Control of Polymer Brush Morphology, Rheology, and Protein Repulsion by Hydrogen Bond Complexation
Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an...
Saved in:
Published in | Langmuir Vol. 37; no. 16; pp. 4943 - 4952 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0743-7463 1520-5827 1520-5827 |
DOI | 10.1021/acs.langmuir.1c00271 |
Cover
Abstract | Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an example, PEG is not responsive to pH or ionic strength. Here we show that, by simply introducing a polymeric acid such as poly(methacrylic acid) (PMAA), the highly hydrated brush barrier can change its properties entirely. This is caused by multivalent hydrogen bonds in an extremely pH-sensitive process. Remarkably, it is sufficient to reduce the pH to 5 for complexation to occur at the interface, which is two units higher than in the corresponding bulk systems. Below this critical pH, PMAA starts to bind to PEG in large amounts (comparable to the PEG amount), causing the brush to gradually compact and dehydrate. The brush also undergoes major rheology changes, from viscoelastic to rigid. Furthermore, the protein repelling ability of PEG is lost after reaching a threshold in the amount of PMAA bound. The changes in brush properties are tunable and become more pronounced when more PMAA is bound. The initial brush state is fully recovered when releasing PMAA by returning to physiological pH. Our findings are relevant for many applications involving functional interfaces, such as capture–release of biomolecules. |
---|---|
AbstractList | Polymer brushes are widely used to alter the properties of interfaces.
In particular, poly(ethylene glycol) (PEG) and similar polymers can
make surfaces inert toward biomolecular adsorption. Neutral hydrophilic
brushes are normally considered to have static properties at a given
temperature. As an example, PEG is not responsive to pH or ionic strength.
Here we show that, by simply introducing a polymeric acid such as
poly(methacrylic acid) (PMAA), the highly hydrated brush barrier can
change its properties entirely. This is caused by multivalent hydrogen
bonds in an extremely pH-sensitive process. Remarkably, it is sufficient
to reduce the pH to 5 for complexation to occur at the interface,
which is two units higher than in the corresponding bulk systems.
Below this critical pH, PMAA starts to bind to PEG in large amounts
(comparable to the PEG amount), causing the brush to gradually compact
and dehydrate. The brush also undergoes major rheology changes, from
viscoelastic to rigid. Furthermore, the protein repelling ability
of PEG is lost after reaching a threshold in the amount of PMAA bound.
The changes in brush properties are tunable and become more pronounced
when more PMAA is bound. The initial brush state is fully recovered
when releasing PMAA by returning to physiological pH. Our findings
are relevant for many applications involving functional interfaces,
such as capture–release of biomolecules. Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an example, PEG is not responsive to pH or ionic strength. Here we show that, by simply introducing a polymeric acid such as poly(methacrylic acid) (PMAA), the highly hydrated brush barrier can change its properties entirely. This is caused by multivalent hydrogen bonds in an extremely pH-sensitive process. Remarkably, it is sufficient to reduce the pH to 5 for complexation to occur at the interface, which is two units higher than in the corresponding bulk systems. Below this critical pH, PMAA starts to bind to PEG in large amounts (comparable to the PEG amount), causing the brush to gradually compact and dehydrate. The brush also undergoes major rheology changes, from viscoelastic to rigid. Furthermore, the protein repelling ability of PEG is lost after reaching a threshold in the amount of PMAA bound. The changes in brush properties are tunable and become more pronounced when more PMAA is bound. The initial brush state is fully recovered when releasing PMAA by returning to physiological pH. Our findings are relevant for many applications involving functional interfaces, such as capture-release of biomolecules.Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an example, PEG is not responsive to pH or ionic strength. Here we show that, by simply introducing a polymeric acid such as poly(methacrylic acid) (PMAA), the highly hydrated brush barrier can change its properties entirely. This is caused by multivalent hydrogen bonds in an extremely pH-sensitive process. Remarkably, it is sufficient to reduce the pH to 5 for complexation to occur at the interface, which is two units higher than in the corresponding bulk systems. Below this critical pH, PMAA starts to bind to PEG in large amounts (comparable to the PEG amount), causing the brush to gradually compact and dehydrate. The brush also undergoes major rheology changes, from viscoelastic to rigid. Furthermore, the protein repelling ability of PEG is lost after reaching a threshold in the amount of PMAA bound. The changes in brush properties are tunable and become more pronounced when more PMAA is bound. The initial brush state is fully recovered when releasing PMAA by returning to physiological pH. Our findings are relevant for many applications involving functional interfaces, such as capture-release of biomolecules. Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an example, PEG is not responsive to pH or ionic strength. Here we show that, by simply introducing a polymeric acid such as poly(methacrylic acid) (PMAA), the highly hydrated brush barrier can change its properties entirely. This is caused by multivalent hydrogen bonds in an extremely pH-sensitive process. Remarkably, it is sufficient to reduce the pH to 5 for complexation to occur at the interface, which is two units higher than in the corresponding bulk systems. Below this critical pH, PMAA starts to bind to PEG in large amounts (comparable to the PEG amount), causing the brush to gradually compact and dehydrate. The brush also undergoes major rheology changes, from viscoelastic to rigid. Furthermore, the protein repelling ability of PEG is lost after reaching a threshold in the amount of PMAA bound. The changes in brush properties are tunable and become more pronounced when more PMAA is bound. The initial brush state is fully recovered when releasing PMAA by returning to physiological pH. Our findings are relevant for many applications involving functional interfaces, such as capture–release of biomolecules. Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an example, PEG is not responsive to pH or ionic strength. Here we show that, by simply introducing a polymeric acid such as poly(methacrylic acid) (PMAA), the highly hydrated brush barrier can change its properties entirely. This is caused by multivalent hydrogen bonds in an extremely pH-sensitive process. Remarkably, it is sufficient to reduce the pH to 5 for complexation to occur at the interface, which is two units higher than in the corresponding bulk systems. Below this critical pH, PMAA starts to bind to PEG in large amounts (comparable to the PEG amount), causing the brush to gradually compact and dehydrate. The brush also undergoes major rheology changes, from viscoelastic to rigid. Furthermore, the protein repelling ability of PEG is lost after reaching a threshold in the amount of PMAA bound. The changes in brush properties are tunable and become more pronounced when more PMAA is bound. The initial brush state is fully recovered when releasing PMAA by returning to physiological pH. Our findings are relevant for many applications involving functional interfaces, such as capture-release of biomolecules. |
Author | Bilotto, Pierluigi Valtiner, Markus Dahlin, Andreas Höök, Fredrik Andersson, John Ferrand-Drake del Castillo, Gustav |
AuthorAffiliation | Department of Chemistry and Chemical Engineering Institute of Applied Physics, Group of Applied Interface Physics Department of Physics |
AuthorAffiliation_xml | – name: Department of Chemistry and Chemical Engineering – name: Department of Physics – name: Institute of Applied Physics, Group of Applied Interface Physics |
Author_xml | – sequence: 1 givenname: John orcidid: 0000-0002-2977-8305 surname: Andersson fullname: Andersson, John organization: Department of Chemistry and Chemical Engineering – sequence: 2 givenname: Gustav surname: Ferrand-Drake del Castillo fullname: Ferrand-Drake del Castillo, Gustav organization: Department of Chemistry and Chemical Engineering – sequence: 3 givenname: Pierluigi orcidid: 0000-0001-6531-8528 surname: Bilotto fullname: Bilotto, Pierluigi organization: Institute of Applied Physics, Group of Applied Interface Physics – sequence: 4 givenname: Fredrik orcidid: 0000-0003-1994-5015 surname: Höök fullname: Höök, Fredrik organization: Department of Physics – sequence: 5 givenname: Markus orcidid: 0000-0001-5410-1067 surname: Valtiner fullname: Valtiner, Markus organization: Institute of Applied Physics, Group of Applied Interface Physics – sequence: 6 givenname: Andreas orcidid: 0000-0003-1545-5860 surname: Dahlin fullname: Dahlin, Andreas email: adahlin@chalmers.se organization: Department of Chemistry and Chemical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33851532$$D View this record in MEDLINE/PubMed https://research.chalmers.se/publication/523882$$DView record from Swedish Publication Index |
BookMark | eNqFks1u1DAUhS3Uik4Lb4BQliyYwf-OWSDREVCkIqoCa8txbiapnHhqJ0DeHpeZVi0LurKl-52ja59zjA6GMABCLwheEUzJG-vSytth009dXBGHMVXkCVoQQfFSlFQdoAVWnC0Vl-wIHad0hTHWjOun6IixUhDB6AJV6zCMMfgiNMVF8HMPsTiNU2qLLyFu2-DDZn5dXLawv9mhLi5iGKEbikvYTj51YSiquTib6xg2MBSnISPr0G89_LZjnj5Dh431CZ7vzxP04-OH7-uz5fnXT5_X78-XVlI-LoUlTArRAKbSVVxpqpUE57BWWDV1iRl3IqNEV7ICaBQVlW1I7WrRcIUlO0Hfdr7pV16sMtvY9TbOJtjOREhgo2uNa63Pb0wmgcFO1rJ0zjTUKcMlrkxVUWas1VoJwKqWkF3f7VyzZQ-1g_xd1j8wfzgZutZswk9TEsFLhbPBq71BDNcTpNH0XXLgc3YQpmSoLiVhhEv5OCoIVbTUlGT05f217va5TTYDfAe4GFKK0NwhBJubAplcIHNbILMvUJa9_UfmuvFvjPlxnX9MjHfim-lVmOKQ8_6_5A-7quL4 |
CitedBy_id | crossref_primary_10_1016_j_indcrop_2024_119175 crossref_primary_10_1021_acs_langmuir_1c02728 crossref_primary_10_1039_D2BM01506D crossref_primary_10_3390_polym16020271 crossref_primary_10_1039_D2NA00389A crossref_primary_10_1007_s11696_024_03602_3 crossref_primary_10_1039_D1CP05381G crossref_primary_10_1016_j_memsci_2023_122032 crossref_primary_10_1021_acsmacrolett_4c00476 crossref_primary_10_1016_j_apsusc_2022_152718 crossref_primary_10_1021_acsami_2c21168 crossref_primary_10_1021_acs_langmuir_2c00998 crossref_primary_10_1021_acsami_3c18546 crossref_primary_10_1021_acsami_4c15180 crossref_primary_10_1021_acssensors_2c00273 |
Cites_doi | 10.1016/j.biomaterials.2014.12.041 10.1016/0001-8686(87)85003-0 10.1002/anie.200462687 10.1038/nmat2614 10.1021/ja053472s 10.1016/0032-3861(93)90882-B 10.1021/la990689p 10.1021/ac201778h 10.1021/acsami.5b01590 10.1002/pol.1975.170130703 10.1039/c3sm27766f 10.1063/1.5085210 10.1021/je00015a050 10.1021/la3049289 10.1021/acs.jpcc.8b09171 10.1142/6498 10.1021/ma00003a015 10.1021/la501568p 10.1021/acs.langmuir.9b00056 10.1002/pol.1976.130140302 10.1002/macp.1981.021820816 10.1021/acsami.8b15796 10.1021/acs.jpclett.0c01289 10.1021/acs.macromol.7b00450 10.1039/C7NR09432A 10.1126/science.aar5877 10.1021/acs.langmuir.9b01942 10.1016/0095-8522(57)90060-0 10.1002/polb.22021 10.1021/acs.chemrev.6b00314 10.1038/s41598-018-30201-6 10.1016/j.apsusc.2016.10.165 10.1103/PhysRevLett.89.238301 10.1016/S0006-3495(94)80938-5 10.1021/acs.biomac.8b01353 10.1002/marc.201100162 10.1238/Physica.Regular.059a00391 10.1021/acs.jpcb.7b00868 10.1002/9780470015902.a0003004.pub2 10.1209/epl/i1999-00192-1 10.1073/pnas.150236197 10.1080/00222348008212832 10.1039/D0CC01250E 10.1021/acs.langmuir.8b00030 10.1016/j.bpj.2013.09.006 10.3390/microorganisms6020047 10.1021/acs.macromol.5b01960 10.1103/PhysRevE.56.680 10.1021/acscentsci.8b00268 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Published by American
Chemical Society 2021 The Authors. Published by American Chemical Society 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors. Published by American Chemical Society – notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM ABBSD ADTPV AOWAS D8T F1S ZZAVC |
DOI | 10.1021/acs.langmuir.1c00271 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 4952 |
ExternalDocumentID | oai_research_chalmers_se_0c6d68cc_f2c7_460b_bb23_aa9975e07d6e PMC8154870 33851532 10_1021_acs_langmuir_1c00271 b710458001 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: NA – fundername: ; grantid: 677663 – fundername: ; grantid: 2016-03319 – fundername: ; grantid: 2015.0161 |
GroupedDBID | - .K2 02 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV CITATION CUPRZ YQT ~02 NPM 7X8 7S9 L.6 5PM .HR 186 1WB 6TJ ABBSD ABHMW ACRPL ADNMO ADTPV AEYZD AFFNX AGQPQ ANPPW ANTXH AOWAS D8T EJD F1S LG6 ZZAVC |
ID | FETCH-LOGICAL-a624t-5a13655fe026cb4792976ecc09707fd8034c5a6219b6beef725baf1dcd5f47063 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Thu Aug 21 06:52:58 EDT 2025 Thu Aug 21 14:00:57 EDT 2025 Fri Jul 11 03:24:40 EDT 2025 Thu Jul 10 22:55:31 EDT 2025 Thu Jan 02 22:57:21 EST 2025 Tue Jul 01 03:59:06 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Thu Apr 29 06:07:49 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a624t-5a13655fe026cb4792976ecc09707fd8034c5a6219b6beef725baf1dcd5f47063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5410-1067 0000-0003-1994-5015 0000-0003-1545-5860 0000-0001-6531-8528 0000-0002-2977-8305 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8154870 |
PMID | 33851532 |
PQID | 2512728921 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_0c6d68cc_f2c7_460b_bb23_aa9975e07d6e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154870 proquest_miscellaneous_2986131466 proquest_miscellaneous_2512728921 pubmed_primary_33851532 crossref_primary_10_1021_acs_langmuir_1c00271 crossref_citationtrail_10_1021_acs_langmuir_1c00271 acs_journals_10_1021_acs_langmuir_1c00271 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-27 |
PublicationDateYYYYMMDD | 2021-04-27 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 Khutoryanskiy V. V. (ref19/cit19) 2009 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 Israelachvili J. N. (ref47/cit47) 2011 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref18/cit18 doi: 10.1016/j.biomaterials.2014.12.041 – ident: ref46/cit46 doi: 10.1016/0001-8686(87)85003-0 – ident: ref42/cit42 doi: 10.1002/anie.200462687 – ident: ref7/cit7 doi: 10.1038/nmat2614 – ident: ref43/cit43 doi: 10.1021/ja053472s – ident: ref33/cit33 doi: 10.1016/0032-3861(93)90882-B – ident: ref35/cit35 doi: 10.1021/la990689p – ident: ref36/cit36 doi: 10.1021/ac201778h – ident: ref4/cit4 doi: 10.1021/acsami.5b01590 – ident: ref26/cit26 doi: 10.1002/pol.1975.170130703 – ident: ref31/cit31 doi: 10.1039/c3sm27766f – ident: ref48/cit48 doi: 10.1063/1.5085210 – volume-title: Intermolecular and Surface Forces year: 2011 ident: ref47/cit47 – ident: ref40/cit40 doi: 10.1021/je00015a050 – ident: ref17/cit17 doi: 10.1021/la3049289 – ident: ref10/cit10 doi: 10.1021/acs.jpcc.8b09171 – volume-title: Hydrogen-Bonded Interpolymer Complexes: Formation, Structure and Applications year: 2009 ident: ref19/cit19 doi: 10.1142/6498 – ident: ref34/cit34 doi: 10.1021/ma00003a015 – ident: ref29/cit29 doi: 10.1021/la501568p – ident: ref11/cit11 doi: 10.1021/acs.langmuir.9b00056 – ident: ref23/cit23 doi: 10.1002/pol.1976.130140302 – ident: ref28/cit28 doi: 10.1002/macp.1981.021820816 – ident: ref6/cit6 doi: 10.1021/acsami.8b15796 – ident: ref20/cit20 doi: 10.1021/acs.jpclett.0c01289 – ident: ref1/cit1 doi: 10.1021/acs.macromol.7b00450 – ident: ref24/cit24 doi: 10.1039/C7NR09432A – ident: ref44/cit44 doi: 10.1126/science.aar5877 – ident: ref22/cit22 doi: 10.1021/acs.langmuir.9b01942 – ident: ref30/cit30 doi: 10.1016/0095-8522(57)90060-0 – ident: ref41/cit41 doi: 10.1002/polb.22021 – ident: ref3/cit3 doi: 10.1021/acs.chemrev.6b00314 – ident: ref37/cit37 doi: 10.1038/s41598-018-30201-6 – ident: ref9/cit9 doi: 10.1016/j.apsusc.2016.10.165 – ident: ref16/cit16 doi: 10.1103/PhysRevLett.89.238301 – ident: ref45/cit45 doi: 10.1016/S0006-3495(94)80938-5 – ident: ref8/cit8 doi: 10.1021/acs.biomac.8b01353 – ident: ref2/cit2 doi: 10.1002/marc.201100162 – ident: ref21/cit21 doi: 10.1238/Physica.Regular.059a00391 – ident: ref14/cit14 doi: 10.1021/acs.jpcb.7b00868 – ident: ref32/cit32 doi: 10.1002/9780470015902.a0003004.pub2 – ident: ref25/cit25 doi: 10.1209/epl/i1999-00192-1 – ident: ref49/cit49 doi: 10.1073/pnas.150236197 – ident: ref27/cit27 doi: 10.1080/00222348008212832 – ident: ref12/cit12 doi: 10.1039/D0CC01250E – ident: ref5/cit5 doi: 10.1021/acs.langmuir.8b00030 – ident: ref38/cit38 doi: 10.1016/j.bpj.2013.09.006 – ident: ref50/cit50 doi: 10.3390/microorganisms6020047 – ident: ref15/cit15 doi: 10.1021/acs.macromol.5b01960 – ident: ref39/cit39 doi: 10.1103/PhysRevE.56.680 – ident: ref13/cit13 doi: 10.1021/acscentsci.8b00268 |
SSID | ssj0009349 |
Score | 2.450074 |
Snippet | Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert... Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert... Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert... |
SourceID | swepub pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4943 |
SubjectTerms | adsorption biochemical compounds hydrogen hydrogen bonding hydrophilicity ionic strength rheology temperature viscoelasticity |
Title | Control of Polymer Brush Morphology, Rheology, and Protein Repulsion by Hydrogen Bond Complexation |
URI | http://dx.doi.org/10.1021/acs.langmuir.1c00271 https://www.ncbi.nlm.nih.gov/pubmed/33851532 https://www.proquest.com/docview/2512728921 https://www.proquest.com/docview/2986131466 https://pubmed.ncbi.nlm.nih.gov/PMC8154870 https://research.chalmers.se/publication/523882 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jj9MwFLbQcIAL-xI2GYkLEimO1-SIKkYVYmAEjDQ3y1uUik6CmuZQfj3PWToqFQzcouS5VezPed-zn7-H0CsqTSEdZ6nJiUs5IyQ1QGvTnIE7EKqwMo-Hk08-ycUZ_3Auzi8Dxd938Gn21rh2FtfuLrrlepa5GEdBtHOdSnA1kQrNv16K7LKB7kbZTcUlm47K_eFXokNy7b5DOmCZh8mSe5KivRs6vo0-T4d5huyT77NuY2fu56G24z--4R10a2Sk-N0AobvoWqjvoRvzqRDcfWTnQzo7bkp82qy2F2GNARJthU8aGKV-Xf4N_lKF8crUHp9G-YdljYHfd6u4IIftFi-2ft0AYHGsZYzjlyieronIeIDOjt9_my_SsTRDaiTlm1SYmB4nygAhnLNcAclSEtBACkVU6XPCuBNgmsFg2xBKRYU1ZeadFyVXQIseoqO6qcNjhAtjvRM0WF94YBPBSkFNHqgpuTdG5gl6DR2kx6nV6n7XnGY63px6TY-9liA2jaV2o8Z5LLWxuqJVumv1Y9D4uML-5QQTDUMRd1hMHZqu1ZEsKghh6d9sihwoFDgomaBHA7R2_8oYEGDBaILUHuh2BlEMfP9Jvax6UfC8jz1Jgj4O8NxrMgpHVdpVfVWeVrdBEyc9zESnS-qU5pJYbS1l2piiUCIQ5WV48h-d_xTdpDHhh_CUqmfoaLPuwnNgbBv7op-mvwC7yUFK |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLaqcigXdmhYjcQFiQwZr8mxGlENMFNV0KLeLG9RRkwTNJk5DL-e5yxThQqq3qLEzmJ_zvue_fw9hN4RoTNhGY11mtiY0SSJNdDaOKVgDrjMjEjD5uT5iZiesy8X_GIP8X4vDLxEDXeqm0X8K3WB8cdwLkzhXW4Wq9HYBncKnJ47XDARMjYcTb5fae3SlvUG9U3JBO13zP3jLsEu2Xpol66RzesxkwNl0cYaHd9HP3bf0QSh_Bxt1mZkf_8l8XjrD32A7nX8FB-1gHqI9nz5CB1M-rRwj5GZtMHtuMrxabXcXvoVBoDUBZ5X0GfNLP0H_K3w3ZEuHT4NYhCLEgPb3yzD9Bw2WzzdulUF8MUhszEO_6Ww1ybg5Ak6P_50NpnGXaKGWAvC1jHXIViO5x4cOmuYBMolBWAjyWQic5cmlFkORcfQ9cb7XBJudD521vGcSSBJT9F-WZX-EOFMG2c58cZlDriFN4ITnXqic-a0FmmE3kMDqW6g1apZQydjFU72raa6VosQ7btU2U7xPCTeWN5QK97V-tUqftxQ_m2PFgVdEdZbdOmrTa0CdZTg0JL_lclSIFRgrkSEnrUI2z2VUqDDnJIIyQH2dgWCNPjwSrkoGonwtPFEkwjNWpQOqnQyUoWyRZOjp1a1V4kVDsalVTmxUsGgMsoYQpXWWSa5T6QT_vktGv8NOpiezWdq9vnk6wt0l4RQoITFRL5E--vVxr8CLrc2r5uR-weA70ms |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLbQIAEX9qWsRuKCRDqO1-Q4KlQFZkYVMNKIi-UtakUnGTXNofx6npO0UEYwgluU2Fnsz3nfs5-_h9ArKk0uHWeJyYhLOCMkMUBrk4yBORAqtzKLm5OPjuXkhH84Fae_pPqCl6jhTnW7iB9H9bkveoWBdD-ej9N4Z818OUxddKnA8bkKnCSNWRsORp9_6u2yjvlGBU7FJdvsmvvDXaJtcvWubbpAOC_GTe6oi7YWaXwLfd1-SxuI8m3YrOzQff9N5vG_PvY2utnzVHzQAesOuhLKu-j6aJMe7h6yoy7IHVcFnlaL9VlYYgBKPcNHFfRdO1v_Bn-ahf7IlB5PoyjEvMTA-ptFnKbDdo0na7-sAMY4ZjjG8f8U99xEvNxHJ-N3X0aTpE_YkBhJ-SoRJgbNiSKAY-csV0C9lASMkFwRVfiMMO4EFE0BAjaEQlFhTZF650XBFZClB2ivrMrwCOHcWO8EDdbnHjhGsFJQkwVqCu6NkdkAvYYG0v2Aq3W7lk5THU9uWk33rTZAbNOt2vXK5zEBx-KSWsm21nmn_HFJ-ZcbxGjoirjuYspQNbWOFFKBY0v_VibPgFiB2ZID9LBD2fapjAEtFowOkNrB37ZAlAjfvVLOZ61UeNZ6pGSADjuk7lTp5aRm2s3aXD21roMmTnoYn04X1CnNJbHaWsq0MXmuRCDKy_D4Hxr_Bbo2fTvWh--PPz5BN2iMCCI8oeop2lstm_AMKN3KPm8H7w-iIkwm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+Polymer+Brush+Morphology%2C+Rheology%2C+and+Protein+Repulsion+by+Hydrogen+Bond+Complexation&rft.jtitle=Langmuir&rft.au=Andersson%2C+John&rft.au=Ferrand-Drake+del+Castillo%2C+Gustav&rft.au=Bilotto%2C+Pierluigi&rft.au=H%C3%B6%C3%B6k%2C+Fredrik&rft.date=2021-04-27&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=37&rft.issue=16&rft.spage=4943&rft.epage=4952&rft_id=info:doi/10.1021%2Facs.langmuir.1c00271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_1c00271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |