Mutations in DNA-Binding Loop of NFAT5 Transcription Factor Produce Unique Outcomes on Protein–DNA Binding and Dynamics
The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the...
Saved in:
Published in | The journal of physical chemistry. B Vol. 117; no. 42; pp. 13226 - 13234 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
24.10.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1520-6106 1520-5207 1520-5207 |
DOI | 10.1021/jp403310a |
Cover
Abstract | The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus are largely unknown. Recent experiments showed that different mutations introduced in the DNA-binding loop and dimerization interface were important for DNA binding and some of them decreased the nuclear–cytoplasm ratio of NFAT5. To understand the mechanisms of these mutations, we model their effect on protein dynamics and DNA binding. We show that the NFAT5 complex without DNA is much more flexible than the complex with DNA. Moreover, DNA binding considerably stabilizes the overall dimeric complex and the NFAT5 dimer is only marginally stable in the absence of DNA. Two sets of NFAT5 mutations from the same DNA-binding loop are found to have different mechanisms of specific and nonspecific binding to DNA. The R217A/E223A/R226A (R293A/E299A/R302A using isoform c numbering) mutant is characterized by significantly compromised binding to DNA and higher complex flexibility. On the contrary, the T222D (T298D in isoform c) mutation, a potential phosphomimetic mutation, makes the overall complex more rigid and does not significantly affect the DNA binding. Therefore, the reduced nuclear–cytoplasm ratio of NFAT5 can be attributed to reduced binding to DNA for the triple mutant, while the T222D mutant suggests an additional mechanism at work. |
---|---|
AbstractList | The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus are largely unknown. Recent experiments showed that different mutations introduced in the DNA-binding loop and dimerization interface were important for DNA binding and some of them decreased the nuclear–cytoplasm ratio of NFAT5. To understand the mechanisms of these mutations, we model their effect on protein dynamics and DNA binding. We show that the NFAT5 complex without DNA is much more flexible than the complex with DNA. Moreover, DNA binding considerably stabilizes the overall dimeric complex and the NFAT5 dimer is only marginally stable in the absence of DNA. Two sets of NFAT5 mutations from the same DNA-binding loop are found to have different mechanisms of specific and nonspecific binding to DNA. The R217A/E223A/R226A (R293A/E299A/R302A using isoform c numbering) mutant is characterized by significantly compromised binding to DNA and higher complex flexibility. On the contrary, the T222D (T298D in isoform c) mutation, a potential phosphomimetic mutation, makes the overall complex more rigid and does not significantly affect the DNA binding. Therefore, the reduced nuclear–cytoplasm ratio of NFAT5 can be attributed to reduced binding to DNA for the triple mutant, while the T222D mutant suggests an additional mechanism at work. The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus are largely unknown. Recent experiments showed that different mutations introduced in the DNA-binding loop and dimerization interface were important for DNA binding and some of them decreased the nuclear-cytoplasm ratio of NFAT5. To understand the mechanisms of these mutations, we model their effect on protein dynamics and DNA binding. We show that the NFAT5 complex without DNA is much more flexible than the complex with DNA. Moreover, DNA binding considerably stabilizes the overall dimeric complex and the NFAT5 dimer is only marginally stable in the absence of DNA. Two sets of NFAT5 mutations from the same DNA-binding loop are found to have different mechanisms of specific and nonspecific binding to DNA. The R217A/E223A/R226A (R293A/E299A/R302A using isoform c numbering) mutant is characterized by significantly compromised binding to DNA and higher complex flexibility. On the contrary, the T222D (T298D in isoform c) mutation, a potential phosphomimetic mutation, makes the overall complex more rigid and does not significantly affect the DNA binding. Therefore, the reduced nuclear-cytoplasm ratio of NFAT5 can be attributed to reduced binding to DNA for the triple mutant, while the T222D mutant suggests an additional mechanism at work.The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus are largely unknown. Recent experiments showed that different mutations introduced in the DNA-binding loop and dimerization interface were important for DNA binding and some of them decreased the nuclear-cytoplasm ratio of NFAT5. To understand the mechanisms of these mutations, we model their effect on protein dynamics and DNA binding. We show that the NFAT5 complex without DNA is much more flexible than the complex with DNA. Moreover, DNA binding considerably stabilizes the overall dimeric complex and the NFAT5 dimer is only marginally stable in the absence of DNA. Two sets of NFAT5 mutations from the same DNA-binding loop are found to have different mechanisms of specific and nonspecific binding to DNA. The R217A/E223A/R226A (R293A/E299A/R302A using isoform c numbering) mutant is characterized by significantly compromised binding to DNA and higher complex flexibility. On the contrary, the T222D (T298D in isoform c) mutation, a potential phosphomimetic mutation, makes the overall complex more rigid and does not significantly affect the DNA binding. Therefore, the reduced nuclear-cytoplasm ratio of NFAT5 can be attributed to reduced binding to DNA for the triple mutant, while the T222D mutant suggests an additional mechanism at work. The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus are largely unknown. Recent experiments showed that different mutations introduced in the DNA-binding loop and dimerization interface were important for DNA binding and some of them decreased the nuclear–cytoplasm ratio of NFAT5. To understand the mechanisms of these mutations, we model their effect on protein dynamics and DNA binding. We show that the NFAT5 complex without DNA is much more flexible than the complex with DNA. Moreover, DNA binding considerably stabilizes the overall dimeric complex and the NFAT5 dimer is only marginally stable in the absence of DNA. Two sets of NFAT5 mutations from the same DNA-binding loop are found to have different mechanisms of specific and nonspecific binding to DNA. The R217A/E223A/R226A (R293A/E299A/R302A using isoform c numbering) mutant is characterized by significantly compromised binding to DNA and higher complex flexibility. On the contrary, the T222D (T298D in isoform c) mutation, a potential phosphomimetic mutation, makes the overall complex more rigid and does not significantly affect the DNA binding. Therefore, the reduced nuclear–cytoplasm ratio of NFAT5 can be attributed to reduced binding to DNA for the triple mutant, while the T222D mutant suggests an additional mechanism at work. |
Author | Shoemaker, Benjamin A Ferraris, Joan D Burg, Maurice B Li, Minghui Thangudu, Ratna R Panchenko, Anna R |
AuthorAffiliation | National Institutes of Health |
AuthorAffiliation_xml | – name: National Institutes of Health |
Author_xml | – sequence: 1 givenname: Minghui surname: Li fullname: Li, Minghui – sequence: 2 givenname: Benjamin A surname: Shoemaker fullname: Shoemaker, Benjamin A – sequence: 3 givenname: Ratna R surname: Thangudu fullname: Thangudu, Ratna R – sequence: 4 givenname: Joan D surname: Ferraris fullname: Ferraris, Joan D – sequence: 5 givenname: Maurice B surname: Burg fullname: Burg, Maurice B – sequence: 6 givenname: Anna R surname: Panchenko fullname: Panchenko, Anna R email: panch@ncbi.nlm.nih.gov |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27894511$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23734591$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAQxy1URD_gwAsgX5AAKdQfceJckJaWBaSl5bA9WxPHKV5l7WAnoL3xDrwhT4JXm7aAKvZg2fL8_PfMf-YYHTjvDEJPKXlNCaOnqz4nnFMCD9ARFYxkaZUH07mgpDhExzGuCGGCyeIROmS85Lmo6BHafBoHGKx3EVuHzy9m2VvrGuuu8cL7HvsWX8xnS4GXAVzUwfZbFs9BDz7gz8E3ozb4ytmvo8GX46D92kSciBQajHW_fvxMmvhGE1yDzzcO1lbHx-hhC100T6b9BF3N3y3PPmSLy_cfz2aLDApChkzzoqlZXRFdU0GBgSSyaQzXDdElbctUXslM3dAWCq1JKWkBogHCZV2kG-An6NVOd3Q9bL5D16k-2DWEjaJEbf1Tt_4l-M0O7sd6bRpt3BDg7oEHq_6OOPtFXftvisv0NWNJ4MUkEHzyJA5qbaM2XQfO-DEqRggRlDJZ7kVpKbhgFWNyPyp4LmlVVfsToPm28ZTIIqHP_iz2tsqb6UjA8wmAqKFr0wxoG--4UlZ5KiZxpztOBx9jMK3SdjdVySPb3evzy39e_K8nUxago1r5Mbg0LvdwvwGTOfKC |
CitedBy_id | crossref_primary_10_1016_j_jmgm_2020_107804 crossref_primary_10_1039_C4CP05413J crossref_primary_10_1371_journal_pcbi_1006615 crossref_primary_10_1080_08927022_2020_1751842 crossref_primary_10_1016_j_jmgm_2017_12_001 crossref_primary_10_1080_07391102_2020_1760133 crossref_primary_10_1080_07391102_2024_2315326 crossref_primary_10_1093_nar_gkw374 crossref_primary_10_3390_ijms19072113 crossref_primary_10_1080_07391102_2019_1664933 crossref_primary_10_1016_j_molliq_2019_111159 crossref_primary_10_1021_ct401022c crossref_primary_10_3389_fgene_2014_00270 |
Cites_doi | 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G 10.1002/jcc.540040211 10.1529/biophysj.106.092122 10.1002/prot.340210302 10.1023/A:1008763014207 10.1016/0022-2836(85)90411-5 10.1021/ja065531n 10.1063/1.478193 10.1093/nar/gkm322 10.1021/jp973084f 10.1161/ATVBAHA.111.232165 10.1093/nar/gkh253 10.1093/nar/gkr997 10.1126/science.1097064 10.1074/jbc.M803997200 10.1093/nar/gkq1189 10.1073/pnas.160259697 10.1002/prot.24230 10.1074/jbc.M602556200 10.1002/prot.340170408 10.1021/jp970736r 10.1080/073911012010525019 10.1021/bi2008257 10.1074/jbc.M710550200 10.1002/(SICI)1097-0134(20000101)38:1<115::AID-PROT11>3.0.CO;2-P 10.1038/nsb749 10.1038/nature08473 10.1096/fj.04-3590hyp 10.1021/jp101373p 10.1093/protein/gzq094 10.1016/S1074-7613(01)00165-0 10.1152/ajpcell.00265.2012 10.1103/PhysRevA.31.1695 10.1002/jcc.20289 10.1093/nar/gkn314 10.1152/physrev.00056.2006 10.1063/1.477414 10.1016/S0022-2836(02)00442-4 10.1093/nar/gkg584 |
ContentType | Journal Article |
Copyright | Copyright © 2013 U.S. Government 2015 INIST-CNRS Copyright © 2013 U.S. Government 2013 U.S. Government |
Copyright_xml | – notice: Copyright © 2013 U.S. Government – notice: 2015 INIST-CNRS – notice: Copyright © 2013 U.S. Government 2013 U.S. Government |
DBID | N~. AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TM 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 5PM ADTOC UNPAY |
DOI | 10.1021/jp403310a |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Nucleic Acids Abstracts Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Materials Research Database MEDLINE Nucleic Acids Abstracts |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5207 |
EndPage | 13234 |
ExternalDocumentID | 10.1021/jp403310a PMC3807822 23734591 27894511 10_1021_jp403310a d284650748 |
Genre | Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural NIH HHS |
GroupedDBID | - .K2 02 123 29L 4.4 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 N~. PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZGI ZHY --- -~X .DC AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 186 6TJ 9M8 ABDPE ACRPL ADNMO AETEA AEYZD AFFNX AI. ANPPW ANTXH IQODW MVM NHB UQL VH1 VOH VQP XOL ZCG CGR CUY CVF ECM EIF NPM 7X8 7TM 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 5PM ADTOC AGQPQ UNPAY |
ID | FETCH-LOGICAL-a600t-c36db2b90cb151a2a808dde3cd0c71f761072ebd1fa6cc07816a5da038b6a6ca3 |
IEDL.DBID | UNPAY |
ISSN | 1520-6106 1520-5207 |
IngestDate | Tue Aug 19 23:56:57 EDT 2025 Tue Sep 30 16:42:04 EDT 2025 Fri Jul 11 06:51:12 EDT 2025 Fri Jul 11 12:40:37 EDT 2025 Fri Jul 11 01:57:52 EDT 2025 Thu Jul 10 19:04:25 EDT 2025 Mon Jul 21 05:48:35 EDT 2025 Wed Apr 02 07:25:25 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Tue Jul 01 00:21:51 EDT 2025 Thu Aug 27 13:42:39 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Keywords | Transcription Poisson-Boltzmann equation DNA Binding energy Protein |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html CC BY 4.0 Terms of Use publisher-specific-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a600t-c36db2b90cb151a2a808dde3cd0c71f761072ebd1fa6cc07816a5da038b6a6ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.acs.org/doi/pdf/10.1021/jp403310a |
PMID | 23734591 |
PQID | 1445911086 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | unpaywall_primary_10_1021_jp403310a pubmedcentral_primary_oai_pubmedcentral_nih_gov_3807822 proquest_miscellaneous_2000511287 proquest_miscellaneous_1753529228 proquest_miscellaneous_1534819992 proquest_miscellaneous_1445911086 pubmed_primary_23734591 pascalfrancis_primary_27894511 crossref_citationtrail_10_1021_jp403310a crossref_primary_10_1021_jp403310a acs_journals_10_1021_jp403310a |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ N~. UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-24 |
PublicationDateYYYYMMDD | 2013-10-24 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | The journal of physical chemistry. B |
PublicationTitleAlternate | J. Phys. Chem. B |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Spassov V. Z. (ref22/cit22) 2013; 81 Li M. (ref24/cit24) 2011; 50 Shen T. (ref39/cit39) 2005; 19 Martyna G. J. (ref11/cit11) 1999; 110 Hoover W. G. (ref13/cit13) 1985; 31 Obenauer J. C. (ref29/cit29) 2003; 31 MacKerrell A. D. J. (ref15/cit15) 1998; 102 Lopez-Rodriguez C. (ref4/cit4) 2001; 15 Marchler-Bauer A. (ref6/cit6) 2011; 39 Brooks B. R. (ref26/cit26) 1983; 4 Burg M. B. (ref1/cit1) 2007; 87 Russell S. T. (ref19/cit19) 1985; 185 Wong Y. H. (ref30/cit30) 2007; 35 Amadei A. (ref17/cit17) 1993; 17 Tong E. H. (ref7/cit7) 2006; 281 Shoemaker B. A. (ref28/cit28) 2012; 40 Stroud J. C. (ref5/cit5) 2002; 9 Jo S. (ref20/cit20) 2008; 36 Bertonati C. (ref10/cit10) 2007; 92 Chirgadze Y. N. (ref34/cit34) 2012; 29 Olson M. A. (ref23/cit23) 2000; 38 Chen M. (ref2/cit2) 2009; 284 Halterman J. A. (ref3/cit3) 2011; 31 Iakoucheva L. M. (ref32/cit32) 2004; 32 Shoemaker B. A. (ref38/cit38) 2000; 97 Humphrey W. (ref9/cit9) 1996; 14 Li M. H. (ref18/cit18) 2010; 114 Guerois R. (ref27/cit27) 2002; 320 Xue Y. (ref31/cit31) 2011; 24 Rohs R. (ref33/cit33) 2009; 461 Massova I. (ref21/cit21) 2000; 18 Phillips J. C. (ref14/cit14) 2005; 26 Foloppe N. (ref16/cit16) 2000; 21 Levy Y. (ref37/cit37) 2007; 129 Kwon M. S. (ref40/cit40) 2008; 283 Nina M. (ref25/cit25) 1997; 101 Izumi Y. (ref8/cit8) 2012; 303 Deserno M. (ref12/cit12) 1998; 109 Kalodimos C. G. (ref35/cit35) 2004; 305 Bryngelson J. D. (ref36/cit36) 1995; 21 19865164 - Nature. 2009 Oct 29;461(7268):1248-53 21757659 - Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2287-96 11485737 - Immunity. 2001 Jul;15(1):47-58 11780147 - Nat Struct Biol. 2002 Feb;9(2):90-4 20405878 - J Phys Chem B. 2010 May 13;114(18):6216-24 8744570 - J Mol Graph. 1996 Feb;14(1):33-8, 27-8 17928589 - Physiol Rev. 2007 Oct;87(4):1441-74 21109532 - Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9 17517770 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W588-94 21910419 - Biochemistry. 2011 Oct 11;50(40):8645-55 12824383 - Nucleic Acids Res. 2003 Jul 1;31(13):3635-41 15256668 - Science. 2004 Jul 16;305(5682):386-9 16782704 - J Biol Chem. 2006 Aug 18;281(33):23870-9 10908673 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8868-73 16222654 - J Comput Chem. 2005 Dec;26(16):1781-802 18579527 - J Biol Chem. 2008 Aug 15;283(33):22400-9 16126906 - FASEB J. 2005 Sep;19(11):1389-95 14960716 - Nucleic Acids Res. 2004;32(3):1037-49 23239118 - Proteins. 2013 Apr;81(4):704-14 17208980 - Biophys J. 2007 Mar 15;92(6):1891-9 24889800 - J Phys Chem B. 1998 Apr 30;102(18):3586-616 22102591 - Nucleic Acids Res. 2012 Jan;40(Database issue):D834-40 17243791 - J Am Chem Soc. 2007 Jan 31;129(4):738-9 22992674 - Am J Physiol Cell Physiol. 2012 Nov 15;303(10):C1061-9 12079393 - J Mol Biol. 2002 Jul 5;320(2):369-87 7784423 - Proteins. 1995 Mar;21(3):167-95 9895674 - Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697 21062758 - Protein Eng Des Sel. 2011 Mar;24(3):255-60 18508808 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W270-5 19011242 - J Biol Chem. 2009 Jan 16;284(3):1484-94 2414450 - J Mol Biol. 1985 Sep 20;185(2):389-404 8108382 - Proteins. 1993 Dec;17(4):412-25 22208274 - J Biomol Struct Dyn. 2012;29(4):715-31 10651043 - Proteins. 2000 Jan 1;38(1):115-9 |
References_xml | – volume: 21 start-page: 86 year: 2000 ident: ref16/cit16 publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G – volume: 4 start-page: 187 year: 1983 ident: ref26/cit26 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540040211 – volume: 92 start-page: 1891 year: 2007 ident: ref10/cit10 publication-title: Biophys. J. doi: 10.1529/biophysj.106.092122 – volume: 21 start-page: 167 year: 1995 ident: ref36/cit36 publication-title: Proteins doi: 10.1002/prot.340210302 – volume: 18 start-page: 113 year: 2000 ident: ref21/cit21 publication-title: Perspect. Drug Discovery Des. doi: 10.1023/A:1008763014207 – volume: 185 start-page: 389 year: 1985 ident: ref19/cit19 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(85)90411-5 – volume: 129 start-page: 738 year: 2007 ident: ref37/cit37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065531n – volume: 110 start-page: 3275 year: 1999 ident: ref11/cit11 publication-title: J. Chem. Phys. doi: 10.1063/1.478193 – volume: 35 start-page: W588 year: 2007 ident: ref30/cit30 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm322 – volume: 102 start-page: 3586 year: 1998 ident: ref15/cit15 publication-title: J. Phys. Chem. B doi: 10.1021/jp973084f – volume: 31 start-page: 2287 year: 2011 ident: ref3/cit3 publication-title: Arterioscler., Thromb., Vasc. Biol. doi: 10.1161/ATVBAHA.111.232165 – volume: 32 start-page: 1037 year: 2004 ident: ref32/cit32 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh253 – volume: 14 start-page: 27 issue: 33 year: 1996 ident: ref9/cit9 publication-title: J. Mol. Graphics – volume: 40 start-page: D834 year: 2012 ident: ref28/cit28 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr997 – volume: 305 start-page: 386 year: 2004 ident: ref35/cit35 publication-title: Science doi: 10.1126/science.1097064 – volume: 284 start-page: 1484 year: 2009 ident: ref2/cit2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M803997200 – volume: 39 start-page: D225 year: 2011 ident: ref6/cit6 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1189 – volume: 97 start-page: 8868 year: 2000 ident: ref38/cit38 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.160259697 – volume: 81 start-page: 704 year: 2013 ident: ref22/cit22 publication-title: Proteins doi: 10.1002/prot.24230 – volume: 281 start-page: 23870 year: 2006 ident: ref7/cit7 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M602556200 – volume: 17 start-page: 412 year: 1993 ident: ref17/cit17 publication-title: Proteins doi: 10.1002/prot.340170408 – volume: 101 start-page: 5239 year: 1997 ident: ref25/cit25 publication-title: J. Phys. Chem. B doi: 10.1021/jp970736r – volume: 29 start-page: 715 year: 2012 ident: ref34/cit34 publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/073911012010525019 – volume: 50 start-page: 8645 year: 2011 ident: ref24/cit24 publication-title: Biochemistry doi: 10.1021/bi2008257 – volume: 283 start-page: 22400 year: 2008 ident: ref40/cit40 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M710550200 – volume: 38 start-page: 115 year: 2000 ident: ref23/cit23 publication-title: Proteins doi: 10.1002/(SICI)1097-0134(20000101)38:1<115::AID-PROT11>3.0.CO;2-P – volume: 9 start-page: 90 year: 2002 ident: ref5/cit5 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb749 – volume: 461 start-page: 1248 year: 2009 ident: ref33/cit33 publication-title: Nature doi: 10.1038/nature08473 – volume: 19 start-page: 1389 year: 2005 ident: ref39/cit39 publication-title: FASEB J. doi: 10.1096/fj.04-3590hyp – volume: 114 start-page: 6216 year: 2010 ident: ref18/cit18 publication-title: J. Phys. Chem. B doi: 10.1021/jp101373p – volume: 24 start-page: 255 year: 2011 ident: ref31/cit31 publication-title: Protein Eng., Des. Sel. doi: 10.1093/protein/gzq094 – volume: 15 start-page: 47 year: 2001 ident: ref4/cit4 publication-title: Immunity doi: 10.1016/S1074-7613(01)00165-0 – volume: 303 start-page: C1061 year: 2012 ident: ref8/cit8 publication-title: Am. J. Physiol.: Cell Physiol. doi: 10.1152/ajpcell.00265.2012 – volume: 31 start-page: 1695 year: 1985 ident: ref13/cit13 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 – volume: 26 start-page: 1781 year: 2005 ident: ref14/cit14 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20289 – volume: 36 start-page: W270 year: 2008 ident: ref20/cit20 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn314 – volume: 87 start-page: 1441 year: 2007 ident: ref1/cit1 publication-title: Physiol. Rev. doi: 10.1152/physrev.00056.2006 – volume: 109 start-page: 7678 year: 1998 ident: ref12/cit12 publication-title: J. Chem. Phys. doi: 10.1063/1.477414 – volume: 320 start-page: 369 year: 2002 ident: ref27/cit27 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00442-4 – volume: 31 start-page: 3635 year: 2003 ident: ref29/cit29 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg584 – reference: 17517770 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W588-94 – reference: 23239118 - Proteins. 2013 Apr;81(4):704-14 – reference: 17208980 - Biophys J. 2007 Mar 15;92(6):1891-9 – reference: 10651043 - Proteins. 2000 Jan 1;38(1):115-9 – reference: 16782704 - J Biol Chem. 2006 Aug 18;281(33):23870-9 – reference: 18579527 - J Biol Chem. 2008 Aug 15;283(33):22400-9 – reference: 10908673 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8868-73 – reference: 14960716 - Nucleic Acids Res. 2004;32(3):1037-49 – reference: 18508808 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W270-5 – reference: 11780147 - Nat Struct Biol. 2002 Feb;9(2):90-4 – reference: 22102591 - Nucleic Acids Res. 2012 Jan;40(Database issue):D834-40 – reference: 9895674 - Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697 – reference: 22992674 - Am J Physiol Cell Physiol. 2012 Nov 15;303(10):C1061-9 – reference: 12824383 - Nucleic Acids Res. 2003 Jul 1;31(13):3635-41 – reference: 21910419 - Biochemistry. 2011 Oct 11;50(40):8645-55 – reference: 19011242 - J Biol Chem. 2009 Jan 16;284(3):1484-94 – reference: 12079393 - J Mol Biol. 2002 Jul 5;320(2):369-87 – reference: 17928589 - Physiol Rev. 2007 Oct;87(4):1441-74 – reference: 24889800 - J Phys Chem B. 1998 Apr 30;102(18):3586-616 – reference: 17243791 - J Am Chem Soc. 2007 Jan 31;129(4):738-9 – reference: 2414450 - J Mol Biol. 1985 Sep 20;185(2):389-404 – reference: 15256668 - Science. 2004 Jul 16;305(5682):386-9 – reference: 21062758 - Protein Eng Des Sel. 2011 Mar;24(3):255-60 – reference: 19865164 - Nature. 2009 Oct 29;461(7268):1248-53 – reference: 16126906 - FASEB J. 2005 Sep;19(11):1389-95 – reference: 21757659 - Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2287-96 – reference: 20405878 - J Phys Chem B. 2010 May 13;114(18):6216-24 – reference: 22208274 - J Biomol Struct Dyn. 2012;29(4):715-31 – reference: 16222654 - J Comput Chem. 2005 Dec;26(16):1781-802 – reference: 8744570 - J Mol Graph. 1996 Feb;14(1):33-8, 27-8 – reference: 8108382 - Proteins. 1993 Dec;17(4):412-25 – reference: 21109532 - Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9 – reference: 7784423 - Proteins. 1995 Mar;21(3):167-95 – reference: 11485737 - Immunity. 2001 Jul;15(1):47-58 |
SSID | ssj0025286 |
Score | 2.194983 |
Snippet | The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several... The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several... |
SourceID | unpaywall pubmedcentral proquest pubmed pascalfrancis crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13226 |
SubjectTerms | Activated Binding Binding Sites Biological and medical sciences Deoxyribonucleic acid dimerization Dimers DNA DNA - metabolism Dynamics Flexibility Fundamental and applied biological sciences. Psychology Humans Intermolecular phenomena Mathematical models Molecular biophysics Molecular Dynamics Simulation mutants Mutation Mutations physical chemistry Principal Component Analysis Protein Binding Protein Structure, Tertiary Software T-lymphocytes transactivators transcription (genetics) Transcription Factors - chemistry Transcription Factors - genetics Transcription Factors - metabolism |
SummonAdditionalLinks | – databaseName: American Chemical Society Journals dbid: ACS link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5V5VAkVN7UPKKFcuDi1l57_TiGhKhCNFSikXqLxuu1MIS1hW2hcOI_8A_5JcyuY9OoSTjaHlvrnfHON1rP9xHymgELYw6-HUHEbR8PbUh4ZCOYE0Jk4EqhG5zPp8HZzH9_xa_2yPGWHXzmnn4pfcdDEIIg6BYLIldXWMPRp76q4szIOWIe0nWQE3T0Qddv1alHVGup504JFc5C1spXbMKXN3-TPGhUCcsfsFhcy0GTu2TcdfK0v558PWnq5ET8vEnsuOv17pHDFQalwzZo7pM9qR6Qg1En_faQLM-bdoe-ormi4-nQfpub7hf6oShKWmR0OhlecmoSXbfs0ImR7qEXhkNW0pmhhqUfmxqDWlYULS40KUSu_vz6jc-k3TNBpXS8VPAtF9UjMpu8uxyd2SuNBhsQKtW28LQgVRI7IkHsAAwiJ8IV0xOpI0I3C9EjIZNJ6mYQCKGZhQLgKThelAR4BrzHZF8VSh4R6mUSVzxcQVOslKWEOEtDxwXhxjxxBGQWGaAT56tvrJqb7XOG5Us3gxZ50_l3LlYM51poY7HJ9FVvWra0HpuMBmtB0lvq7mHN62aRl13UzNFDeqsFlCwaHJvv81h3WAQ7bLhugkaAznbYhJp-J2Ys2m7DDA5HnBFa5Ekbsf9G6oWeHolFwrVY7g00u_j6FZV_NizjRomA4diO-6jfPlVP_-ebZ-Q200IimPWZ_5zs198b-QLhXJ0MzOf8FxeyRjQ priority: 102 providerName: American Chemical Society |
Title | Mutations in DNA-Binding Loop of NFAT5 Transcription Factor Produce Unique Outcomes on Protein–DNA Binding and Dynamics |
URI | http://dx.doi.org/10.1021/jp403310a https://www.ncbi.nlm.nih.gov/pubmed/23734591 https://www.proquest.com/docview/1445911086 https://www.proquest.com/docview/1534819992 https://www.proquest.com/docview/1753529228 https://www.proquest.com/docview/2000511287 https://pubmed.ncbi.nlm.nih.gov/PMC3807822 https://pubs.acs.org/doi/pdf/10.1021/jp403310a |
UnpaywallVersion | publishedVersion |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025286 issn: 1520-6106 databaseCode: ACS dateStart: 19970101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jj9MwFLZQ5zBIiH0JS2WWA5eUxNmPpUM1QkymElNpOFUvjiMCxYlIIlQOiP_AP-SX8OwsTKEzmkOrLl-sF_vZ_p6c9z1CXjBgQeSBa4YQeqaLX01IvNBEMsc5z8AWXCU4H8X-4dJ9e-qddoGiyoVBIypsqdKH-GpWl2nWKQzYrz6VruUgH0E-tOerA6UR2VvGi-kHLYqKcRC-gv4z8gK_lxI6e63ahni1tQ1dK6HCHsnaUha7uOb_j0zuN7KEzTdYr8_sR_Mb5Hi4E_0YyudJUycT_v0fkcfL3-pNcr2jpnTa-tItckXI22R_1leEu0M2R017cF_RXNKDeGq-znVSDH1XFCUtMhrPpyce1ftfvxrRua7oQxdaWlbQpVaMpcdNjb4uKoqIhdKKyOXvn7-wTdq3CTKlBxsJX3Je3SXL-ZuT2aHZlW4wAcelNrmj6lQlkcUTpBTAILRCXEgdnlo8sLMABydgIkntDHzOleCQD14KlhMmPv4Czj0ykoUUDwh1MoELIS6sKQbQQkCUpYFlA7cjL7E4ZAYZYyeuuqlXrfSpOsOopu9Bg7zsh3rFO-FzVX9jvQv6bICWrdrHLtB4y18GpEoqVnJvBnnaO9AKR0idwIAURYO2ua4XqcQL_wKMp3KjkbezCzCBUuWJGAvPxzBNz5F-BAa53zrvX0udwFGWGCTYcusBoETHt_-R-UctPq4LFDC07fkwAc7vqoeXQj0iV5kqMoKMgLmPyaj-2ognSPXqZIyhzuw9vsc_JuNurv8BN85TUA |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQcigS4v0Ij2IeBy7ZTZz3sXSpCrRlJVppb9HEcUR2SxKRRKic-A_8Q34JY-exW-guHJNMrLE98XyWM99HyCsGzAscsHUffEe38VKHyPF1BHOc8wRMwWWB83zhTlf2-2PnuKXJkbUw6ESJLZXqEP-MXcA8OClsw0IsgljoqmJAkTBo_KnfXDlMqTpiOpLbIcPtWITOvyozEC-3MtD1AkocjKRRsdgFM__-W3JQZwVsvsF6fS4VTW42mkaqE-oPlNP9uor2-fc_-B3_r5e3yI0WkdJRE0K3yRWR3SGDcScEd5ds5nVzXl_SNKOHi5H-JlW1MHSW5wXNE7qYjJYOVWmvW4ToRAn50CPFKCvoShHF0o91hSEuSooWR5IiIs1-_fiJbdKuTchierjJ4EvKy3tkNXm7HE_1VrFBBwROlc4tKU8VBQaPEEkAA9_wcf20eGxwz0w8nBiPiSg2E3A5lzxDLjgxGJYfuXgHrPtkL8sz8ZBQKxG4_uF6GuO-WQgIktgzTOBm4EQGh0QjQxzAsP3iylAdpjPczHQjqJHX3TSHvOU7l7Ib612mL3rToiH52GU03IqV3lLWEkuWN40874InxBmSBy-QibxG32yMV1lv4V5i48iSaITr7BIbT5LxBIz5F9swhcoRdXgaedAE7pmnlmdJTzTibYV0byC5xrefZOlnxTmudAkY-vayD_6Lh-rRv-bmGRlMl_NZOHu3-PCYXGNSYgTxALOfkL3qay2eItCroqH6wn8D5-ZOnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELbQIrFICPEmPIp5HLgEEifO41i2RAvshh620t6qieOIoiqJSCO0F8R_4B_yS5hxHmxFdzmmmVqWZ-z5Rs58H2OvBIgwluDbEUTS9vHRhkxGNoI5pVQBrlbU4HycBocL_-OpPO0LReqFwUk0OFJjLvFpV9d50TMMuG-_1r7jIR5BPHQVgYhHcZ3-eDMWWFIYZUdMSVQSOcHAJHT-r5SFVLOVhW7U0OCCFJ2SxS6o-e8Xk_ttWcPZd1ivz6Wj5Ba72eNIPu0cf5td0eUdtn8wyLfdZWfHbXfL3vBVyWfp1H63Mh0s_Kiqal4VPE2mJ5KbZDUcHTwx8jt8bnhgNV8Yelf-ud1gYOqGo8WciB1W5e-fv3BMPowJZc5nnbh9c48tkvcnB4d2r7NgA8Kdja08EpXKYkdlmP9BQOREeOp5KndU6BYhLmUodJa7BQRKETtQADIHx4uyAH8B7z7bK6tSP2TcKzSeWngK5ljtag1xkYeOC8qNZeYoKCw2wdVf9vukWZorcIElyOAei70eHLNUPUs5iWWsd5m-GE3rjppjl9Fky7ujJXUAEzebxZ4P7l6ih-i6BEpdtTg335cxdUkEl9hIamRGkC0usQmJQicWIrrYRhgsjVghtNiDLtT-ztQLPZqJxcKtIBwNiCF8-025-mKYwo2agMC5vRzD9eKlevQ_3zxj1-azZHn0If30mF0XpAuCSVz4T9je5lurnyI622QTsyX_AOEMNnE |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZQ9zAkNO4QLpW5PPCSkTgXJ49lo5oQ6_qwSuOpOnEcEeiciCRC5Yn_wD_kl3DsXFihm_ZQKW2_WCf2sf1ZJ-c7hLxmwHgcgG9HEAW2j19tSILIRjInhMjAlUInOB_PwqOF_-EsOOsOijoXBo2osKXKBPH1rC7TrFMYcN9-KX3HQz6CfGgn1AGlEdlZzOaTT0YUFc9B-OH9NfKCsJcSuniv3oZEtbEN3Sqhwh7J2lIW27jm_69M7jaqhPV3WK0u7EfT2-RkeBLzGsrX_aZO9sWPf0Qer_-od8heR03ppPWlu-SGVPfI7kFfEe4-WR83beC-ormih7OJ_S43STH0Y1GUtMjobDo5DajZ__rViE5NRR86N9Kyki6MYiw9aWr0dVlRRMy1VkSufv_8hW3Svk1QKT1cKzjPRfWALKbvTw-O7K50gw04LrUtPF2nKokdkSClAAaRE-FC6onUEdzNOA4OZzJJ3QxCIbTgUAhBCo4XJSH-At5DMlKFko8J9TKJCyEurCkeoKWEOEu544Jw4yBxBGQWGWMnLrupVy1NVJ3hqabvQYu86Yd6KTrhc11_Y7UN-nKAlq3axzbQeMNfBqROKtZybxZ50TvQEkdIR2BAyaJB23w_iHXiRXgFJtC50cjb2RUYrlV5YsaiyzHM0HOkH9wij1rn_Wupxz1tiUX4hlsPAC06vvmPyj8b8XFToIChba-GCXB5Vz25Fuopucl0kRFkBMx_Rkb1t0Y-R6pXJ-Nufv8BYV5RPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutations+in+DNA-Binding+Loop+of+NFAT5+Transcription+Factor+Produce+Unique+Outcomes+on+Protein%E2%80%93DNA+Binding+and+Dynamics&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Li%2C+Minghui&rft.au=Shoemaker%2C+Benjamin+A.&rft.au=Thangudu%2C+Ratna+R.&rft.au=Ferraris%2C+Joan+D.&rft.date=2013-10-24&rft.pub=American+Chemical+Society&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=117&rft.issue=42&rft.spage=13226&rft.epage=13234&rft_id=info:doi/10.1021%2Fjp403310a&rft_id=info%3Apmid%2F23734591&rft.externalDocID=PMC3807822 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon |