Supramolecular soft matter applications in materials and organic electronics
"This book covers molecular design and synthesis, as well as the development of smart molecular assemblies, for organic electronic systems. It identifies concepts that hold promise for successful development of organic/polymeric electronics with real-world applications. Unlike other books, this...
        Saved in:
      
    
          | Main Author | |
|---|---|
| Format | eBook Book | 
| Language | English | 
| Published | 
        Hoboken, N.J
          Wiley
    
        2011
     John Wiley & Sons, Incorporated Wiley-Blackwell John Wiley & Sons  | 
| Edition | 1st ed. | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 1118095316 0470559748 9780470559741 9781118095317 1118095332 9781118095331 1118095324 9781118095324  | 
| DOI | 10.1002/9781118095331 | 
Cover
                Table of Contents: 
            
                  - 7.4.2 Porous Graphitic Carbon Nitrides by Hard Templating -- 7.4.3 Carbon Nitride-Based Semiconductor in Photocatalysis -- 7.5 Conclusion -- References -- 8 TWO-DIMENSIONAL SEMICONDUCTIVE ¥ð-ELECTRONIC FRAMEWORKS -- 8.1 Introduction -- 8.2 Two-Dimensional Polymers on Metal Surfaces -- 8.3 Two-Dimensional Polymers with Covalent Organic Frameworks -- 8.3.1 Topological Design of 2D Porous Materials -- 8.3.2 Control of Pore Size and Parameters -- 8.3.3 Two-Dimensional COFs for Hydrogen Storage -- 8.3.4 Two-Dimensional COFs for Other Gas Uptake -- 8.3.5 Semiconducting Blue Luminescence 2D Polymers -- 8.3.6 Photoconductive 2D Polymers -- 8.4 Conclusions -- References -- 9 POLYMER-FRIENDLY METAL-ORGANIC FRAMEWORKS -- 9.1 Introduction -- 9.2 Characteristic Features of MOFs -- 9.2.1 Regularity -- 9.2.2 Pore Size and Shape -- 9.2.3 Pore Surface Functionality -- 9.2.4 Flexibility -- 9.3 Polymer Synthesis in One-Dimensional Channels of MOFs -- 9.3.1 Radical Polymerization of Vinyl Monomers -- 9.3.2 Catalytic Polymerization of Substituted Acetylenes -- 9.4 Polymer Synthesis in Higher Dimensional Channels of MOFs -- 9.4.1 Preparation of Two-Dimensional Layered Polymers -- 9.4.2 Preparation of Three-Dimensional Porous Polymers -- 9.5 Polymer-MOF Composites -- 9.6 Summary -- References -- SECTION IV Recent Trends of Organic Radical Materials -- 10 MULTIDIMENSIONAL SUPRAMOLECULAR ORGANIZATIONS BASED ON POLYCHLOROTRIPHENYL-METHYL RADICALS -- 10.1 Introduction -- 10.1.1 Organic Radicals: What Are They? -- 10.1.2 Polychlorotriphenylmethyl Radicals: Molecular Structure and Properties -- 10.1.3 Strategies Towards Multidimensionality -- 10.2 Zero Dimensional (0-D) Supramolecular Organizations -- 10.2.1 Hydrogen-Bonded Dimers -- 10.2.2 Metal-Organic Complexes -- 10.2.3 Hydrogen-Bonded Dimers with Tuneable Properties -- 10.3 One Dimensional (1-D) Supramolecular Organizations
 - Intro -- SUPRAMOLECULAR SOFT MATTER -- CONTENTS -- Preface -- Contributors -- SECTION I Supramolecular Objects Towards Multi-task Organic Materials -- 1 SUPRAMOLECULAR MATERIALIZATION OF FULLERENE ASSEMBLIES -- 1.1 Introduction -- 1.2 Hydrophobic-Amphiphilic Concept -- 1.3 Supramolecular Assemblies of C60-Bearing Aliphatic Chains -- 1.3.1 Hierarchical Supramorphology -- 1.3.2 Antiwetting Architectures -- 1.4 Functions Originated from Three-Dimensional Flakelike Microparticles -- 1.4.1 Supramolecular Molding Method -- 1.4.2 Thermal Indicator for NIR-Induced Local Heating of Carbon Nanotube -- 1.5 Photoconductive Soft Materials -- 1.5.1 C60-Rich Thermotropic Liquid Crystals -- 1.5.2 Room Temperature Fullerene Liquids -- 1.6 Conclusions -- References -- 2 TUNING AMPHIPHILICITY OF BUILDING BLOCKS FOR CONTROLLED SELF-ASSEMBLY AND DISASSEMBLY: A WAY FOR FABRICATION OF FUNCTIONAL SUPRAMOLECULAR MATERIALS -- 2.1 Introduction -- 2.2 Irreversible Methods to Tune the Amphiphilicity of Building Blocks -- 2.2.1 Photo-Irradiated Irreversible Methods -- 2.2.2 Redox Response -- 2.2.3 pH-Stimuli Methods -- 2.3 Reversible Stimuli-Responsive Methods -- 2.3.1 Redox Switches -- 2.3.2 Tuning the Amphiphilicity by Reversible Combination of Carbon Dioxide -- 2.3.3 Photocontrolled Methods -- 2.4 Supramolecular Methods -- 2.4.1 Electrostatic Interaction -- 2.4.2 Hydrogen Bonding Method -- 2.4.3 Host-Guest Modulation Employing Cyclodextrin as Host -- 2.4.4 Host-Guest Modulation Employing Cucurbituril as Host -- 2.4.5 Charge-Transfer Interaction -- 2.5 Conclusion and Outlook -- Acknowledgments -- References -- 3 ORGANIC-INORGANIC SUPRAMOLECULAR MATERIALS -- 3.1 Introduction -- 3.2 Film-Type Supramolecular Hybrids -- 3.3 Endo-Type Mesoporous Supramolecular Hybrids -- 3.4 Exo-Type Mesoporous Supramolecular Hybrids -- 3.5 Conclusions -- Acknowledgment -- References
 - 15.2.1 Supramolecular Self-Assembling Liquid Crystal Dendrons and Dendrimers
 - 10.4 Two-Dimensional (2-D) Supramolecular Organizations -- 10.4.1 Purely Organic Open Frameworks -- 10.4.2 Metal-Organic Radical Open Frameworks -- 10.4.3 Surface-Driven 2-D Assemblies -- 10.5 Three-Dimensional (3-D) Supramolecular Organizations -- 10.5.1 The Role of Chlorine-Chlorine Short Contacts in the 3-D Packing of PTM Radicals -- 10.5.2 Truly 3-D Frameworks Based on PTM Radicals -- 10.5.3 Three-Dimensional Assemblies on Surfaces Based on PTM Radicals -- 10.6 Conclusions -- References -- 11 PHOTOSWITCHING PROPERTY OF DIARYLETHENES IN MOLECULAR MAGNETISM AND ELECTRONICS -- 11.1 Introduction -- 11.2 Molecular Magnetism -- 11.3 Intramolecular Magnetic Interaction -- 11.4 Photochromic Spin Coupler -- 11.5 Diarylethene as a Photoswitch -- 11.6 Photoswitching of Magnetic Interaction -- 11.7 Reversed Photoswitching Using Bis(2-Thienyl)Ethene -- 11.8 Photoswitching Using Array of Photochromic Molecules -- 11.9 Switching on Aryl Group -- 11.10 Noble Metal Nanoparticle -- 11.11 Photoreaction on Metal Nanoparticles -- 11.12 Conductance Photoswitching of Diarylethene-Gold Nanoparticle Network -- 11.13 Conductance Switching of Diarylethene-Gold Nanoparticle Network by Oxidization -- 11.14 Conclusions -- References -- SECTION V Organogels and Polymer Assembly -- 12 SELF-OSCILLATING POLYMER GELS -- 12.1 Introduction -- 12.2 Design of the Self-Oscillating Gel -- 12.3 Self-Oscillating Behaviors of the Gel -- 12.3.1 Self-Oscillation of the Gel Smaller than the Chemical Wavelength -- 12.3.2 Control of Oscillating Behaviors -- 12.3.3 Peristaltic Motion of Gels with Propagation of Chemical Wave -- 12.4 Design of the Biomimetic Micro-/Nanoactuator using Self-Oscillating Polymer and Gel -- 12.4.1 Self-Walking Gel -- 12.4.2 Mass Transport Surface Utilizing Peristaltic Motion of the Gel -- 12.4.3 Microfabrication of the Self-Oscillating Gel for Microdevices
 - SECTION II Stimuli Responsive Dye Organized Soft Materials -- 4 FUNCTIONAL MATERIALS FROM SUPRAMOLECULAR AZOBENZENE DYE ARCHITECTURES -- 4.1 Introduction -- 4.2 Azobenzene Dyes for Functional Materials -- 4.3 Strategies for the Production of Functional Supramolecular Materials -- 4.4 Ionic Self-Assembly -- 4.4.1 Polyelectrolyte-Based Materials -- 4.4.2 Oligoelectrolyte-Based Materials -- 4.5 Hydrogen-Bonded Polymeric Assemblies -- 4.5.1 Polymer-Based Materials -- 4.6 Summary and Conclusions -- References -- 5 STIMULI-RESPONSIVE SUPRAMOLECULAR DYE ASSEMBLIES -- 5.1 Introduction -- 5.2 Supramolecular Dye Assemblies with Stimuli-Responsive Optical Properties -- 5.3 Supramolecular Dye Assemblies with Stimuli-Responsive Nanostructures -- 5.4 Conclusions -- References -- 6 ANION-RESPONSIVE SUPRAMOLECULAR DYE CHEMISTRY -- 6.1 Introduction -- 6.2 Hydrogen-Bonding-Based Anion-Responsive Supramolecular Gels -- 6.3 Metal-Coordinated Gels Responsive to Anions -- 6.4 Pyrrole-Based, Anion-Responsive π-Conjugated Molecules that form Supramolecular Assemblies -- 6.5 Charge-By-Charge Assemblies from Anion-Responsive Supramolecular Gels -- 6.6 Conclusions -- References -- SECTION III Dimension Controlled Organic Frameworks -- 7 POLYMERIC FRAMEWORKS: TOWARD POROUS SEMICONDUCTORS -- 7.1 Introduction -- 7.2 General Synthetic and Analytical Methods for Porous Polymers -- 7.2.1 Synthetic Routes toward Mesoporous Polymers -- 7.2.2 Synthetic Schemes for Microporous Polymers -- 7.2.3 Analysis of Porosity in Porous Polymers -- 7.3 Porous π-Conjugated Polymers -- 7.3.1 From 3D Semiconducting Molecules to Porous Polymer Networks -- 7.3.2 Conjugated Microporous Polymers -- 7.3.3 π-Conjugated Covalent Organic Frameworks -- 7.3.4 Porous π-Conjugated Polymers Prepared via Hard or Soft Templating -- 7.4 Porous Graphitic Carbon Nitride Semiconductors -- 7.4.1 Graphitic Carbon Nitride
 - 12.4.4 Control of Chemical Wave Propagation in a Self-Oscillating Gel Array -- 12.4.5 Self-Oscillating Polymer Chains as a ''Nano-Oscillator'' -- 12.4.6 Self-Flocculating/Dispersing Oscillation of Microgels -- 12.4.7 Fabrication of Microgel Beads Monolayer -- 12.4.8 Attempts of Self-Oscillation under Physiological Conditions -- References -- 13 SELF-ASSEMBLY OF CONJUGATED POLYMERS AND THEIR APPLICATION TO BIOSENSORS -- 13.1 Introduction -- 13.2 Background -- 13.2.1 Influence of Self-Assembly on Optical Absorption and Emission of Conjugated Polymers -- 13.2.2 Molecular Structure, Self-Assembly, and Quantum Yield of Conjugated Polyelectrolytes -- 13.2.3 Influence of Self-Assembly on Intramolecular Energy Transfer -- 13.3 Self-Assembly of Conjugated Polymers -- 13.3.1 Langmuir-Blodgett -- 13.3.2 Surface Interaction -- 13.3.3 Block Copolymers -- 13.3.4 Liposomes and Polydiacetylene -- 13.3.5 Electrostatic Assemblies -- 13.3.6 Surfactant-Directed Liquid Crystalline Assembly -- 13.4 Applications of Self-Assembly of Conjugated Polymers to Biosensors -- 13.4.1 DNA Sensors -- 13.4.2 Ion Sensitive Field Effect Transistors -- 13.4.3 Polydiacetylene Liposome-Based Ion Sensors -- 13.5 Outlook and Future Work -- Acknowledgments -- References -- SECTION VI Supramolecular Liquid Crystals -- 14 ADVANCED SYSTEMS OF SUPRAMOLECULAR LIQUID CRYSTALS -- 14.1 Introduction -- 14.2 Design of Materials Structures -- 14.2.1 Specific Interactions for Supramolecular Self-Assembly -- 14.2.2 New Molecular Shapes and Architectures -- 14.2.3 Nanosegregation in Liquid Crystals -- 14.3 Design of Materials Functions -- 14.3.1 Ionic Functions -- 14.3.2 Electronic Functions -- 14.4 Summary and Outlook -- References -- 15 SUPRAMOLECULAR AND DENDRITIC LIQUID CRYSTALS -- 15.1 Introduction -- 15.1.1 Defining the Structures of Supermolecules -- 15.2 Liquid-Crystalline Dendrimers