilation on Z resonance -- 3.1.1 The theoretical description at tree level -- 3.1.2 Renormalizability and gauge transformations in the MSM -- 3.1.3 Treatment of formally divergent quantities in e+e -- 3.1.4 The dimensional regularization method -- 3.1.5 Definition of physical parameters: renormalization of mW -- mZ