Nanoparticle Analysis in Biomaterials Using Laser Ablation−Single Particle−Inductively Coupled Plasma Mass Spectrometry
In the past decade, the development of single particle–inductively coupled plasma mass spectrometry (SP-ICPMS) has revolutionized the field of nanometallomics. Besides differentiation between dissolved and particulate metal signals, SP-ICPMS can quantify the nanoparticle (NP) number concentration an...
Saved in:
| Published in | Analytical chemistry (Washington) Vol. 91; no. 9; pp. 6200 - 6205 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
07.05.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0003-2700 1520-6882 1520-6882 |
| DOI | 10.1021/acs.analchem.9b00853 |
Cover
| Summary: | In the past decade, the development of single particle–inductively coupled plasma mass spectrometry (SP-ICPMS) has revolutionized the field of nanometallomics. Besides differentiation between dissolved and particulate metal signals, SP-ICPMS can quantify the nanoparticle (NP) number concentration and size. Because SP-ICPMS is limited to characterization of NPs in solution, we show how solid sampling by laser ablation (LA) adds spatial-resolution characteristics for localized NP analysis in biomaterials. Using custom-made gelatin standards doped with dissolved gold and commercial or synthesized gold nanoparticles, LA-SP-ICPMS conditions such as laser fluence, beam size, and dwell time were optimized for NP analysis to minimize NP degradation, peak overlap, and interferences from dissolved gold. A data-processing algorithm to retrieve the NP number concentration and size was developed for this purpose. As a proof-of-concept, a sunflower-root-sample cross-section, originating from a sunflower plant exposed to gold NPs, was successfully imaged using the optimized LA-SP-ICPMS conditions for localized NP characterization. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0003-2700 1520-6882 1520-6882 |
| DOI: | 10.1021/acs.analchem.9b00853 |