The physics of the Z and W bosons
This book describes the memorable theoretical work that motivated the construction of the electron–positron accelerators at CERN and SLAC, and the monumental experimental effort that led to a verification of the main theoretical expectations at these laboratories and at Fermilab.
Saved in:
Main Authors | , |
---|---|
Format | eBook Book |
Language | English |
Published |
New Jersey
World Scientific Publishing Co. Pte. Ltd
2007
World Scientific World Scientific Publishing Company WORLD SCIENTIFIC World Scientific Publishing |
Edition | 1 |
Subjects | |
Online Access | Get full text |
ISBN | 9789812707024 9812707026 9789812779908 9812779906 |
DOI | 10.1142/6465 |
Cover
Table of Contents:
- The physics of the Z and W bosons -- Preface -- Contents -- Chapter 1: The Standard Model of Electroweak Interactions -- Chapter 2: Z Physics at Tree Level -- Chapter 3: Z Physics at One Loop for Final Leptonic States -- Chapter 4: Z Physics at One Loop for Final Hadronic States -- Chapter 5: Accelerators and Detectors for Z and W Physics -- Chapter 6: The Z Lineshape -- Chapter 7: Z Decays to Heavy Quarks -- Chapter 8: Asymmetries at the Z pole -- Chapter 9: Electroweak Measurements with W Bosons -- Chapter 10: The Top Quark and Its Mass -- Chapter 11: The Search for the Higgs Boson and Tests of the Electroweak Interaction -- Chapter 12: Conclusions and Perspectives -- Bibliography -- Index
- 4.1.2 Observable effects of the Zb vertex at the Z peak: the large mt limit -- 4.1.3 Operative definition of the Zb vertex at the Z peak: the bV parameter -- 4.2 The r^ole of strong interactions in Z physics -- 4.2.1 Strong interactions effects at the Z peak -- 4.2.2 Higher order strong coupling contributions -- 5. Accelerators and Detectors for Z and W Physics -- 5.1 LEP -- 5.2 SLC -- 5.3 Tevatron -- 5.4 Beyond LEP, SLC and Tevatron: next colliders -- 5.5 Detectors -- 6. The Z Lineshape -- 6.1 Initial state radiation in e+e collision -- 6.2 The reduced cross sections -- 6.3 Luminosity -- 6.4 Centre-of-mass energy calibration in e+e- collision -- 6.5 Selection of hadronic and leptonic Z decays -- 6.6 Measuring the Z lineshape parameters -- 7. Z Decays to Heavy Quarks -- 7.1 General properties of hadronic events at the Z -- 7.2 Tagging Z decays to b and c quarks -- 7.2.1 Lepton tagging -- 7.2.2 Lifetime tagging -- 7.2.3 Reconstruction of charmed hadrons -- 7.2.4 Event shape tagging -- 7.2.5 Gluon splitting to heavy quarks -- 7.3 Rb measurements -- 7.3.1 The single/double tag method -- 7.3.2 Multi-tag methods -- 7.3.3 Rb results -- 7.4 Rc measurements -- 7.4.1 Single/double tag -- 7.4.2 Inclusive/exclusive tag -- 7.4.3 Lepton analyses -- 7.4.4 Charm counting -- 7.4.5 R0 c results -- 8. Asymmetries at the Z pole -- 8.1 Measurement of the left-right asymmetry (ALR) -- 8.2 Measurement of the tau polarization in Z decays -- 8.3 Forward-backward asymmetries -- 8.3.1 Lepton forward-backward asymmetries -- 8.3.2 Heavy quark asymmetries -- 8.3.2.1 Lepton tagging -- 8.3.2.2 Inclusive measurements -- 8.3.2.3 Measurement of the jet charge asymmetry using all avours -- 8.3.2.4 D meson measurements at LEP -- 8.3.2.5 Heavy quark asymmetries: combined results and QCD corrections -- 8.3.2.6 HF asymmetries with polarized beams -- 8.4 Interpretations
- 8.4.1 The determinations of sin2 W -- eff -- 8.4.2 Extraction of the neutral current couplings -- 9. Electroweak Measurements with W Bosons -- 9.1 W mass measurement at hadron colliders -- 9.2 W production in e+e- collision -- 9.3 W mass measurement in e+e- colliders -- 9.4 Triple gauge couplings -- 9.4.1 The e+e- W+W- angular analysis and the W polarization -- 9.4.2 The effective TGC lagrangian and the couplings -- 10. The Top Quark and Its Mass -- 10.1 Top-quark properties -- 10.2 Direct measurement of the top mass -- 10.3 Electroweak constraints on the top mass -- 11. The Search for the Higgs Boson and Tests of the Electroweak Interaction -- 11.1 Search for the Higgs boson before LEP -- 11.2 Higgs production at LEP -- 11.3 Searching the Higgs at LEP1 -- 11.4 Setting confidence levels -- 11.5 Higgs searches at LEP2 -- 11.6 The Higgs mass from electroweak fits -- 11.7 Model independent analysis of electroweak data -- 12. Conclusions and Perspectives -- Bibliography -- Index
- 3.1.6 Charge renormalization and de nition in the MSM -- 3.1.7 The `running' of QED in the MSM -- 3.2 Theoretical description of the Z physics observables at one loop in the MSM -- 3.2.1 Choice of the most convenient input parameters: definition of the physical GF -- 3.2.2 Derivation of Sirlin's equation: introduction and definition of the fundamental parameter r -- 3.2.3 Calculation of r(f): identification of four classes of physical effects -- 3.2.4 Numerical estimate of (m2 Z)(f) -- 3.2.5 Determination of rW and calculation of the W mass -- 3.2.5.1 Numerical estimate of 1(0) -- 3.2.5.2 Numerical estimate of 3(m2 Z) -- 3.2.5.3 Numerical estimate of 2 -- 3.2.5.4 Calculation of the W mass -- 3.3 Formulation of Z physics at one loop: introduction of the effective weak parameter sin2 W -- eff -- 3.3.1 Operative definition of the electroweak mixing angle: the longitudinal polarization asymmetry -- 3.3.2 Calculation of sin2 W -- eff at one loop: fermion pairs contributions to self-energies -- 3.3.3 Relationship between sin2 (f) and mZ -- 3.3.4 The Z leptonic width at one loop in the `fermion pairs' approximation -- 3.4 The complete expression of sin2 W -- eff at one loop -- 3.4.1 A gauge-invariant classi cation of one-loop effects -- 3.4.2 Operative definition of sin2 W -- eff : the leptonic asymmetries at the Z peak -- 3.5 A two-parameters description of Z physics for final leptonic states -- 3.5.1 Complete expression of the Z leptonic width at one-loop -- 3.5.2 The Z peak leptonic observables in terms of the 1, 3 parameters -- 3.5.3 Dependence of the weak parameters 1, 3 on the Higgs mass -- 3.5.4 The 2 parameter and the complete expression of the W mass -- 4. Z Physics at One Loop for Final Hadronic States -- 4.1 The r^ole of the Zb vertex in Z physics -- 4.1.1 Calculation of the electroweak component of the Zb vertex
- Intro -- Contents -- Preface -- 1. The Standard Model of Electroweak Interactions -- 1.1 Weak interactions in the original Fermi approach -- 1.2 Weak interactions and the intermediate vector bosons -- 1.3 The Higgs mechanism in the local SU(2) gauge symmetry case -- 1.4 Unification of weak and electromagnetic interactions in the Standard Model -- 1.4.1 The SU(2) U(1) description of electroweak interactions -- 1.4.2 Gauge boson masses in the SU(2)L U(1)YL scheme -- 1.4.3 The (W -- Z) mass relationship and the 0 parameter -- 1.4.4 Electroweak uni cation and weak neutral currents -- 1.4.5 Numerical prediction for the gauge boson masses in the Minimal Standard Model -- 1.5 Z physics as a test of the MSM -- 1.5.1 The Higgs scalar mass in the MSM -- 1.5.2 A more complete formulation of the MSM -- 1.5.2.1 Inclusion of strong interactions -- 1.5.2.2 Masses of leptons and quarks -- 1.5.2.3 Family replication -- 1.5.3 Tests of the MSM at LEP1/SLC -- 1.5.4 Universality of weak interactions and number of fermion families -- 2. Z Physics at Tree Level -- 2.1 Conventions, spinors and basic cross sections -- 2.2 Chiral fermions and polarized cross sections in the one-photon exchange -- 2.3 Interaction involving a Z boson -- 2.4 Computation of Z partial widths -- 2.5 Angular and polarization asymmetries -- 2.6 Asymmetries in the vicinity of the Z pole -- 3. Z Physics at One Loop for Final Leptonic States -- 3.1 Definition of physical input parameters and removal of infinities at one loop in e+e annihilation on Z resonance -- 3.1.1 The theoretical description at tree level -- 3.1.2 Renormalizability and gauge transformations in the MSM -- 3.1.3 Treatment of formally divergent quantities in e+e -- 3.1.4 The dimensional regularization method -- 3.1.5 Definition of physical parameters: renormalization of mW -- mZ