Mutations in DNA-Binding Loop of NFAT5 Transcription Factor Produce Unique Outcomes on Protein–DNA Binding and Dynamics

The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 117; no. 42; pp. 13226 - 13234
Main Authors Li, Minghui, Shoemaker, Benjamin A, Thangudu, Ratna R, Ferraris, Joan D, Burg, Maurice B, Panchenko, Anna R
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 24.10.2013
Subjects
Online AccessGet full text
ISSN1520-6106
1520-5207
1520-5207
DOI10.1021/jp403310a

Cover

Abstract The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus are largely unknown. Recent experiments showed that different mutations introduced in the DNA-binding loop and dimerization interface were important for DNA binding and some of them decreased the nuclear–cytoplasm ratio of NFAT5. To understand the mechanisms of these mutations, we model their effect on protein dynamics and DNA binding. We show that the NFAT5 complex without DNA is much more flexible than the complex with DNA. Moreover, DNA binding considerably stabilizes the overall dimeric complex and the NFAT5 dimer is only marginally stable in the absence of DNA. Two sets of NFAT5 mutations from the same DNA-binding loop are found to have different mechanisms of specific and nonspecific binding to DNA. The R217A/E223A/R226A (R293A/E299A/R302A using isoform c numbering) mutant is characterized by significantly compromised binding to DNA and higher complex flexibility. On the contrary, the T222D (T298D in isoform c) mutation, a potential phosphomimetic mutation, makes the overall complex more rigid and does not significantly affect the DNA binding. Therefore, the reduced nuclear–cytoplasm ratio of NFAT5 can be attributed to reduced binding to DNA for the triple mutant, while the T222D mutant suggests an additional mechanism at work.
AbstractList The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus are largely unknown. Recent experiments showed that different mutations introduced in the DNA-binding loop and dimerization interface were important for DNA binding and some of them decreased the nuclear–cytoplasm ratio of NFAT5. To understand the mechanisms of these mutations, we model their effect on protein dynamics and DNA binding. We show that the NFAT5 complex without DNA is much more flexible than the complex with DNA. Moreover, DNA binding considerably stabilizes the overall dimeric complex and the NFAT5 dimer is only marginally stable in the absence of DNA. Two sets of NFAT5 mutations from the same DNA-binding loop are found to have different mechanisms of specific and nonspecific binding to DNA. The R217A/E223A/R226A (R293A/E299A/R302A using isoform c numbering) mutant is characterized by significantly compromised binding to DNA and higher complex flexibility. On the contrary, the T222D (T298D in isoform c) mutation, a potential phosphomimetic mutation, makes the overall complex more rigid and does not significantly affect the DNA binding. Therefore, the reduced nuclear–cytoplasm ratio of NFAT5 can be attributed to reduced binding to DNA for the triple mutant, while the T222D mutant suggests an additional mechanism at work.
The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus are largely unknown. Recent experiments showed that different mutations introduced in the DNA-binding loop and dimerization interface were important for DNA binding and some of them decreased the nuclear-cytoplasm ratio of NFAT5. To understand the mechanisms of these mutations, we model their effect on protein dynamics and DNA binding. We show that the NFAT5 complex without DNA is much more flexible than the complex with DNA. Moreover, DNA binding considerably stabilizes the overall dimeric complex and the NFAT5 dimer is only marginally stable in the absence of DNA. Two sets of NFAT5 mutations from the same DNA-binding loop are found to have different mechanisms of specific and nonspecific binding to DNA. The R217A/E223A/R226A (R293A/E299A/R302A using isoform c numbering) mutant is characterized by significantly compromised binding to DNA and higher complex flexibility. On the contrary, the T222D (T298D in isoform c) mutation, a potential phosphomimetic mutation, makes the overall complex more rigid and does not significantly affect the DNA binding. Therefore, the reduced nuclear-cytoplasm ratio of NFAT5 can be attributed to reduced binding to DNA for the triple mutant, while the T222D mutant suggests an additional mechanism at work.The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus are largely unknown. Recent experiments showed that different mutations introduced in the DNA-binding loop and dimerization interface were important for DNA binding and some of them decreased the nuclear-cytoplasm ratio of NFAT5. To understand the mechanisms of these mutations, we model their effect on protein dynamics and DNA binding. We show that the NFAT5 complex without DNA is much more flexible than the complex with DNA. Moreover, DNA binding considerably stabilizes the overall dimeric complex and the NFAT5 dimer is only marginally stable in the absence of DNA. Two sets of NFAT5 mutations from the same DNA-binding loop are found to have different mechanisms of specific and nonspecific binding to DNA. The R217A/E223A/R226A (R293A/E299A/R302A using isoform c numbering) mutant is characterized by significantly compromised binding to DNA and higher complex flexibility. On the contrary, the T222D (T298D in isoform c) mutation, a potential phosphomimetic mutation, makes the overall complex more rigid and does not significantly affect the DNA binding. Therefore, the reduced nuclear-cytoplasm ratio of NFAT5 can be attributed to reduced binding to DNA for the triple mutant, while the T222D mutant suggests an additional mechanism at work.
The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus are largely unknown. Recent experiments showed that different mutations introduced in the DNA-binding loop and dimerization interface were important for DNA binding and some of them decreased the nuclear–cytoplasm ratio of NFAT5. To understand the mechanisms of these mutations, we model their effect on protein dynamics and DNA binding. We show that the NFAT5 complex without DNA is much more flexible than the complex with DNA. Moreover, DNA binding considerably stabilizes the overall dimeric complex and the NFAT5 dimer is only marginally stable in the absence of DNA. Two sets of NFAT5 mutations from the same DNA-binding loop are found to have different mechanisms of specific and nonspecific binding to DNA. The R217A/E223A/R226A (R293A/E299A/R302A using isoform c numbering) mutant is characterized by significantly compromised binding to DNA and higher complex flexibility. On the contrary, the T222D (T298D in isoform c) mutation, a potential phosphomimetic mutation, makes the overall complex more rigid and does not significantly affect the DNA binding. Therefore, the reduced nuclear–cytoplasm ratio of NFAT5 can be attributed to reduced binding to DNA for the triple mutant, while the T222D mutant suggests an additional mechanism at work.
Author Shoemaker, Benjamin A
Ferraris, Joan D
Burg, Maurice B
Li, Minghui
Thangudu, Ratna R
Panchenko, Anna R
AuthorAffiliation National Institutes of Health
AuthorAffiliation_xml – name: National Institutes of Health
Author_xml – sequence: 1
  givenname: Minghui
  surname: Li
  fullname: Li, Minghui
– sequence: 2
  givenname: Benjamin A
  surname: Shoemaker
  fullname: Shoemaker, Benjamin A
– sequence: 3
  givenname: Ratna R
  surname: Thangudu
  fullname: Thangudu, Ratna R
– sequence: 4
  givenname: Joan D
  surname: Ferraris
  fullname: Ferraris, Joan D
– sequence: 5
  givenname: Maurice B
  surname: Burg
  fullname: Burg, Maurice B
– sequence: 6
  givenname: Anna R
  surname: Panchenko
  fullname: Panchenko, Anna R
  email: panch@ncbi.nlm.nih.gov
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27894511$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23734591$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAQxy1URD_gwAsgX5AAKdQfceJckJaWBaSl5bA9WxPHKV5l7WAnoL3xDrwhT4JXm7aAKvZg2fL8_PfMf-YYHTjvDEJPKXlNCaOnqz4nnFMCD9ARFYxkaZUH07mgpDhExzGuCGGCyeIROmS85Lmo6BHafBoHGKx3EVuHzy9m2VvrGuuu8cL7HvsWX8xnS4GXAVzUwfZbFs9BDz7gz8E3ozb4ytmvo8GX46D92kSciBQajHW_fvxMmvhGE1yDzzcO1lbHx-hhC100T6b9BF3N3y3PPmSLy_cfz2aLDApChkzzoqlZXRFdU0GBgSSyaQzXDdElbctUXslM3dAWCq1JKWkBogHCZV2kG-An6NVOd3Q9bL5D16k-2DWEjaJEbf1Tt_4l-M0O7sd6bRpt3BDg7oEHq_6OOPtFXftvisv0NWNJ4MUkEHzyJA5qbaM2XQfO-DEqRggRlDJZ7kVpKbhgFWNyPyp4LmlVVfsToPm28ZTIIqHP_iz2tsqb6UjA8wmAqKFr0wxoG--4UlZ5KiZxpztOBx9jMK3SdjdVySPb3evzy39e_K8nUxago1r5Mbg0LvdwvwGTOfKC
CitedBy_id crossref_primary_10_1016_j_jmgm_2020_107804
crossref_primary_10_1039_C4CP05413J
crossref_primary_10_1371_journal_pcbi_1006615
crossref_primary_10_1080_08927022_2020_1751842
crossref_primary_10_1016_j_jmgm_2017_12_001
crossref_primary_10_1080_07391102_2020_1760133
crossref_primary_10_1080_07391102_2024_2315326
crossref_primary_10_1093_nar_gkw374
crossref_primary_10_3390_ijms19072113
crossref_primary_10_1080_07391102_2019_1664933
crossref_primary_10_1016_j_molliq_2019_111159
crossref_primary_10_1021_ct401022c
crossref_primary_10_3389_fgene_2014_00270
Cites_doi 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G
10.1002/jcc.540040211
10.1529/biophysj.106.092122
10.1002/prot.340210302
10.1023/A:1008763014207
10.1016/0022-2836(85)90411-5
10.1021/ja065531n
10.1063/1.478193
10.1093/nar/gkm322
10.1021/jp973084f
10.1161/ATVBAHA.111.232165
10.1093/nar/gkh253
10.1093/nar/gkr997
10.1126/science.1097064
10.1074/jbc.M803997200
10.1093/nar/gkq1189
10.1073/pnas.160259697
10.1002/prot.24230
10.1074/jbc.M602556200
10.1002/prot.340170408
10.1021/jp970736r
10.1080/073911012010525019
10.1021/bi2008257
10.1074/jbc.M710550200
10.1002/(SICI)1097-0134(20000101)38:1<115::AID-PROT11>3.0.CO;2-P
10.1038/nsb749
10.1038/nature08473
10.1096/fj.04-3590hyp
10.1021/jp101373p
10.1093/protein/gzq094
10.1016/S1074-7613(01)00165-0
10.1152/ajpcell.00265.2012
10.1103/PhysRevA.31.1695
10.1002/jcc.20289
10.1093/nar/gkn314
10.1152/physrev.00056.2006
10.1063/1.477414
10.1016/S0022-2836(02)00442-4
10.1093/nar/gkg584
ContentType Journal Article
Copyright Copyright © 2013 U.S. Government
2015 INIST-CNRS
Copyright © 2013 U.S. Government 2013 U.S. Government
Copyright_xml – notice: Copyright © 2013 U.S. Government
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013 U.S. Government 2013 U.S. Government
DBID N~.
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1021/jp403310a
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Nucleic Acids Abstracts
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
Materials Research Database

MEDLINE
Nucleic Acids Abstracts
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 13234
ExternalDocumentID 10.1021/jp403310a
PMC3807822
23734591
27894511
10_1021_jp403310a
d284650748
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID -
.K2
02
123
29L
4.4
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
N~.
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
186
6TJ
9M8
ABDPE
ACRPL
ADNMO
AETEA
AEYZD
AFFNX
AI.
ANPPW
ANTXH
IQODW
MVM
NHB
UQL
VH1
VOH
VQP
XOL
ZCG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
5PM
ADTOC
AGQPQ
UNPAY
ID FETCH-LOGICAL-a600t-c36db2b90cb151a2a808dde3cd0c71f761072ebd1fa6cc07816a5da038b6a6ca3
IEDL.DBID UNPAY
ISSN 1520-6106
1520-5207
IngestDate Tue Aug 19 23:56:57 EDT 2025
Tue Sep 30 16:42:04 EDT 2025
Fri Jul 11 06:51:12 EDT 2025
Fri Jul 11 12:40:37 EDT 2025
Fri Jul 11 01:57:52 EDT 2025
Thu Jul 10 19:04:25 EDT 2025
Mon Jul 21 05:48:35 EDT 2025
Wed Apr 02 07:25:25 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Tue Jul 01 00:21:51 EDT 2025
Thu Aug 27 13:42:39 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Keywords Transcription
Poisson-Boltzmann equation
DNA
Binding energy
Protein
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
CC BY 4.0
Terms of Use
publisher-specific-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a600t-c36db2b90cb151a2a808dde3cd0c71f761072ebd1fa6cc07816a5da038b6a6ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.acs.org/doi/pdf/10.1021/jp403310a
PMID 23734591
PQID 1445911086
PQPubID 23479
PageCount 9
ParticipantIDs unpaywall_primary_10_1021_jp403310a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3807822
proquest_miscellaneous_2000511287
proquest_miscellaneous_1753529228
proquest_miscellaneous_1534819992
proquest_miscellaneous_1445911086
pubmed_primary_23734591
pascalfrancis_primary_27894511
crossref_citationtrail_10_1021_jp403310a
crossref_primary_10_1021_jp403310a
acs_journals_10_1021_jp403310a
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
N~.
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-24
PublicationDateYYYYMMDD 2013-10-24
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-24
  day: 24
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Spassov V. Z. (ref22/cit22) 2013; 81
Li M. (ref24/cit24) 2011; 50
Shen T. (ref39/cit39) 2005; 19
Martyna G. J. (ref11/cit11) 1999; 110
Hoover W. G. (ref13/cit13) 1985; 31
Obenauer J. C. (ref29/cit29) 2003; 31
MacKerrell A. D. J. (ref15/cit15) 1998; 102
Lopez-Rodriguez C. (ref4/cit4) 2001; 15
Marchler-Bauer A. (ref6/cit6) 2011; 39
Brooks B. R. (ref26/cit26) 1983; 4
Burg M. B. (ref1/cit1) 2007; 87
Russell S. T. (ref19/cit19) 1985; 185
Wong Y. H. (ref30/cit30) 2007; 35
Amadei A. (ref17/cit17) 1993; 17
Tong E. H. (ref7/cit7) 2006; 281
Shoemaker B. A. (ref28/cit28) 2012; 40
Stroud J. C. (ref5/cit5) 2002; 9
Jo S. (ref20/cit20) 2008; 36
Bertonati C. (ref10/cit10) 2007; 92
Chirgadze Y. N. (ref34/cit34) 2012; 29
Olson M. A. (ref23/cit23) 2000; 38
Chen M. (ref2/cit2) 2009; 284
Halterman J. A. (ref3/cit3) 2011; 31
Iakoucheva L. M. (ref32/cit32) 2004; 32
Shoemaker B. A. (ref38/cit38) 2000; 97
Humphrey W. (ref9/cit9) 1996; 14
Li M. H. (ref18/cit18) 2010; 114
Guerois R. (ref27/cit27) 2002; 320
Xue Y. (ref31/cit31) 2011; 24
Rohs R. (ref33/cit33) 2009; 461
Massova I. (ref21/cit21) 2000; 18
Phillips J. C. (ref14/cit14) 2005; 26
Foloppe N. (ref16/cit16) 2000; 21
Levy Y. (ref37/cit37) 2007; 129
Kwon M. S. (ref40/cit40) 2008; 283
Nina M. (ref25/cit25) 1997; 101
Izumi Y. (ref8/cit8) 2012; 303
Deserno M. (ref12/cit12) 1998; 109
Kalodimos C. G. (ref35/cit35) 2004; 305
Bryngelson J. D. (ref36/cit36) 1995; 21
19865164 - Nature. 2009 Oct 29;461(7268):1248-53
21757659 - Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2287-96
11485737 - Immunity. 2001 Jul;15(1):47-58
11780147 - Nat Struct Biol. 2002 Feb;9(2):90-4
20405878 - J Phys Chem B. 2010 May 13;114(18):6216-24
8744570 - J Mol Graph. 1996 Feb;14(1):33-8, 27-8
17928589 - Physiol Rev. 2007 Oct;87(4):1441-74
21109532 - Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9
17517770 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W588-94
21910419 - Biochemistry. 2011 Oct 11;50(40):8645-55
12824383 - Nucleic Acids Res. 2003 Jul 1;31(13):3635-41
15256668 - Science. 2004 Jul 16;305(5682):386-9
16782704 - J Biol Chem. 2006 Aug 18;281(33):23870-9
10908673 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8868-73
16222654 - J Comput Chem. 2005 Dec;26(16):1781-802
18579527 - J Biol Chem. 2008 Aug 15;283(33):22400-9
16126906 - FASEB J. 2005 Sep;19(11):1389-95
14960716 - Nucleic Acids Res. 2004;32(3):1037-49
23239118 - Proteins. 2013 Apr;81(4):704-14
17208980 - Biophys J. 2007 Mar 15;92(6):1891-9
24889800 - J Phys Chem B. 1998 Apr 30;102(18):3586-616
22102591 - Nucleic Acids Res. 2012 Jan;40(Database issue):D834-40
17243791 - J Am Chem Soc. 2007 Jan 31;129(4):738-9
22992674 - Am J Physiol Cell Physiol. 2012 Nov 15;303(10):C1061-9
12079393 - J Mol Biol. 2002 Jul 5;320(2):369-87
7784423 - Proteins. 1995 Mar;21(3):167-95
9895674 - Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697
21062758 - Protein Eng Des Sel. 2011 Mar;24(3):255-60
18508808 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W270-5
19011242 - J Biol Chem. 2009 Jan 16;284(3):1484-94
2414450 - J Mol Biol. 1985 Sep 20;185(2):389-404
8108382 - Proteins. 1993 Dec;17(4):412-25
22208274 - J Biomol Struct Dyn. 2012;29(4):715-31
10651043 - Proteins. 2000 Jan 1;38(1):115-9
References_xml – volume: 21
  start-page: 86
  year: 2000
  ident: ref16/cit16
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G
– volume: 4
  start-page: 187
  year: 1983
  ident: ref26/cit26
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540040211
– volume: 92
  start-page: 1891
  year: 2007
  ident: ref10/cit10
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.092122
– volume: 21
  start-page: 167
  year: 1995
  ident: ref36/cit36
  publication-title: Proteins
  doi: 10.1002/prot.340210302
– volume: 18
  start-page: 113
  year: 2000
  ident: ref21/cit21
  publication-title: Perspect. Drug Discovery Des.
