Control of Polymer Brush Morphology, Rheology, and Protein Repulsion by Hydrogen Bond Complexation

Polymer brushes are widely used to alter the properties of interfaces. In particular, poly­(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 37; no. 16; pp. 4943 - 4952
Main Authors Andersson, John, Ferrand-Drake del Castillo, Gustav, Bilotto, Pierluigi, Höök, Fredrik, Valtiner, Markus, Dahlin, Andreas
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.04.2021
Subjects
Online AccessGet full text
ISSN0743-7463
1520-5827
1520-5827
DOI10.1021/acs.langmuir.1c00271

Cover

Abstract Polymer brushes are widely used to alter the properties of interfaces. In particular, poly­(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an example, PEG is not responsive to pH or ionic strength. Here we show that, by simply introducing a polymeric acid such as poly­(methacrylic acid) (PMAA), the highly hydrated brush barrier can change its properties entirely. This is caused by multivalent hydrogen bonds in an extremely pH-sensitive process. Remarkably, it is sufficient to reduce the pH to 5 for complexation to occur at the interface, which is two units higher than in the corresponding bulk systems. Below this critical pH, PMAA starts to bind to PEG in large amounts (comparable to the PEG amount), causing the brush to gradually compact and dehydrate. The brush also undergoes major rheology changes, from viscoelastic to rigid. Furthermore, the protein repelling ability of PEG is lost after reaching a threshold in the amount of PMAA bound. The changes in brush properties are tunable and become more pronounced when more PMAA is bound. The initial brush state is fully recovered when releasing PMAA by returning to physiological pH. Our findings are relevant for many applications involving functional interfaces, such as capture–release of biomolecules.
AbstractList Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an example, PEG is not responsive to pH or ionic strength. Here we show that, by simply introducing a polymeric acid such as poly(methacrylic acid) (PMAA), the highly hydrated brush barrier can change its properties entirely. This is caused by multivalent hydrogen bonds in an extremely pH-sensitive process. Remarkably, it is sufficient to reduce the pH to 5 for complexation to occur at the interface, which is two units higher than in the corresponding bulk systems. Below this critical pH, PMAA starts to bind to PEG in large amounts (comparable to the PEG amount), causing the brush to gradually compact and dehydrate. The brush also undergoes major rheology changes, from viscoelastic to rigid. Furthermore, the protein repelling ability of PEG is lost after reaching a threshold in the amount of PMAA bound. The changes in brush properties are tunable and become more pronounced when more PMAA is bound. The initial brush state is fully recovered when releasing PMAA by returning to physiological pH. Our findings are relevant for many applications involving functional interfaces, such as capture–release of biomolecules.
Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an example, PEG is not responsive to pH or ionic strength. Here we show that, by simply introducing a polymeric acid such as poly(methacrylic acid) (PMAA), the highly hydrated brush barrier can change its properties entirely. This is caused by multivalent hydrogen bonds in an extremely pH-sensitive process. Remarkably, it is sufficient to reduce the pH to 5 for complexation to occur at the interface, which is two units higher than in the corresponding bulk systems. Below this critical pH, PMAA starts to bind to PEG in large amounts (comparable to the PEG amount), causing the brush to gradually compact and dehydrate. The brush also undergoes major rheology changes, from viscoelastic to rigid. Furthermore, the protein repelling ability of PEG is lost after reaching a threshold in the amount of PMAA bound. The changes in brush properties are tunable and become more pronounced when more PMAA is bound. The initial brush state is fully recovered when releasing PMAA by returning to physiological pH. Our findings are relevant for many applications involving functional interfaces, such as capture-release of biomolecules.Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an example, PEG is not responsive to pH or ionic strength. Here we show that, by simply introducing a polymeric acid such as poly(methacrylic acid) (PMAA), the highly hydrated brush barrier can change its properties entirely. This is caused by multivalent hydrogen bonds in an extremely pH-sensitive process. Remarkably, it is sufficient to reduce the pH to 5 for complexation to occur at the interface, which is two units higher than in the corresponding bulk systems. Below this critical pH, PMAA starts to bind to PEG in large amounts (comparable to the PEG amount), causing the brush to gradually compact and dehydrate. The brush also undergoes major rheology changes, from viscoelastic to rigid. Furthermore, the protein repelling ability of PEG is lost after reaching a threshold in the amount of PMAA bound. The changes in brush properties are tunable and become more pronounced when more PMAA is bound. The initial brush state is fully recovered when releasing PMAA by returning to physiological pH. Our findings are relevant for many applications involving functional interfaces, such as capture-release of biomolecules.
Polymer brushes are widely used to alter the properties of interfaces. In particular, poly­(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an example, PEG is not responsive to pH or ionic strength. Here we show that, by simply introducing a polymeric acid such as poly­(methacrylic acid) (PMAA), the highly hydrated brush barrier can change its properties entirely. This is caused by multivalent hydrogen bonds in an extremely pH-sensitive process. Remarkably, it is sufficient to reduce the pH to 5 for complexation to occur at the interface, which is two units higher than in the corresponding bulk systems. Below this critical pH, PMAA starts to bind to PEG in large amounts (comparable to the PEG amount), causing the brush to gradually compact and dehydrate. The brush also undergoes major rheology changes, from viscoelastic to rigid. Furthermore, the protein repelling ability of PEG is lost after reaching a threshold in the amount of PMAA bound. The changes in brush properties are tunable and become more pronounced when more PMAA is bound. The initial brush state is fully recovered when releasing PMAA by returning to physiological pH. Our findings are relevant for many applications involving functional interfaces, such as capture–release of biomolecules.
Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an example, PEG is not responsive to pH or ionic strength. Here we show that, by simply introducing a polymeric acid such as poly(methacrylic acid) (PMAA), the highly hydrated brush barrier can change its properties entirely. This is caused by multivalent hydrogen bonds in an extremely pH-sensitive process. Remarkably, it is sufficient to reduce the pH to 5 for complexation to occur at the interface, which is two units higher than in the corresponding bulk systems. Below this critical pH, PMAA starts to bind to PEG in large amounts (comparable to the PEG amount), causing the brush to gradually compact and dehydrate. The brush also undergoes major rheology changes, from viscoelastic to rigid. Furthermore, the protein repelling ability of PEG is lost after reaching a threshold in the amount of PMAA bound. The changes in brush properties are tunable and become more pronounced when more PMAA is bound. The initial brush state is fully recovered when releasing PMAA by returning to physiological pH. Our findings are relevant for many applications involving functional interfaces, such as capture-release of biomolecules.
Author Bilotto, Pierluigi
Valtiner, Markus
Dahlin, Andreas
Höök, Fredrik
Andersson, John
Ferrand-Drake del Castillo, Gustav
AuthorAffiliation Department of Chemistry and Chemical Engineering
Institute of Applied Physics, Group of Applied Interface Physics
Department of Physics
AuthorAffiliation_xml – name: Department of Chemistry and Chemical Engineering
– name: Department of Physics
– name: Institute of Applied Physics, Group of Applied Interface Physics
Author_xml – sequence: 1
  givenname: John
  orcidid: 0000-0002-2977-8305
  surname: Andersson
  fullname: Andersson, John
  organization: Department of Chemistry and Chemical Engineering
– sequence: 2
  givenname: Gustav
  surname: Ferrand-Drake del Castillo
  fullname: Ferrand-Drake del Castillo, Gustav
  organization: Department of Chemistry and Chemical Engineering
– sequence: 3
  givenname: Pierluigi
  orcidid: 0000-0001-6531-8528
  surname: Bilotto
  fullname: Bilotto, Pierluigi
  organization: Institute of Applied Physics, Group of Applied Interface Physics
– sequence: 4
  givenname: Fredrik
  orcidid: 0000-0003-1994-5015
  surname: Höök
  fullname: Höök, Fredrik
  organization: Department of Physics
– sequence: 5
  givenname: Markus
  orcidid: 0000-0001-5410-1067
  surname: Valtiner
  fullname: Valtiner, Markus
  organization: Institute of Applied Physics, Group of Applied Interface Physics
– sequence: 6
  givenname: Andreas
  orcidid: 0000-0003-1545-5860
  surname: Dahlin
  fullname: Dahlin, Andreas
  email: adahlin@chalmers.se
  organization: Department of Chemistry and Chemical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33851532$$D View this record in MEDLINE/PubMed
https://research.chalmers.se/publication/523882$$DView record from Swedish Publication Index
BookMark eNqFks1u1DAUhS3Uik4Lb4BQliyYwf-OWSDREVCkIqoCa8txbiapnHhqJ0DeHpeZVi0LurKl-52ja59zjA6GMABCLwheEUzJG-vSytth009dXBGHMVXkCVoQQfFSlFQdoAVWnC0Vl-wIHad0hTHWjOun6IixUhDB6AJV6zCMMfgiNMVF8HMPsTiNU2qLLyFu2-DDZn5dXLawv9mhLi5iGKEbikvYTj51YSiquTib6xg2MBSnISPr0G89_LZjnj5Dh431CZ7vzxP04-OH7-uz5fnXT5_X78-XVlI-LoUlTArRAKbSVVxpqpUE57BWWDV1iRl3IqNEV7ICaBQVlW1I7WrRcIUlO0Hfdr7pV16sMtvY9TbOJtjOREhgo2uNa63Pb0wmgcFO1rJ0zjTUKcMlrkxVUWas1VoJwKqWkF3f7VyzZQ-1g_xd1j8wfzgZutZswk9TEsFLhbPBq71BDNcTpNH0XXLgc3YQpmSoLiVhhEv5OCoIVbTUlGT05f217va5TTYDfAe4GFKK0NwhBJubAplcIHNbILMvUJa9_UfmuvFvjPlxnX9MjHfim-lVmOKQ8_6_5A-7quL4
CitedBy_id crossref_primary_10_1016_j_indcrop_2024_119175
crossref_primary_10_1021_acs_langmuir_1c02728
crossref_primary_10_1039_D2BM01506D
crossref_primary_10_3390_polym16020271
crossref_primary_10_1039_D2NA00389A
crossref_primary_10_1007_s11696_024_03602_3
crossref_primary_10_1039_D1CP05381G
crossref_primary_10_1016_j_memsci_2023_122032
crossref_primary_10_1021_acsmacrolett_4c00476
crossref_primary_10_1016_j_apsusc_2022_152718
crossref_primary_10_1021_acsami_2c21168
crossref_primary_10_1021_acs_langmuir_2c00998
crossref_primary_10_1021_acsami_3c18546
crossref_primary_10_1021_acsami_4c15180
crossref_primary_10_1021_acssensors_2c00273
Cites_doi 10.1016/j.biomaterials.2014.12.041
10.1016/0001-8686(87)85003-0
10.1002/anie.200462687
10.1038/nmat2614
10.1021/ja053472s
10.1016/0032-3861(93)90882-B
10.1021/la990689p
10.1021/ac201778h
10.1021/acsami.5b01590
10.1002/pol.1975.170130703
10.1039/c3sm27766f
10.1063/1.5085210
10.1021/je00015a050
10.1021/la3049289
10.1021/acs.jpcc.8b09171
10.1142/6498
10.1021/ma00003a015
10.1021/la501568p
10.1021/acs.langmuir.9b00056
10.1002/pol.1976.130140302
10.1002/macp.1981.021820816
10.1021/acsami.8b15796
10.1021/acs.jpclett.0c01289
10.1021/acs.macromol.7b00450
10.1039/C7NR09432A
10.1126/science.aar5877
10.1021/acs.langmuir.9b01942
10.1016/0095-8522(57)90060-0
10.1002/polb.22021
10.1021/acs.chemrev.6b00314
10.1038/s41598-018-30201-6
10.1016/j.apsusc.2016.10.165
10.1103/PhysRevLett.89.238301
10.1016/S0006-3495(94)80938-5
10.1021/acs.biomac.8b01353
10.1002/marc.201100162
10.1238/Physica.Regular.059a00391
10.1021/acs.jpcb.7b00868
10.1002/9780470015902.a0003004.pub2
10.1209/epl/i1999-00192-1
10.1073/pnas.150236197
10.1080/00222348008212832
10.1039/D0CC01250E
10.1021/acs.langmuir.8b00030
10.1016/j.bpj.2013.09.006
10.3390/microorganisms6020047
10.1021/acs.macromol.5b01960
10.1103/PhysRevE.56.680
10.1021/acscentsci.8b00268
ContentType Journal Article
Copyright 2021 The Authors. Published by American Chemical Society
2021 The Authors. Published by American Chemical Society 2021 The Authors
Copyright_xml – notice: 2021 The Authors. Published by American Chemical Society
– notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1021/acs.langmuir.1c00271
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 4952
ExternalDocumentID oai_research_chalmers_se_0c6d68cc_f2c7_460b_bb23_aa9975e07d6e
PMC8154870
33851532
10_1021_acs_langmuir_1c00271
b710458001
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: NA
– fundername: ;
  grantid: 677663
– fundername: ;
  grantid: 2016-03319
– fundername: ;
  grantid: 2015.0161
GroupedDBID -
.K2
02
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
CITATION
CUPRZ
YQT
~02
NPM
7X8
7S9
L.6
5PM
.HR
186
1WB
6TJ
ABBSD
ABHMW
ACRPL
ADNMO
ADTPV
AEYZD
AFFNX
AGQPQ
ANPPW
ANTXH
AOWAS
D8T
EJD
F1S
LG6
ZZAVC
ID FETCH-LOGICAL-a624t-5a13655fe026cb4792976ecc09707fd8034c5a6219b6beef725baf1dcd5f47063
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Thu Aug 21 06:52:58 EDT 2025
Thu Aug 21 14:00:57 EDT 2025
Fri Jul 11 03:24:40 EDT 2025
Thu Jul 10 22:55:31 EDT 2025
Thu Jan 02 22:57:21 EST 2025
Tue Jul 01 03:59:06 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Thu Apr 29 06:07:49 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a624t-5a13655fe026cb4792976ecc09707fd8034c5a6219b6beef725baf1dcd5f47063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5410-1067
0000-0003-1994-5015
0000-0003-1545-5860
0000-0001-6531-8528
0000-0002-2977-8305
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8154870
PMID 33851532
PQID 2512728921
PQPubID 23479
PageCount 10
ParticipantIDs swepub_primary_oai_research_chalmers_se_0c6d68cc_f2c7_460b_bb23_aa9975e07d6e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8154870
proquest_miscellaneous_2986131466
proquest_miscellaneous_2512728921
pubmed_primary_33851532
crossref_primary_10_1021_acs_langmuir_1c00271
crossref_citationtrail_10_1021_acs_langmuir_1c00271
acs_journals_10_1021_acs_langmuir_1c00271
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-27
PublicationDateYYYYMMDD 2021-04-27
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
Khutoryanskiy V. V. (ref19/cit19) 2009
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
Israelachvili J. N. (ref47/cit47) 2011
ref44/cit44
ref7/cit7
References_xml – ident: ref18/cit18
  doi: 10.1016/j.biomaterials.2014.12.041
– ident: ref46/cit46
  doi: 10.1016/0001-8686(87)85003-0
– ident: ref42/cit42
  doi: 10.1002/anie.200462687
– ident: ref7/cit7
  doi: 10.1038/nmat2614
– ident: ref43/cit43
  doi: 10.1021/ja053472s
– ident: ref33/cit33
  doi: 10.1016/0032-3861(93)90882-B
– ident: ref35/cit35
  doi: 10.1021/la990689p
– ident: ref36/cit36
  doi: 10.1021/ac201778h
– ident: ref4/cit4
  doi: 10.1021/acsami.5b01590
– ident: ref26/cit26
  doi: 10.1002/pol.1975.170130703
– ident: ref31/cit31
  doi: 10.1039/c3sm27766f
– ident: ref48/cit48
  doi: 10.1063/1.5085210
– volume-title: Intermolecular and Surface Forces
  year: 2011
  ident: ref47/cit47
– ident: ref40/cit40
  doi: 10.1021/je00015a050
– ident: ref17/cit17
  doi: 10.1021/la3049289
– ident: ref10/cit10
  doi: 10.1021/acs.jpcc.8b09171
– volume-title: Hydrogen-Bonded Interpolymer Complexes: Formation, Structure and Applications
  year: 2009
  ident: ref19/cit19
  doi: 10.1142/6498
– ident: ref34/cit34
  doi: 10.1021/ma00003a015
– ident: ref29/cit29
  doi: 10.1021/la501568p
– ident: ref11/cit11
  doi: 10.1021/acs.langmuir.9b00056
– ident: ref23/cit23
  doi: 10.1002/pol.1976.130140302
– ident: ref28/cit28
  doi: 10.1002/macp.1981.021820816
– ident: ref6/cit6
  doi: 10.1021/acsami.8b15796
– ident: ref20/cit20
  doi: 10.1021/acs.jpclett.0c01289
– ident: ref1/cit1
  doi: 10.1021/acs.macromol.7b00450
– ident: ref24/cit24
  doi: 10.1039/C7NR09432A
– ident: ref44/cit44
  doi: 10.1126/science.aar5877
– ident: ref22/cit22
  doi: 10.1021/acs.langmuir.9b01942
– ident: ref30/cit30
  doi: 10.1016/0095-8522(57)90060-0
– ident: ref41/cit41
  doi: 10.1002/polb.22021
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.6b00314
– ident: ref37/cit37
  doi: 10.1038/s41598-018-30201-6
– ident: ref9/cit9
  doi: 10.1016/j.apsusc.2016.10.165
– ident: ref16/cit16
  doi: 10.1103/PhysRevLett.89.238301
– ident: ref45/cit45
  doi: 10.1016/S0006-3495(94)80938-5
– ident: ref8/cit8
  doi: 10.1021/acs.biomac.8b01353
– ident: ref2/cit2
  doi: 10.1002/marc.201100162
– ident: ref21/cit21
  doi: 10.1238/Physica.Regular.059a00391
– ident: ref14/cit14
  doi: 10.1021/acs.jpcb.7b00868
– ident: ref32/cit32
  doi: 10.1002/9780470015902.a0003004.pub2
– ident: ref25/cit25
  doi: 10.1209/epl/i1999-00192-1
– ident: ref49/cit49
  doi: 10.1073/pnas.150236197
– ident: ref27/cit27
  doi: 10.1080/00222348008212832
– ident: ref12/cit12
  doi: 10.1039/D0CC01250E
– ident: ref5/cit5
  doi: 10.1021/acs.langmuir.8b00030
– ident: ref38/cit38
  doi: 10.1016/j.bpj.2013.09.006
– ident: ref50/cit50
  doi: 10.3390/microorganisms6020047
– ident: ref15/cit15
  doi: 10.1021/acs.macromol.5b01960
– ident: ref39/cit39
  doi: 10.1103/PhysRevE.56.680
– ident: ref13/cit13
  doi: 10.1021/acscentsci.8b00268
SSID ssj0009349
Score 2.450074
Snippet Polymer brushes are widely used to alter the properties of interfaces. In particular, poly­(ethylene glycol) (PEG) and similar polymers can make surfaces inert...
Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert...
Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4943
SubjectTerms adsorption
biochemical compounds
hydrogen
hydrogen bonding
hydrophilicity
ionic strength
rheology
temperature
viscoelasticity
Title Control of Polymer Brush Morphology, Rheology, and Protein Repulsion by Hydrogen Bond Complexation
URI http://dx.doi.org/10.1021/acs.langmuir.1c00271
https://www.ncbi.nlm.nih.gov/pubmed/33851532
https://www.proquest.com/docview/2512728921
https://www.proquest.com/docview/2986131466
https://pubmed.ncbi.nlm.nih.gov/PMC8154870
https://research.chalmers.se/publication/523882
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jj9MwFLbQcIAL-xI2GYkLEimO1-SIKkYVYmAEjDQ3y1uUik6CmuZQfj3PWToqFQzcouS5VezPed-zn7-H0CsqTSEdZ6nJiUs5IyQ1QGvTnIE7EKqwMo-Hk08-ycUZ_3Auzi8Dxd938Gn21rh2FtfuLrrlepa5GEdBtHOdSnA1kQrNv16K7LKB7kbZTcUlm47K_eFXokNy7b5DOmCZh8mSe5KivRs6vo0-T4d5huyT77NuY2fu56G24z--4R10a2Sk-N0AobvoWqjvoRvzqRDcfWTnQzo7bkp82qy2F2GNARJthU8aGKV-Xf4N_lKF8crUHp9G-YdljYHfd6u4IIftFi-2ft0AYHGsZYzjlyieronIeIDOjt9_my_SsTRDaiTlm1SYmB4nygAhnLNcAclSEtBACkVU6XPCuBNgmsFg2xBKRYU1ZeadFyVXQIseoqO6qcNjhAtjvRM0WF94YBPBSkFNHqgpuTdG5gl6DR2kx6nV6n7XnGY63px6TY-9liA2jaV2o8Z5LLWxuqJVumv1Y9D4uML-5QQTDUMRd1hMHZqu1ZEsKghh6d9sihwoFDgomaBHA7R2_8oYEGDBaILUHuh2BlEMfP9Jvax6UfC8jz1Jgj4O8NxrMgpHVdpVfVWeVrdBEyc9zESnS-qU5pJYbS1l2piiUCIQ5WV48h-d_xTdpDHhh_CUqmfoaLPuwnNgbBv7op-mvwC7yUFK
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLaqcigXdmhYjcQFiQwZr8mxGlENMFNV0KLeLG9RRkwTNJk5DL-e5yxThQqq3qLEzmJ_zvue_fw9hN4RoTNhGY11mtiY0SSJNdDaOKVgDrjMjEjD5uT5iZiesy8X_GIP8X4vDLxEDXeqm0X8K3WB8cdwLkzhXW4Wq9HYBncKnJ47XDARMjYcTb5fae3SlvUG9U3JBO13zP3jLsEu2Xpol66RzesxkwNl0cYaHd9HP3bf0QSh_Bxt1mZkf_8l8XjrD32A7nX8FB-1gHqI9nz5CB1M-rRwj5GZtMHtuMrxabXcXvoVBoDUBZ5X0GfNLP0H_K3w3ZEuHT4NYhCLEgPb3yzD9Bw2WzzdulUF8MUhszEO_6Ww1ybg5Ak6P_50NpnGXaKGWAvC1jHXIViO5x4cOmuYBMolBWAjyWQic5cmlFkORcfQ9cb7XBJudD521vGcSSBJT9F-WZX-EOFMG2c58cZlDriFN4ITnXqic-a0FmmE3kMDqW6g1apZQydjFU72raa6VosQ7btU2U7xPCTeWN5QK97V-tUqftxQ_m2PFgVdEdZbdOmrTa0CdZTg0JL_lclSIFRgrkSEnrUI2z2VUqDDnJIIyQH2dgWCNPjwSrkoGonwtPFEkwjNWpQOqnQyUoWyRZOjp1a1V4kVDsalVTmxUsGgMsoYQpXWWSa5T6QT_vktGv8NOpiezWdq9vnk6wt0l4RQoITFRL5E--vVxr8CLrc2r5uR-weA70ms
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLbQIAEX9qWsRuKCRDqO1-Q4KlQFZkYVMNKIi-UtakUnGTXNofx6npO0UEYwgluU2Fnsz3nfs5-_h9ArKk0uHWeJyYhLOCMkMUBrk4yBORAqtzKLm5OPjuXkhH84Fae_pPqCl6jhTnW7iB9H9bkveoWBdD-ej9N4Z818OUxddKnA8bkKnCSNWRsORp9_6u2yjvlGBU7FJdvsmvvDXaJtcvWubbpAOC_GTe6oi7YWaXwLfd1-SxuI8m3YrOzQff9N5vG_PvY2utnzVHzQAesOuhLKu-j6aJMe7h6yoy7IHVcFnlaL9VlYYgBKPcNHFfRdO1v_Bn-ahf7IlB5PoyjEvMTA-ptFnKbDdo0na7-sAMY4ZjjG8f8U99xEvNxHJ-N3X0aTpE_YkBhJ-SoRJgbNiSKAY-csV0C9lASMkFwRVfiMMO4EFE0BAjaEQlFhTZF650XBFZClB2ivrMrwCOHcWO8EDdbnHjhGsFJQkwVqCu6NkdkAvYYG0v2Aq3W7lk5THU9uWk33rTZAbNOt2vXK5zEBx-KSWsm21nmn_HFJ-ZcbxGjoirjuYspQNbWOFFKBY0v_VibPgFiB2ZID9LBD2fapjAEtFowOkNrB37ZAlAjfvVLOZ61UeNZ6pGSADjuk7lTp5aRm2s3aXD21roMmTnoYn04X1CnNJbHaWsq0MXmuRCDKy_D4Hxr_Bbo2fTvWh--PPz5BN2iMCCI8oeop2lstm_AMKN3KPm8H7w-iIkwm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+Polymer+Brush+Morphology%2C+Rheology%2C+and+Protein+Repulsion+by+Hydrogen+Bond+Complexation&rft.jtitle=Langmuir&rft.au=Andersson%2C+John&rft.au=Ferrand-Drake+del+Castillo%2C+Gustav&rft.au=Bilotto%2C+Pierluigi&rft.au=H%C3%B6%C3%B6k%2C+Fredrik&rft.date=2021-04-27&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=37&rft.issue=16&rft.spage=4943&rft.epage=4952&rft_id=info:doi/10.1021%2Facs.langmuir.1c00271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_1c00271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon