Nanoparticle Analysis in Biomaterials Using Laser Ablation−Single Particle−Inductively Coupled Plasma Mass Spectrometry

In the past decade, the development of single particle–inductively coupled plasma mass spectrometry (SP-ICPMS) has revolutionized the field of nanometallomics. Besides differentiation between dissolved and particulate metal signals, SP-ICPMS can quantify the nanoparticle (NP) number concentration an...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 91; no. 9; pp. 6200 - 6205
Main Authors Metarapi, Dino, Šala, Martin, Vogel-Mikuš, Katarina, Šelih, Vid S, van Elteren, Johannes T
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.05.2019
Subjects
Online AccessGet full text
ISSN0003-2700
1520-6882
1520-6882
DOI10.1021/acs.analchem.9b00853

Cover

More Information
Summary:In the past decade, the development of single particle–inductively coupled plasma mass spectrometry (SP-ICPMS) has revolutionized the field of nanometallomics. Besides differentiation between dissolved and particulate metal signals, SP-ICPMS can quantify the nanoparticle (NP) number concentration and size. Because SP-ICPMS is limited to characterization of NPs in solution, we show how solid sampling by laser ablation (LA) adds spatial-resolution characteristics for localized NP analysis in biomaterials. Using custom-made gelatin standards doped with dissolved gold and commercial or synthesized gold nanoparticles, LA-SP-ICPMS conditions such as laser fluence, beam size, and dwell time were optimized for NP analysis to minimize NP degradation, peak overlap, and interferences from dissolved gold. A data-processing algorithm to retrieve the NP number concentration and size was developed for this purpose. As a proof-of-concept, a sunflower-root-sample cross-section, originating from a sunflower plant exposed to gold NPs, was successfully imaged using the optimized LA-SP-ICPMS conditions for localized NP characterization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.9b00853