  doi: 10.1023/A:1008763014207
– volume: 185
  start-page: 389
  year: 1985
  ident: ref19/cit19
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(85)90411-5
– volume: 129
  start-page: 738
  year: 2007
  ident: ref37/cit37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065531n
– volume: 110
  start-page: 3275
  year: 1999
  ident: ref11/cit11
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478193
– volume: 35
  start-page: W588
  year: 2007
  ident: ref30/cit30
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm322
– volume: 102
  start-page: 3586
  year: 1998
  ident: ref15/cit15
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp973084f
– volume: 31
  start-page: 2287
  year: 2011
  ident: ref3/cit3
  publication-title: Arterioscler., Thromb., Vasc. Biol.
  doi: 10.1161/ATVBAHA.111.232165
– volume: 32
  start-page: 1037
  year: 2004
  ident: ref32/cit32
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh253
– volume: 14
  start-page: 27
  issue: 33
  year: 1996
  ident: ref9/cit9
  publication-title: J. Mol. Graphics
– volume: 40
  start-page: D834
  year: 2012
  ident: ref28/cit28
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr997
– volume: 305
  start-page: 386
  year: 2004
  ident: ref35/cit35
  publication-title: Science
  doi: 10.1126/science.1097064
– volume: 284
  start-page: 1484
  year: 2009
  ident: ref2/cit2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M803997200
– volume: 39
  start-page: D225
  year: 2011
  ident: ref6/cit6
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1189
– volume: 97
  start-page: 8868
  year: 2000
  ident: ref38/cit38
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.160259697
– volume: 81
  start-page: 704
  year: 2013
  ident: ref22/cit22
  publication-title: Proteins
  doi: 10.1002/prot.24230
– volume: 281
  start-page: 23870
  year: 2006
  ident: ref7/cit7
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M602556200
– volume: 17
  start-page: 412
  year: 1993
  ident: ref17/cit17
  publication-title: Proteins
  doi: 10.1002/prot.340170408
– volume: 101
  start-page: 5239
  year: 1997
  ident: ref25/cit25
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp970736r
– volume: 29
  start-page: 715
  year: 2012
  ident: ref34/cit34
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/073911012010525019
– volume: 50
  start-page: 8645
  year: 2011
  ident: ref24/cit24
  publication-title: Biochemistry
  doi: 10.1021/bi2008257
– volume: 283
  start-page: 22400
  year: 2008
  ident: ref40/cit40
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M710550200
– volume: 38
  start-page: 115
  year: 2000
  ident: ref23/cit23
  publication-title: Proteins
  doi: 10.1002/(SICI)1097-0134(20000101)38:1<115::AID-PROT11>3.0.CO;2-P
– volume: 9
  start-page: 90
  year: 2002
  ident: ref5/cit5
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb749
– volume: 461
  start-page: 1248
  year: 2009
  ident: ref33/cit33
  publication-title: Nature
  doi: 10.1038/nature08473
– volume: 19
  start-page: 1389
  year: 2005
  ident: ref39/cit39
  publication-title: FASEB J.
  doi: 10.1096/fj.04-3590hyp
– volume: 114
  start-page: 6216
  year: 2010
  ident: ref18/cit18
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp101373p
– volume: 24
  start-page: 255
  year: 2011
  ident: ref31/cit31
  publication-title: Protein Eng., Des. Sel.
  doi: 10.1093/protein/gzq094
– volume: 15
  start-page: 47
  year: 2001
  ident: ref4/cit4
  publication-title: Immunity
  doi: 10.1016/S1074-7613(01)00165-0
– volume: 303
  start-page: C1061
  year: 2012
  ident: ref8/cit8
  publication-title: Am. J. Physiol.: Cell Physiol.
  doi: 10.1152/ajpcell.00265.2012
– volume: 31
  start-page: 1695
  year: 1985
  ident: ref13/cit13
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume: 26
  start-page: 1781
  year: 2005
  ident: ref14/cit14
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20289
– volume: 36
  start-page: W270
  year: 2008
  ident: ref20/cit20
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn314
– volume: 87
  start-page: 1441
  year: 2007
  ident: ref1/cit1
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00056.2006
– volume: 109
  start-page: 7678
  year: 1998
  ident: ref12/cit12
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477414
– volume: 320
  start-page: 369
  year: 2002
  ident: ref27/cit27
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)00442-4
– volume: 31
  start-page: 3635
  year: 2003
  ident: ref29/cit29
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg584
– reference: 17517770 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W588-94
– reference: 23239118 - Proteins. 2013 Apr;81(4):704-14
– reference: 17208980 - Biophys J. 2007 Mar 15;92(6):1891-9
– reference: 10651043 - Proteins. 2000 Jan 1;38(1):115-9
– reference: 16782704 - J Biol Chem. 2006 Aug 18;281(33):23870-9
– reference: 18579527 - J Biol Chem. 2008 Aug 15;283(33):22400-9
– reference: 10908673 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8868-73
– reference: 14960716 - Nucleic Acids Res. 2004;32(3):1037-49
– reference: 18508808 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W270-5
– reference: 11780147 - Nat Struct Biol. 2002 Feb;9(2):90-4
– reference: 22102591 - Nucleic Acids Res. 2012 Jan;40(Database issue):D834-40
– reference: 9895674 - Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697
– reference: 22992674 - Am J Physiol Cell Physiol. 2012 Nov 15;303(10):C1061-9
– reference: 12824383 - Nucleic Acids Res. 2003 Jul 1;31(13):3635-41
– reference: 21910419 - Biochemistry. 2011 Oct 11;50(40):8645-55
– reference: 19011242 - J Biol Chem. 2009 Jan 16;284(3):1484-94
– reference: 12079393 - J Mol Biol. 2002 Jul 5;320(2):369-87
– reference: 17928589 - Physiol Rev. 2007 Oct;87(4):1441-74
– reference: 24889800 - J Phys Chem B. 1998 Apr 30;102(18):3586-616
– reference: 17243791 - J Am Chem Soc. 2007 Jan 31;129(4):738-9
– reference: 2414450 - J Mol Biol. 1985 Sep 20;185(2):389-404
– reference: 15256668 - Science. 2004 Jul 16;305(5682):386-9
– reference: 21062758 - Protein Eng Des Sel. 2011 Mar;24(3):255-60
– reference: 19865164 - Nature. 2009 Oct 29;461(7268):1248-53
– reference: 16126906 - FASEB J. 2005 Sep;19(11):1389-95
– reference: 21757659 - Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2287-96
– reference: 20405878 - J Phys Chem B. 2010 May 13;114(18):6216-24
– reference: 22208274 - J Biomol Struct Dyn. 2012;29(4):715-31
– reference: 16222654 - J Comput Chem. 2005 Dec;26(16):1781-802
– reference: 8744570 - J Mol Graph. 1996 Feb;14(1):33-8, 27-8
– reference: 8108382 - Proteins. 1993 Dec;17(4):412-25
– reference: 21109532 - Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9
– reference: 7784423 - Proteins. 1995 Mar;21(3):167-95
– reference: 11485737 - Immunity. 2001 Jul;15(1):47-58
SSID ssj0025286
Score 2.194983
Snippet The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several...
The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13226
SubjectTerms Activated
Binding
Binding Sites
Biological and medical sciences
Deoxyribonucleic acid
dimerization
Dimers
DNA
DNA - metabolism
Dynamics
Flexibility
Fundamental and applied biological sciences. Psychology
Humans
Intermolecular phenomena
Mathematical models
Molecular biophysics
Molecular Dynamics Simulation
mutants
Mutation
Mutations
physical chemistry
Principal Component Analysis
Protein Binding
Protein Structure, Tertiary
Software
T-lymphocytes
transactivators
transcription (genetics)
Transcription Factors - chemistry
Transcription Factors - genetics
Transcription Factors - metabolism
SummonAdditionalLinks – databaseName: American Chemical Society Journals
  dbid: ACS
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5V5VAkVN7UPKKFcuDi1l57_TiGhKhCNFSikXqLxuu1MIS1hW2hcOI_8A_5JcyuY9OoSTjaHlvrnfHON1rP9xHymgELYw6-HUHEbR8PbUh4ZCOYE0Jk4EqhG5zPp8HZzH9_xa_2yPGWHXzmnn4pfcdDEIIg6BYLIldXWMPRp76q4szIOWIe0nWQE3T0Qddv1alHVGup504JFc5C1spXbMKXN3-TPGhUCcsfsFhcy0GTu2TcdfK0v558PWnq5ET8vEnsuOv17pHDFQalwzZo7pM9qR6Qg1En_faQLM-bdoe-ormi4-nQfpub7hf6oShKWmR0OhlecmoSXbfs0ImR7qEXhkNW0pmhhqUfmxqDWlYULS40KUSu_vz6jc-k3TNBpXS8VPAtF9UjMpu8uxyd2SuNBhsQKtW28LQgVRI7IkHsAAwiJ8IV0xOpI0I3C9EjIZNJ6mYQCKGZhQLgKThelAR4BrzHZF8VSh4R6mUSVzxcQVOslKWEOEtDxwXhxjxxBGQWGaAT56tvrJqb7XOG5Us3gxZ50_l3LlYM51poY7HJ9FVvWra0HpuMBmtB0lvq7mHN62aRl13UzNFDeqsFlCwaHJvv81h3WAQ7bLhugkaAznbYhJp-J2Ys2m7DDA5HnBFa5Ekbsf9G6oWeHolFwrVY7g00u_j6FZV_NizjRomA4diO-6jfPlVP_-ebZ-Q200IimPWZ_5zs198b-QLhXJ0MzOf8FxeyRjQ
  priority: 102
  providerName: American Chemical Society
Title Mutations in DNA-Binding Loop of NFAT5 Transcription Factor Produce Unique Outcomes on Protein–DNA Binding and Dynamics
URI http://dx.doi.org/10.1021/jp403310a
https://www.ncbi.nlm.nih.gov/pubmed/23734591
https://www.proquest.com/docview/1445911086
https://www.proquest.com/docview/1534819992
https://www.proquest.com/docview/1753529228
https://www.proquest.com/docview/2000511287
https://pubmed.ncbi.nlm.nih.gov/PMC3807822
https://pubs.acs.org/doi/pdf/10.1021/jp403310a
UnpaywallVersion publishedVersion
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025286
  issn: 1520-6106
  databaseCode: ACS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jj9MwFLZQ5zBIiH0JS2WWA5eUxNmPpUM1QkymElNpOFUvjiMCxYlIIlQOiP_AP-SX8OwsTKEzmkOrLl-sF_vZ_p6c9z1CXjBgQeSBa4YQeqaLX01IvNBEMsc5z8AWXCU4H8X-4dJ9e-qddoGiyoVBIypsqdKH-GpWl2nWKQzYrz6VruUgH0E-tOerA6UR2VvGi-kHLYqKcRC-gv4z8gK_lxI6e63ahni1tQ1dK6HCHsnaUha7uOb_j0zuN7KEzTdYr8_sR_Mb5Hi4E_0YyudJUycT_v0fkcfL3-pNcr2jpnTa-tItckXI22R_1leEu0M2R017cF_RXNKDeGq-znVSDH1XFCUtMhrPpyce1ftfvxrRua7oQxdaWlbQpVaMpcdNjb4uKoqIhdKKyOXvn7-wTdq3CTKlBxsJX3Je3SXL-ZuT2aHZlW4wAcelNrmj6lQlkcUTpBTAILRCXEgdnlo8sLMABydgIkntDHzOleCQD14KlhMmPv4Czj0ykoUUDwh1MoELIS6sKQbQQkCUpYFlA7cjL7E4ZAYZYyeuuqlXrfSpOsOopu9Bg7zsh3rFO-FzVX9jvQv6bICWrdrHLtB4y18GpEoqVnJvBnnaO9AKR0idwIAURYO2ua4XqcQL_wKMp3KjkbezCzCBUuWJGAvPxzBNz5F-BAa53zrvX0udwFGWGCTYcusBoETHt_-R-UctPq4LFDC07fkwAc7vqoeXQj0iV5kqMoKMgLmPyaj-2ognSPXqZIyhzuw9vsc_JuNurv8BN85TUA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQcigS4v0Ij2IeBy7ZTZz3sXSpCrRlJVppb9HEcUR2SxKRRKic-A_8Q34JY-exW-guHJNMrLE98XyWM99HyCsGzAscsHUffEe38VKHyPF1BHOc8wRMwWWB83zhTlf2-2PnuKXJkbUw6ESJLZXqEP-MXcA8OClsw0IsgljoqmJAkTBo_KnfXDlMqTpiOpLbIcPtWITOvyozEC-3MtD1AkocjKRRsdgFM__-W3JQZwVsvsF6fS4VTW42mkaqE-oPlNP9uor2-fc_-B3_r5e3yI0WkdJRE0K3yRWR3SGDcScEd5ds5nVzXl_SNKOHi5H-JlW1MHSW5wXNE7qYjJYOVWmvW4ToRAn50CPFKCvoShHF0o91hSEuSooWR5IiIs1-_fiJbdKuTchierjJ4EvKy3tkNXm7HE_1VrFBBwROlc4tKU8VBQaPEEkAA9_wcf20eGxwz0w8nBiPiSg2E3A5lzxDLjgxGJYfuXgHrPtkL8sz8ZBQKxG4_uF6GuO-WQgIktgzTOBm4EQGh0QjQxzAsP3iylAdpjPczHQjqJHX3TSHvOU7l7Ib612mL3rToiH52GU03IqV3lLWEkuWN40874InxBmSBy-QibxG32yMV1lv4V5i48iSaITr7BIbT5LxBIz5F9swhcoRdXgaedAE7pmnlmdJTzTibYV0byC5xrefZOlnxTmudAkY-vayD_6Lh-rRv-bmGRlMl_NZOHu3-PCYXGNSYgTxALOfkL3qay2eItCroqH6wn8D5-ZOnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELbQIrFICPEmPIp5HLgEEifO41i2RAvshh620t6qieOIoiqJSCO0F8R_4B_yS5hxHmxFdzmmmVqWZ-z5Rs58H2OvBIgwluDbEUTS9vHRhkxGNoI5pVQBrlbU4HycBocL_-OpPO0LReqFwUk0OFJjLvFpV9d50TMMuG-_1r7jIR5BPHQVgYhHcZ3-eDMWWFIYZUdMSVQSOcHAJHT-r5SFVLOVhW7U0OCCFJ2SxS6o-e8Xk_ttWcPZd1ivz6Wj5Ba72eNIPu0cf5td0eUdtn8wyLfdZWfHbXfL3vBVyWfp1H63Mh0s_Kiqal4VPE2mJ5KbZDUcHTwx8jt8bnhgNV8Yelf-ud1gYOqGo8WciB1W5e-fv3BMPowJZc5nnbh9c48tkvcnB4d2r7NgA8Kdja08EpXKYkdlmP9BQOREeOp5KndU6BYhLmUodJa7BQRKETtQADIHx4uyAH8B7z7bK6tSP2TcKzSeWngK5ljtag1xkYeOC8qNZeYoKCw2wdVf9vukWZorcIElyOAei70eHLNUPUs5iWWsd5m-GE3rjppjl9Fky7ujJXUAEzebxZ4P7l6ih-i6BEpdtTg335cxdUkEl9hIamRGkC0usQmJQicWIrrYRhgsjVghtNiDLtT-ztQLPZqJxcKtIBwNiCF8-025-mKYwo2agMC5vRzD9eKlevQ_3zxj1-azZHn0If30mF0XpAuCSVz4T9je5lurnyI622QTsyX_AOEMNnE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZQ9zAkNO4QLpW5PPCSkTgXJ49lo5oQ6_qwSuOpOnEcEeiciCRC5Yn_wD_kl3DsXFihm_ZQKW2_WCf2sf1ZJ-c7hLxmwHgcgG9HEAW2j19tSILIRjInhMjAlUInOB_PwqOF_-EsOOsOijoXBo2osKXKBPH1rC7TrFMYcN9-KX3HQz6CfGgn1AGlEdlZzOaTT0YUFc9B-OH9NfKCsJcSuniv3oZEtbEN3Sqhwh7J2lIW27jm_69M7jaqhPV3WK0u7EfT2-RkeBLzGsrX_aZO9sWPf0Qer_-od8heR03ppPWlu-SGVPfI7kFfEe4-WR83beC-ormih7OJ_S43STH0Y1GUtMjobDo5DajZ__rViE5NRR86N9Kyki6MYiw9aWr0dVlRRMy1VkSufv_8hW3Svk1QKT1cKzjPRfWALKbvTw-O7K50gw04LrUtPF2nKokdkSClAAaRE-FC6onUEdzNOA4OZzJJ3QxCIbTgUAhBCo4XJSH-At5DMlKFko8J9TKJCyEurCkeoKWEOEu544Jw4yBxBGQWGWMnLrupVy1NVJ3hqabvQYu86Yd6KTrhc11_Y7UN-nKAlq3axzbQeMNfBqROKtZybxZ50TvQEkdIR2BAyaJB23w_iHXiRXgFJtC50cjb2RUYrlV5YsaiyzHM0HOkH9wij1rn_Wupxz1tiUX4hlsPAC06vvmPyj8b8XFToIChba-GCXB5Vz25Fuopucl0kRFkBMx_Rkb1t0Y-R6pXJ-Nufv8BYV5RPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutations+in+DNA-Binding+Loop+of+NFAT5+Transcription+Factor+Produce+Unique+Outcomes+on+Protein%E2%80%93DNA+Binding+and+Dynamics&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Li%2C+Minghui&rft.au=Shoemaker%2C+Benjamin+A.&rft.au=Thangudu%2C+Ratna+R.&rft.au=Ferraris%2C+Joan+D.&rft.date=2013-10-24&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=117&rft.issue=42&rft.spage=13226&rft.epage=13234&rft_id=info:doi/10.1021%2Fjp403310a&rft_id=info%3Apmid%2F23734591&rft.externalDocID=PMC3807822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon