Wound healing efficacy of Jamun honey in diabetic mice model through reepithelialization, collagen deposition and angiogenesis
Diabetic patients are frequently afflicted with impaired wound healing where linear progression of molecular and cellular events compromised. Despite of meaningful progress in diabetic treatment, management of diabetic chronic wounds is still challenging. Jamun (Syzygium cumini) honey may be a promi...
Saved in:
Published in | Journal of Traditional and Complementary Medicine Vol. 10; no. 6; pp. 529 - 543 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
衛生福利部國家中醫藥研究所
01.11.2020
Elsevier Taiwan LLC Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2225-4110 2225-4110 |
DOI | 10.1016/j.jtcme.2019.10.002 |
Cover
Abstract | Diabetic patients are frequently afflicted with impaired wound healing where linear progression of molecular and cellular events compromised. Despite of meaningful progress in diabetic treatment, management of diabetic chronic wounds is still challenging. Jamun (Syzygium cumini) honey may be a promising candidate for diabetic wound healing and need to explore in detail. So present study was designed to evaluate the efficacy of Jamun honey (JH) for diabetic wound healing in in vitro wound (primary fibroblasts) model and in in vivo of diabetic mice (Streptozotocin induced) model. The fibroblast cell model was studied for migratory behaviour and myofibrolasts infiltration under honey interventions via scratch/migration assay, immuno-cytochemistry and western blot. We applied FDA approved Manuka honey (MH) as positive control and JH as test honey to evaluate wound re-epithelialization, sub-epithelial connective tissue modification and angiogenesis via histopathological and immuno-histochemical analysis. JH (0.1% v/v) dilution has notably improved wound closure, migration with concomitantα-SMA expressions in vitro. Topical application of JH in diabetic mice model showed significant (*p ≤ 0.05) wound closure, reepithelialization, collagen deposition (I/III) and balanced the myofibroblasts formation. It also modulated vital angiogenic markers (viz HIF-1α, VEGF, VEGF R-II) significantly (*p ≤ 0.05). All these observations depicted that JH promotes sequential stages of wound healing in diabetic mice model. The results of the present study established Jamun honey as good as Manuka honey considering wound closure, re-epithelialization, collagen deposition and pro-angiogenic potential. |
---|---|
AbstractList | Diabetic patients are frequently afflicted with impaired wound healing where linear progression of molecular and cellular events compromised. Despite of meaningful progress in diabetic treatment, management of diabetic chronic wounds is still challenging. Jamun (Syzygium cumini) honey may be a promising candidate for diabetic wound healing and need to explore in detail.So present study was designed to evaluate the efficacy of Jamun honey (JH) for diabetic wound healing in in vitro wound (primary fibroblasts) model and in in vivo of diabetic mice (Streptozotocin induced) model. The fibroblast cell model was studied for migratory behaviour and myofibrolasts infiltration under honey interventions via scratch/migration assay, immuno-cytochemistry and western blot. We applied FDA approved Manuka honey (MH) as positive control and JH as test honey to evaluate wound re-epithelialization, sub-epithelial connective tissue modification and angiogenesis via histo-pathological and immuno-histochemical analysis. JH (0.1% v/v) dilution has notably improved wound closure, migration with concomitant α-SMA expressions in vitro. Topical application of JH in diabetic mice model showed significant (*p ≤ 0.05) wound closure, reepithelialization, collagen deposition (I/III) and balanced the myofibroblasts formation. It also modulated vital angiogenic markers (viz HIF-1α, VEGF, VEGF R–II) significantly (*p ≤ 0.05). All these observations depicted that JH promotes sequential stages of wound healing in diabetic mice model. The results of the present study established Jamun honey as good as Manuka honey considering wound closure, re-epithelialization, collagen deposition and pro-angiogenic potential. Diabetic patients are frequently afflicted with impaired wound healing where linear progression of molecular and cellular events compromised. Despite of meaningful progress in diabetic treatment, management of diabetic chronic wounds is still challenging. Jamun (Syzygium cumini) honey may be a promising candidate for diabetic wound healing and need to explore in detail. So present study was designed to evaluate the efficacy of Jamun honey (JH) for diabetic wound healing in in vitro wound (primary fibroblasts) model and in in vivo of diabetic mice (Streptozotocin induced) model. The fibroblast cell model was studied for migratory behaviour and myofibrolasts infiltration under honey interventions via scratch/migration assay, immuno-cytochemistry and western blot. We applied FDA approved Manuka honey (MH) as positive control and JH as test honey to evaluate wound re-epithelialization, sub-epithelial connective tissue modification and angiogenesis via histo-pathological and immuno-histochemical analysis. JH (0.1% v/v) dilution has notably improved wound closure, migration with concomitant α-SMA expressions in vitro. Topical application of JH in diabetic mice model showed significant (*p ≤ 0.05) wound closure, reepithelialization, collagen deposition (I/III) and balanced the myofibroblasts formation. It also modulated vital angiogenic markers (viz HIF-1α, VEGF, VEGF R-II) significantly (*p ≤ 0.05). All these observations depicted that JH promotes sequential stages of wound healing in diabetic mice model. The results of the present study established Jamun honey as good as Manuka honey considering wound closure, re-epithelialization, collagen deposition and pro-angiogenic potential.Diabetic patients are frequently afflicted with impaired wound healing where linear progression of molecular and cellular events compromised. Despite of meaningful progress in diabetic treatment, management of diabetic chronic wounds is still challenging. Jamun (Syzygium cumini) honey may be a promising candidate for diabetic wound healing and need to explore in detail. So present study was designed to evaluate the efficacy of Jamun honey (JH) for diabetic wound healing in in vitro wound (primary fibroblasts) model and in in vivo of diabetic mice (Streptozotocin induced) model. The fibroblast cell model was studied for migratory behaviour and myofibrolasts infiltration under honey interventions via scratch/migration assay, immuno-cytochemistry and western blot. We applied FDA approved Manuka honey (MH) as positive control and JH as test honey to evaluate wound re-epithelialization, sub-epithelial connective tissue modification and angiogenesis via histo-pathological and immuno-histochemical analysis. JH (0.1% v/v) dilution has notably improved wound closure, migration with concomitant α-SMA expressions in vitro. Topical application of JH in diabetic mice model showed significant (*p ≤ 0.05) wound closure, reepithelialization, collagen deposition (I/III) and balanced the myofibroblasts formation. It also modulated vital angiogenic markers (viz HIF-1α, VEGF, VEGF R-II) significantly (*p ≤ 0.05). All these observations depicted that JH promotes sequential stages of wound healing in diabetic mice model. The results of the present study established Jamun honey as good as Manuka honey considering wound closure, re-epithelialization, collagen deposition and pro-angiogenic potential. Diabetic patients are frequently afflicted with impaired wound healing where linear progression of molecular and cellular events compromised. Despite of meaningful progress in diabetic treatment, management of diabetic chronic wounds is still challenging. Jamun ( Syzygium cumini ) honey may be a promising candidate for diabetic wound healing and need to explore in detail. So present study was designed to evaluate the efficacy of Jamun honey (JH) for diabetic wound healing in in vitro wound (primary fibroblasts) model and in in vivo of diabetic mice (Streptozotocin induced) model. The fibroblast cell model was studied for migratory behaviour and myofibrolasts infiltration under honey interventions via scratch/migration assay, immuno-cytochemistry and western blot. We applied FDA approved Manuka honey (MH) as positive control and JH as test honey to evaluate wound re-epithelialization, sub-epithelial connective tissue modification and angiogenesis via histo-pathological and immuno-histochemical analysis. JH (0.1% v/v) dilution has notably improved wound closure, migration with concomitant α-SMA expressions in vitro . Topical application of JH in diabetic mice model showed significant (*p ≤ 0.05) wound closure, reepithelialization, collagen deposition (I/III) and balanced the myofibroblasts formation. It also modulated vital angiogenic markers ( viz HIF-1α, VEGF, VEGF R–II) significantly (*p ≤ 0.05). All these observations depicted that JH promotes sequential stages of wound healing in diabetic mice model. The results of the present study established Jamun honey as good as Manuka honey considering wound closure, re-epithelialization, collagen deposition and pro-angiogenic potential. Image 1 • Wound healing under Jamun honey and it’s effect on angiogenesis needs to explore. • Jamun honey promotes sequential stages of wound healing with pro-angiogenic efficacy. • Healing under Jamun honey is comparable to that of Manuka (Medical grade) honey. Diabetic patients are frequently afflicted with impaired wound healing where linear progression of molecular and cellular events compromised. Despite of meaningful progress in diabetic treatment, management of diabetic chronic wounds is still challenging. Jamun (Syzygium cumini) honey may be a promising candidate for diabetic wound healing and need to explore in detail. So present study was designed to evaluate the efficacy of Jamun honey (JH) for diabetic wound healing in in vitro wound (primary fibroblasts) model and in in vivo of diabetic mice (Streptozotocin induced) model. The fibroblast cell model was studied for migratory behaviour and myofibrolasts infiltration under honey interventions via scratch/migration assay, immuno-cytochemistry and western blot. We applied FDA approved Manuka honey (MH) as positive control and JH as test honey to evaluate wound re-epithelialization, sub-epithelial connective tissue modification and angiogenesis via histo-pathological and immuno-histochemical analysis. JH (0.1% v/v) dilution has notably improved wound closure, migration with concomitant α-SMA expressions in vitro. Topical application of JH in diabetic mice model showed significant (*p ≤ 0.05) wound closure, reepithelialization, collagen deposition (I/III) and balanced the myofibroblasts formation. It also modulated vital angiogenic markers (viz HIF-1α, VEGF, VEGF R–II) significantly (*p ≤ 0.05). All these observations depicted that JH promotes sequential stages of wound healing in diabetic mice model. The results of the present study established Jamun honey as good as Manuka honey considering wound closure, re-epithelialization, collagen deposition and pro-angiogenic potential. [Display omitted] •Wound healing under Jamun honey and it’s effect on angiogenesis needs to explore.•Jamun honey promotes sequential stages of wound healing with pro-angiogenic efficacy.•Healing under Jamun honey is comparable to that of Manuka (Medical grade) honey. Diabetic patients are frequently afflicted with impaired wound healing where linear progression of molecular and cellular events compromised. Despite of meaningful progress in diabetic treatment, management of diabetic chronic wounds is still challenging. Jamun ( ) honey may be a promising candidate for diabetic wound healing and need to explore in detail. So present study was designed to evaluate the efficacy of Jamun honey (JH) for diabetic wound healing in wound (primary fibroblasts) model and in of diabetic mice (Streptozotocin induced) model. The fibroblast cell model was studied for migratory behaviour and myofibrolasts infiltration under honey interventions scratch/migration assay, immuno-cytochemistry and western blot. We applied FDA approved Manuka honey (MH) as positive control and JH as test honey to evaluate wound re-epithelialization, sub-epithelial connective tissue modification and angiogenesis histo-pathological and immuno-histochemical analysis. JH (0.1% v/v) dilution has notably improved wound closure, migration with concomitant α-SMA expressions . Topical application of JH in diabetic mice model showed significant (*p ≤ 0.05) wound closure, reepithelialization, collagen deposition (I/III) and balanced the myofibroblasts formation. It also modulated vital angiogenic markers ( HIF-1α, VEGF, VEGF R-II) significantly (*p ≤ 0.05). All these observations depicted that JH promotes sequential stages of wound healing in diabetic mice model. The results of the present study established Jamun honey as good as Manuka honey considering wound closure, re-epithelialization, collagen deposition and pro-angiogenic potential. Diabetic patients are frequently afflicted with impaired wound healing where linear progression of molecular and cellular events compromised. Despite of meaningful progress in diabetic treatment, management of diabetic chronic wounds is still challenging. Jamun (Syzygium cumini) honey may be a promising candidate for diabetic wound healing and need to explore in detail. So present study was designed to evaluate the efficacy of Jamun honey (JH) for diabetic wound healing in in vitro wound (primary fibroblasts) model and in in vivo of diabetic mice (Streptozotocin induced) model. The fibroblast cell model was studied for migratory behaviour and myofibrolasts infiltration under honey interventions via scratch/migration assay, immuno-cytochemistry and western blot. We applied FDA approved Manuka honey (MH) as positive control and JH as test honey to evaluate wound re-epithelialization, sub-epithelial connective tissue modification and angiogenesis via histopathological and immuno-histochemical analysis. JH (0.1% v/v) dilution has notably improved wound closure, migration with concomitantα-SMA expressions in vitro. Topical application of JH in diabetic mice model showed significant (*p ≤ 0.05) wound closure, reepithelialization, collagen deposition (I/III) and balanced the myofibroblasts formation. It also modulated vital angiogenic markers (viz HIF-1α, VEGF, VEGF R-II) significantly (*p ≤ 0.05). All these observations depicted that JH promotes sequential stages of wound healing in diabetic mice model. The results of the present study established Jamun honey as good as Manuka honey considering wound closure, re-epithelialization, collagen deposition and pro-angiogenic potential. |
Author | Swarnendu Bag Provas Banerjee Jyotirmoy Chatterjee Amrita Chaudhary |
Author_xml | – sequence: 1 givenname: Amrita surname: Chaudhary fullname: Chaudhary, Amrita email: chaudharybt8@gmail.com organization: School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India – sequence: 2 givenname: Swarnendu surname: Bag fullname: Bag, Swarnendu organization: Histopathology Lab, Hospital Phase 2, Tata Medical Center, New Town, Kolkata, West Bengal, 700160, India – sequence: 3 givenname: Provas surname: Banerjee fullname: Banerjee, Provas organization: Banerjees’ Biomedical Research Foundation, Birbhum, Sainthia, 731234, West Bengal, India – sequence: 4 givenname: Jyotirmoy surname: Chatterjee fullname: Chatterjee, Jyotirmoy email: jchatterjee@smst.iitkgp.ac.in organization: School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33134129$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAUjFARLaW_AAn5yIFd_BEn8QGkquKjaCU4gDhatvOSOErsxU4qLQd-O87uFnU5gC-2x29mbL95mp057yDLnhO8JpgUr_t1P5kR1hQTkZA1xvRRdkEp5aucEHz2YH2eXcXY4zSqKieCPMnOGSMsJ1RcZL---9nVqAM1WNciaBprlNkh36BPapwd6pLvDlmHaqs0TNag0RpAo69hQFMX_Nx2KABs7dTBYJPMTzVZ714h44dBtZCYsPXRLiBSyUu51vqEQ7TxWfa4UUOEq-N8mX17_-7rzcfV5vOH25vrzUpxkU8rkqsCclCaiQJqRvOScs6M0VgAJw2hJeZVnfO60gQabTTVWNWFaKCkUDLGLrPbg27tVS-3wY4q7KRXVu4BH1qpQnrcABKqxhgqdCkKnWuBNWuIUQSAVCStVdJ6e9DaznqE2oCbghpORE9PnO1k6-9kyauKsSoJvDwKBP9jhjjJ0UYD6bcc-DlKmvOi4qwgy71fPPT6Y3LfwFQgDgUm-BgDNNLYad-AZG0HSbBc8iJ7uc-LXPKygCkvicv-4t7L_5v15sCC1K87C0FGY8EZqG0AM6UPtf_hbw58ZUMKhez9HFzqvfyyVOEKl6kqMdKOHCcsUniL0w2nQvKcsd_zBPJy |
CitedBy_id | crossref_primary_10_1186_s13065_023_00969_4 crossref_primary_10_1166_sam_2024_4604 crossref_primary_10_3390_app132312820 crossref_primary_10_3390_bioengineering9080357 crossref_primary_10_1016_j_phymed_2025_156688 crossref_primary_10_3389_fvets_2023_1172025 crossref_primary_10_1016_j_ijbiomac_2024_136570 crossref_primary_10_3390_polym15143085 crossref_primary_10_1166_mex_2023_2569 crossref_primary_10_1016_j_foodchem_2021_129807 crossref_primary_10_1021_acsami_4c08169 crossref_primary_10_1111_wrr_12954 crossref_primary_10_1166_sam_2022_4354 crossref_primary_10_1016_j_drup_2022_100834 crossref_primary_10_1016_j_phyplu_2022_100292 crossref_primary_10_1016_j_onano_2023_100189 crossref_primary_10_1016_j_jddst_2024_105543 crossref_primary_10_1016_j_jaim_2023_100745 crossref_primary_10_3390_molecules26164784 crossref_primary_10_1016_j_matdes_2022_110660 crossref_primary_10_1016_j_fbio_2024_104796 crossref_primary_10_1051_e3sconf_202450004003 crossref_primary_10_1177_15347346211026819 crossref_primary_10_1016_j_ijbiomac_2025_139753 crossref_primary_10_1039_D4BM00349G crossref_primary_10_1177_00031348221078981 crossref_primary_10_1002_hsr2_2251 crossref_primary_10_4239_wjd_v14_i1_1 crossref_primary_10_3390_polysaccharides4010002 crossref_primary_10_1166_jbn_2022_3368 crossref_primary_10_3390_polym15224362 crossref_primary_10_1016_j_ijbiomac_2022_01_153 crossref_primary_10_1038_s41596_024_00998_w crossref_primary_10_1515_biol_2022_0039 crossref_primary_10_15406_ijcam_2024_17_00711 crossref_primary_10_3390_ijms25042201 crossref_primary_10_1016_j_msec_2021_112436 crossref_primary_10_1177_0976500X241237361 |
Cites_doi | 10.1016/j.jtcme.2015.12.003 10.1016/j.diabres.2011.04.018 10.1016/S0039-6060(97)90105-7 10.1053/meta.2002.35185 10.1089/wound.2013.0506 10.1016/j.wndm.2014.09.003 10.1016/j.bcp.2010.02.001 10.1021/acs.jafc.7b00366 10.1016/S2095-4964(14)60031-5 10.1038/sj.jid.5700890 10.1016/S0070-2153(04)62002-3 10.3390/molecules17021900 10.1006/jsre.1994.1143 10.1016/j.jep.2015.03.017 10.1091/mbc.12.9.2730 10.1046/j.1524-475X.2003.11308.x 10.1002/jsfa.6111 10.2741/1184 10.1155/2014/169130 10.1016/j.jtcme.2016.08.009 10.32098/mltj.03.2014.07 10.1002/path.1427 10.1016/j.wndm.2017.07.001 10.1038/nrm1911 10.1016/j.wndm.2017.12.001 10.1089/wound.2013.0485 10.1007/s00268-003-7400-2 10.1371/journal.pone.0175270 10.1073/pnas.0805230105 10.12968/jowc.2002.11.2.26372 10.4103/0974-8520.105233 10.1016/j.ejphar.2009.03.053 10.1038/mi.2015.63 10.1186/1475-2840-1-1 10.3791/2033-v 10.1111/wrr.12297 10.1016/S0140-6736(05)67700-8 10.1242/jcs.01634 10.1083/jcb.110.1.133 10.4103/2225-4110.139115 10.1016/j.jtcme.2017.12.001 10.1152/ajpgi.00458.2011 10.4103/2321-3868.113333 10.7150/thno.29361 |
ContentType | Journal Article |
Copyright | 2019 Center for Food and Biomolecules, National Taiwan University 2019 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC. 2019 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC. 2019 Center for Food and Biomolecules, National Taiwan University |
Copyright_xml | – notice: 2019 Center for Food and Biomolecules, National Taiwan University – notice: 2019 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC. – notice: 2019 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC. 2019 Center for Food and Biomolecules, National Taiwan University |
DBID | 188 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.jtcme.2019.10.002 |
DatabaseName | Chinese Electronic Periodical Services (CEPS) ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2225-4110 |
EndPage | 543 |
ExternalDocumentID | oai_doaj_org_article_e8fcc29b796b4b90b3f1ca1ee181b3fa PMC7588338 33134129 10_1016_j_jtcme_2019_10_002 S2225411019305577 P20190807002_202011_202011090006_202011090006_529_543 |
Genre | Journal Article |
GroupedDBID | 0R~ 188 2UF 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AINHJ AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV CEFSP CNMHZ DIK EBS FDB GROUPED_DOAJ HYE IAO IHR KQ8 M41 M48 O9- OK1 ROL RPM SSZ TUXDW UZ5 0SF 4.4 6I. AACTN AAFTH ABXLX ADRAZ EJD IEA ITC M~E NCXOZ RMW AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-a594t-14a6e4eab396ed32472553ccb09e51f127058d45d8b1efbcb2b0ad69fe72e7333 |
IEDL.DBID | M48 |
ISSN | 2225-4110 |
IngestDate | Wed Aug 27 01:31:28 EDT 2025 Thu Aug 21 14:13:43 EDT 2025 Thu Sep 04 20:34:54 EDT 2025 Thu Apr 03 06:57:52 EDT 2025 Thu Apr 24 23:05:09 EDT 2025 Tue Jul 01 01:56:25 EDT 2025 Wed Oct 16 04:25:48 EDT 2024 Tue May 20 00:40:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Jamun honey Angiogenesis Diabetic wound Reepithelialization Wound closure DAB EGF IHC H&E VEGF EMT DBM ECM DMEM VG STZ PI HIF 1 α MH JH JH, Jamun honey STZ, Streptozotocin VG, van Gieson’s EMT, Epithelial–mesenchymal transition EGF, Epidermal growth factor DBM, Diabetic mice HIF 1 α, Hypoxia-inducible factor 1 α VEGF, Vascular endothelial growth factor H&E, Hematoxylin and Eosin MH, Manuka honey DAB, 3,3′-Diaminobenzidine ECM, Extracellular matrix IHC, Immuno-histochemistry PI, Povidine Iodine DMEM, Dulbecco’s Modified Eagle Medium |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2019 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a594t-14a6e4eab396ed32472553ccb09e51f127058d45d8b1efbcb2b0ad69fe72e7333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.jtcme.2019.10.002 |
PMID | 33134129 |
PQID | 2456853613 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e8fcc29b796b4b90b3f1ca1ee181b3fa pubmedcentral_primary_oai_pubmedcentral_nih_gov_7588338 proquest_miscellaneous_2456853613 pubmed_primary_33134129 crossref_citationtrail_10_1016_j_jtcme_2019_10_002 crossref_primary_10_1016_j_jtcme_2019_10_002 elsevier_sciencedirect_doi_10_1016_j_jtcme_2019_10_002 airiti_journals_P20190807002_202011_202011090006_202011090006_529_543 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of Traditional and Complementary Medicine |
PublicationTitleAlternate | J Tradit Complement Med |
PublicationYear | 2020 |
Publisher | 衛生福利部國家中醫藥研究所 Elsevier Taiwan LLC Elsevier |
Publisher_xml | – name: 衛生福利部國家中醫藥研究所 – name: Elsevier Taiwan LLC – name: Elsevier |
References | Witte, Thornton, Tantry, Barbul (bib6) 2002; 51 Maeda, Johnson, Wheelock (bib13) 2005; 118 Covello, Simon (bib16) 2004; 62 Gabbiani (bib46) 2003; 200 Welch, Odland, Clark (bib12) 1990; 110 Romana-Souza, Nascimento, Monte-Alto-Costa (bib27) 2009; 611 Erejuwa, Sulaiman, Wahab (bib49) 2012; 17 Sarkar, Mukhopadhyay, Chaudhary (bib45) 2017; 18 Chaudhary, Bag, Banerjee, Chatterjee (bib26) 2017; 65 Topham (bib44) 2002; 11 Raymond, Marchbank, Moyer, Playford, Sanderson, Kruidenier (bib14) 2012; 303 Barui, Banerjee, Chaudhary, Conjeti, Mondal, Dey (bib31) 2014; 6 Seluanov, Vaidya, Gorbunova (bib24) 2010 Diegelmann, Evans (bib7) 2004; 9 Alam, Islam, Gan, Khalil (bib37) 2014; 2014 Ranzato, Martinotti, Burlando (bib30) 2013; 1 Goldberg, Han, Yan, Michael, Warren (bib47) 2007; 127 Srivastava, Chandra (bib42) 2013; 93 Kolluru, Bir, Kevil (bib3) 2012; 2012 Pereira, Bartolo (bib21) 2016; 5 Alam, Islam, Gan, Khalil (bib43) 2014; 2014 Leoni, Neumann, Sumagin, Denning, Nusrat (bib1) 2015; 8 Germain, Jean, Auger, Garrel (bib11) 1994; 57 Ghorbani (bib36) 2014; 12 Maharlooei, Bagheri, Solhjou, Jahromi, Akrami, Rohani (bib5) 2011; 93 Tandara, Mustoe (bib22) 2004; 28 Xue, Jackson (bib8) 2015; 4 Brosius (bib23) 2011 Shi, Most, Efron, Witte, Barbul (bib28) 2003; 11 Hwang, Lee, Park (bib32) 2017; 12 Aronson, Rayfield (bib33) 2002; 1 Baraka, Guemei, Gawad (bib17) 2010; 79 Hinz, Celetta, Tomasek, Gabbiani, Chaponnier (bib10) 2001; 12 Chaudhary, Bag, Barui, Barui, Banerjee, Chatterjee (bib25) 2015; 23 Darby, Laverdet, Bonté, Desmoulière (bib9) 2014; 7 Ediriweera, Premarathna (bib41) 2012; 33 Ning, Zhao, Chen, Mi, Yang, Qing (bib4) 2019; 9 Falanga (bib2) 2005; 366 Shamshuddin, Zohdi (bib39) 2018; 8 Schäffer, Tantry, Efron, Ahrendt, Thornton, Barbul (bib29) 1997; 121 Chaudhary, Bag, Mandal, Krishna Karri, Barui, Rajput (bib40) 2015; 166 Dinakaran, Chelle, Avasarala (bib35) 2019; 9 Botusan, Sunkari, Savu (bib15) 2008; 105 Snedeker, Gautieri (bib34) 2014; 4 Aziz, Ismail, Hussin (bib20) 2014; 4 Sarkar, Chaudhary, Saha, Amit, Chatterjee (bib38) 2018; 20 Olsson, Dimberg, Kreuger (bib19) 2006 May; 7 Dehghan, Mirmiranpour, Faghihi-Kashani (bib18) 2016; 6 Baraka, Guemei, Gawad (bib48) 2010; 79 Sarkar (10.1016/j.jtcme.2019.10.002_bib38) 2018; 20 Witte (10.1016/j.jtcme.2019.10.002_bib6) 2002; 51 Romana-Souza (10.1016/j.jtcme.2019.10.002_bib27) 2009; 611 Covello (10.1016/j.jtcme.2019.10.002_bib16) 2004; 62 Maeda (10.1016/j.jtcme.2019.10.002_bib13) 2005; 118 Baraka (10.1016/j.jtcme.2019.10.002_bib48) 2010; 79 Ranzato (10.1016/j.jtcme.2019.10.002_bib30) 2013; 1 Darby (10.1016/j.jtcme.2019.10.002_bib9) 2014; 7 Germain (10.1016/j.jtcme.2019.10.002_bib11) 1994; 57 Sarkar (10.1016/j.jtcme.2019.10.002_bib45) 2017; 18 Gabbiani (10.1016/j.jtcme.2019.10.002_bib46) 2003; 200 Schäffer (10.1016/j.jtcme.2019.10.002_bib29) 1997; 121 Alam (10.1016/j.jtcme.2019.10.002_bib37) 2014; 2014 Baraka (10.1016/j.jtcme.2019.10.002_bib17) 2010; 79 Botusan (10.1016/j.jtcme.2019.10.002_bib15) 2008; 105 Ghorbani (10.1016/j.jtcme.2019.10.002_bib36) 2014; 12 Goldberg (10.1016/j.jtcme.2019.10.002_bib47) 2007; 127 Shi (10.1016/j.jtcme.2019.10.002_bib28) 2003; 11 Raymond (10.1016/j.jtcme.2019.10.002_bib14) 2012; 303 Ning (10.1016/j.jtcme.2019.10.002_bib4) 2019; 9 Seluanov (10.1016/j.jtcme.2019.10.002_bib24) 2010 Pereira (10.1016/j.jtcme.2019.10.002_bib21) 2016; 5 Chaudhary (10.1016/j.jtcme.2019.10.002_bib26) 2017; 65 Brosius (10.1016/j.jtcme.2019.10.002_bib23) 2011 Maharlooei (10.1016/j.jtcme.2019.10.002_bib5) 2011; 93 Welch (10.1016/j.jtcme.2019.10.002_bib12) 1990; 110 Dehghan (10.1016/j.jtcme.2019.10.002_bib18) 2016; 6 Chaudhary (10.1016/j.jtcme.2019.10.002_bib40) 2015; 166 Xue (10.1016/j.jtcme.2019.10.002_bib8) 2015; 4 Hinz (10.1016/j.jtcme.2019.10.002_bib10) 2001; 12 Tandara (10.1016/j.jtcme.2019.10.002_bib22) 2004; 28 Srivastava (10.1016/j.jtcme.2019.10.002_bib42) 2013; 93 Snedeker (10.1016/j.jtcme.2019.10.002_bib34) 2014; 4 Olsson (10.1016/j.jtcme.2019.10.002_bib19) 2006; 7 Aronson (10.1016/j.jtcme.2019.10.002_bib33) 2002; 1 Alam (10.1016/j.jtcme.2019.10.002_bib43) 2014; 2014 Diegelmann (10.1016/j.jtcme.2019.10.002_bib7) 2004; 9 Leoni (10.1016/j.jtcme.2019.10.002_bib1) 2015; 8 Shamshuddin (10.1016/j.jtcme.2019.10.002_bib39) 2018; 8 Hwang (10.1016/j.jtcme.2019.10.002_bib32) 2017; 12 Erejuwa (10.1016/j.jtcme.2019.10.002_bib49) 2012; 17 Falanga (10.1016/j.jtcme.2019.10.002_bib2) 2005; 366 Barui (10.1016/j.jtcme.2019.10.002_bib31) 2014; 6 Dinakaran (10.1016/j.jtcme.2019.10.002_bib35) 2019; 9 Chaudhary (10.1016/j.jtcme.2019.10.002_bib25) 2015; 23 Ediriweera (10.1016/j.jtcme.2019.10.002_bib41) 2012; 33 Topham (10.1016/j.jtcme.2019.10.002_bib44) 2002; 11 Aziz (10.1016/j.jtcme.2019.10.002_bib20) 2014; 4 Kolluru (10.1016/j.jtcme.2019.10.002_bib3) 2012; 2012 38707918 - J Tradit Complement Med. 2023 Oct 04;14(3):350-352 |
References_xml | – volume: 200 start-page: 500 year: 2003 end-page: 503 ident: bib46 article-title: The myofibroblast in wound healing and fibrocontractive diseases publication-title: J Pathol – volume: 51 start-page: 1269 year: 2002 end-page: 1273 ident: bib6 article-title: L-Arginine supplementation enhances diabetic wound healing: involvement of the nitric oxide synthase and arginase pathways publication-title: Metabol – volume: 4 start-page: 303 year: 2014 ident: bib34 article-title: The role of collagen crosslinks in ageing and diabetes-the good, the bad, and the ugly publication-title: Muscles Ligaments Tendons J – volume: 611 start-page: 77 year: 2009 end-page: 84 ident: bib27 article-title: Propranolol improves cutaneous wound healing in streptozotocin-induced diabetic rats publication-title: Eur J Pharmacol – volume: 11 start-page: 198 year: 2003 end-page: 203 ident: bib28 article-title: Supplemental L-arginine enhances wound healing in diabetic rats publication-title: Wound Repair Regen – volume: 18 start-page: 21 year: 2017 end-page: 32 ident: bib45 article-title: Therapeutic interfaces of honey in diabetic wound pathology publication-title: Wound Med – volume: 127 start-page: 2645 year: 2007 end-page: 2655 ident: bib47 article-title: TNF-α suppresses α-smooth muscle actin expression in human dermal fibroblasts: an implication for abnormal wound healing publication-title: J Investig Dermatol – volume: 366 start-page: 1736 year: 2005 end-page: 1743 ident: bib2 article-title: Wound healing and its impairment in the diabetic foot publication-title: The Lancet – volume: 28 start-page: 294 year: 2004 end-page: 300 ident: bib22 article-title: Oxygen in wound healing—more than a nutrient publication-title: World J Surg – volume: 1 start-page: 32 year: 2013 ident: bib30 article-title: Honey exposure stimulates wound repair of human dermal fibroblasts publication-title: Burns Trauma – volume: 65 start-page: 3460 year: 2017 end-page: 3473 ident: bib26 article-title: Honey extracted polyphenolics reduce experimental hypoxia in human keratinocytes culture publication-title: J Agric Food Chem – volume: 93 start-page: 2084 year: 2013 end-page: 2093 ident: bib42 article-title: Pharmacological potentials of Syzygium cumini: a review publication-title: J Sci Food Agric – volume: 11 start-page: 53 year: 2002 end-page: 58 ident: bib44 article-title: Why do some cavity wounds treated with honey or sugar paste heal without scarring? publication-title: J Wound Care – volume: 7 start-page: 359 year: 2006 May end-page: 371 ident: bib19 article-title: VEGF receptor signalling--in control of vascular function publication-title: Nat Rev Mol Cell Biol – volume: 8 start-page: 39 year: 2018 end-page: 45 ident: bib39 article-title: Gelam honey attenuates ovalbumin-induced airway inflammation in a mice model of allergic asthma publication-title: J Tradit Complement Med – volume: 62 start-page: 37 year: 2004 end-page: 54 ident: bib16 article-title: HIFs, hypoxia, and vascular development publication-title: Curr Top Dev Biol – volume: 6 start-page: 437 year: 2016 end-page: 441 ident: bib18 article-title: Inhibitory effect of curcumin on angiogenesis in a streptozotocin-induced diabetic rat model: an aortic ring assay publication-title: J Tradit Complement Med – volume: 79 start-page: 1634 year: 2010 end-page: 1639 ident: bib17 article-title: Role of modulation of vascular endothelial growth factor and tumor necrosis factor-alpha in gastric ulcer healing in diabetic rats publication-title: Biochem Pharmacol – volume: 8 start-page: 959 year: 2015 end-page: 968 ident: bib1 article-title: Wound repair: role of immune–epithelial interactions publication-title: Mucosal Immunol – volume: 23 start-page: 412 year: 2015 end-page: 422 ident: bib25 article-title: Honey dilution impact on in vitro wound healing: normoxic and hypoxic condition publication-title: Wound Repair Regen – volume: 9 start-page: 319 year: 2019 end-page: 327 ident: bib35 article-title: Profiling and determination of phenolic compounds in poly herbal formulations and their comparative evaluation publication-title: J Tradit Complement Med – volume: 12 start-page: 336 year: 2014 end-page: 345 ident: bib36 article-title: Clinical and experimental studies on polyherbal formulations for diabetes: current status and future prospective publication-title: J Integr Med – volume: 12 year: 2017 ident: bib32 article-title: Association between diabetic foot ulcer and diabetic retinopathy publication-title: PLoS One – volume: 121 start-page: 513 year: 1997 end-page: 519 ident: bib29 article-title: Diabetes-impaired healing and reduced wound nitric oxide synthesis: a possible pathophysiologic correlation publication-title: Surgery – volume: 20 start-page: 7 year: 2018 end-page: 17 ident: bib38 article-title: Modulation of collagen population under honey assisted wound healing in diabetic rat model publication-title: Wound Med – volume: 2012 start-page: 918267 year: 2012 ident: bib3 article-title: Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing publication-title: Int J Vasc Med – volume: 9 start-page: 477 year: 2019 ident: bib4 article-title: Argon mitigates impaired wound healing process and enhances wound healing in vitro and in vivo publication-title: Theranos – volume: 166 start-page: 211 year: 2015 end-page: 219 ident: bib40 article-title: Modulating prime molecular expressions and in vitro wound healing rate in keratinocyte (HaCaT) population under characteristic honey dilutions publication-title: J Ethnopharmacol – volume: 4 start-page: 298 year: 2014 end-page: 302 ident: bib20 article-title: The antinociceptive effects of Tualang honey in male Sprague-Dawley rats: a preliminary study publication-title: J Tradit Complement Med – volume: 1 start-page: 1 year: 2002 ident: bib33 article-title: How hyperglycemia promotes atherosclerosis: molecular mechanisms publication-title: Cardiovasc Diabetol – year: 2011 ident: bib23 article-title: Low Dose Streptozotocin Induction Protocol (Mouse) – volume: 9 start-page: 283 year: 2004 end-page: 289 ident: bib7 article-title: Wound healing: an overview of acute, fibrotic and delayed healing publication-title: Front Biosci – volume: 12 start-page: 2730 year: 2001 end-page: 2741 ident: bib10 article-title: Alpha-smooth muscle actin expression upregulates fibroblast contractile activity publication-title: Mol Biol Cell – volume: 105 start-page: 19426 year: 2008 end-page: 19431 ident: bib15 article-title: Stabilization of HIF-1α is critical to improve wound healing in diabetic mice publication-title: Proc Natl Acad Sci – volume: 33 start-page: 178 year: 2012 ident: bib41 article-title: Medicinal and cosmetic uses of bee’s honey–A review publication-title: Ayu – volume: 7 start-page: 301 year: 2014 ident: bib9 article-title: Fibroblasts and myofibroblasts in wound healing publication-title: Clin Cosmet Investig Dermatol – volume: 4 start-page: 119 year: 2015 end-page: 136 ident: bib8 article-title: Extracellular matrix reorganization during wound healing and its impact on abnormal scarring publication-title: Adv Wound Care – volume: 6 start-page: 26 year: 2014 end-page: 33 ident: bib31 article-title: Evaluation of angiogenesis in diabetic lower limb wound healing using a natural medicine: a quantitative approach publication-title: Wound Med – volume: 93 start-page: 228 year: 2011 end-page: 234 ident: bib5 article-title: Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats publication-title: Diabetes Res Clin Pract – volume: 110 start-page: 133 year: 1990 end-page: 145 ident: bib12 article-title: Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction publication-title: J Cell Biol – year: 2010 ident: bib24 article-title: Establishing primary adult fibroblast cultures from rodents publication-title: JoVE (Journal of Visualized Experiments) – volume: 5 start-page: 208 year: 2016 end-page: 229 ident: bib21 article-title: Traditional therapies for skin wound healing publication-title: Adv Wound Care – volume: 2014 start-page: 169130 year: 2014 ident: bib43 article-title: Honey: a potential therapeutic agent for managing diabetic wounds publication-title: Evid Based Complement Alternat Med – volume: 118 start-page: 873 year: 2005 end-page: 887 ident: bib13 article-title: Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition publication-title: J Cell Sci – volume: 303 start-page: G1270 year: 2012 end-page: G1278 ident: bib14 article-title: IL-1β stimulation of CCD-18co myofibroblasts enhances repair of epithelial monolayers through Wnt-5a publication-title: Am J Physiol Gastrointest Liver Physiol – volume: 17 start-page: 1900 year: 2012 end-page: 1915 ident: bib49 article-title: Fructose might contribute to the hypoglycemic effect of honey publication-title: Molecules – volume: 79 start-page: 1634 year: 2010 end-page: 1639 ident: bib48 article-title: Role of modulation of vascular endothelial growth factor and tumor necrosis factor-alpha in gastric ulcer healing in diabetic rats publication-title: Biochem Pharmacol – volume: 2014 start-page: 169130 year: 2014 ident: bib37 article-title: Honey: a potential therapeutic agent for managing diabetic wounds publication-title: Evid Based Complement Alternat Med – volume: 57 start-page: 268 year: 1994 end-page: 273 ident: bib11 article-title: Human wound healing fibroblasts have greater contractile properties than dermal fibroblasts publication-title: J Surg Res – volume: 6 start-page: 437 year: 2016 ident: 10.1016/j.jtcme.2019.10.002_bib18 article-title: Inhibitory effect of curcumin on angiogenesis in a streptozotocin-induced diabetic rat model: an aortic ring assay publication-title: J Tradit Complement Med doi: 10.1016/j.jtcme.2015.12.003 – volume: 93 start-page: 228 year: 2011 ident: 10.1016/j.jtcme.2019.10.002_bib5 article-title: Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2011.04.018 – volume: 121 start-page: 513 year: 1997 ident: 10.1016/j.jtcme.2019.10.002_bib29 article-title: Diabetes-impaired healing and reduced wound nitric oxide synthesis: a possible pathophysiologic correlation publication-title: Surgery doi: 10.1016/S0039-6060(97)90105-7 – volume: 51 start-page: 1269 year: 2002 ident: 10.1016/j.jtcme.2019.10.002_bib6 article-title: L-Arginine supplementation enhances diabetic wound healing: involvement of the nitric oxide synthase and arginase pathways publication-title: Metabol doi: 10.1053/meta.2002.35185 – volume: 5 start-page: 208 year: 2016 ident: 10.1016/j.jtcme.2019.10.002_bib21 article-title: Traditional therapies for skin wound healing publication-title: Adv Wound Care doi: 10.1089/wound.2013.0506 – volume: 6 start-page: 26 year: 2014 ident: 10.1016/j.jtcme.2019.10.002_bib31 article-title: Evaluation of angiogenesis in diabetic lower limb wound healing using a natural medicine: a quantitative approach publication-title: Wound Med doi: 10.1016/j.wndm.2014.09.003 – volume: 79 start-page: 1634 year: 2010 ident: 10.1016/j.jtcme.2019.10.002_bib17 article-title: Role of modulation of vascular endothelial growth factor and tumor necrosis factor-alpha in gastric ulcer healing in diabetic rats publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2010.02.001 – volume: 65 start-page: 3460 year: 2017 ident: 10.1016/j.jtcme.2019.10.002_bib26 article-title: Honey extracted polyphenolics reduce experimental hypoxia in human keratinocytes culture publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.7b00366 – volume: 12 start-page: 336 year: 2014 ident: 10.1016/j.jtcme.2019.10.002_bib36 article-title: Clinical and experimental studies on polyherbal formulations for diabetes: current status and future prospective publication-title: J Integr Med doi: 10.1016/S2095-4964(14)60031-5 – volume: 127 start-page: 2645 year: 2007 ident: 10.1016/j.jtcme.2019.10.002_bib47 article-title: TNF-α suppresses α-smooth muscle actin expression in human dermal fibroblasts: an implication for abnormal wound healing publication-title: J Investig Dermatol doi: 10.1038/sj.jid.5700890 – volume: 62 start-page: 37 year: 2004 ident: 10.1016/j.jtcme.2019.10.002_bib16 article-title: HIFs, hypoxia, and vascular development publication-title: Curr Top Dev Biol doi: 10.1016/S0070-2153(04)62002-3 – volume: 17 start-page: 1900 year: 2012 ident: 10.1016/j.jtcme.2019.10.002_bib49 article-title: Fructose might contribute to the hypoglycemic effect of honey publication-title: Molecules doi: 10.3390/molecules17021900 – volume: 57 start-page: 268 year: 1994 ident: 10.1016/j.jtcme.2019.10.002_bib11 article-title: Human wound healing fibroblasts have greater contractile properties than dermal fibroblasts publication-title: J Surg Res doi: 10.1006/jsre.1994.1143 – volume: 166 start-page: 211 year: 2015 ident: 10.1016/j.jtcme.2019.10.002_bib40 article-title: Modulating prime molecular expressions and in vitro wound healing rate in keratinocyte (HaCaT) population under characteristic honey dilutions publication-title: J Ethnopharmacol doi: 10.1016/j.jep.2015.03.017 – volume: 12 start-page: 2730 year: 2001 ident: 10.1016/j.jtcme.2019.10.002_bib10 article-title: Alpha-smooth muscle actin expression upregulates fibroblast contractile activity publication-title: Mol Biol Cell doi: 10.1091/mbc.12.9.2730 – volume: 11 start-page: 198 year: 2003 ident: 10.1016/j.jtcme.2019.10.002_bib28 article-title: Supplemental L-arginine enhances wound healing in diabetic rats publication-title: Wound Repair Regen doi: 10.1046/j.1524-475X.2003.11308.x – volume: 93 start-page: 2084 year: 2013 ident: 10.1016/j.jtcme.2019.10.002_bib42 article-title: Pharmacological potentials of Syzygium cumini: a review publication-title: J Sci Food Agric doi: 10.1002/jsfa.6111 – volume: 9 start-page: 283 year: 2004 ident: 10.1016/j.jtcme.2019.10.002_bib7 article-title: Wound healing: an overview of acute, fibrotic and delayed healing publication-title: Front Biosci doi: 10.2741/1184 – volume: 2014 start-page: 169130 year: 2014 ident: 10.1016/j.jtcme.2019.10.002_bib43 article-title: Honey: a potential therapeutic agent for managing diabetic wounds publication-title: Evid Based Complement Alternat Med doi: 10.1155/2014/169130 – volume: 8 start-page: 39 issue: 1 year: 2018 ident: 10.1016/j.jtcme.2019.10.002_bib39 article-title: Gelam honey attenuates ovalbumin-induced airway inflammation in a mice model of allergic asthma publication-title: J Tradit Complement Med doi: 10.1016/j.jtcme.2016.08.009 – volume: 4 start-page: 303 year: 2014 ident: 10.1016/j.jtcme.2019.10.002_bib34 article-title: The role of collagen crosslinks in ageing and diabetes-the good, the bad, and the ugly publication-title: Muscles Ligaments Tendons J doi: 10.32098/mltj.03.2014.07 – volume: 200 start-page: 500 year: 2003 ident: 10.1016/j.jtcme.2019.10.002_bib46 article-title: The myofibroblast in wound healing and fibrocontractive diseases publication-title: J Pathol doi: 10.1002/path.1427 – volume: 2012 start-page: 918267 year: 2012 ident: 10.1016/j.jtcme.2019.10.002_bib3 article-title: Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing publication-title: Int J Vasc Med – volume: 18 start-page: 21 year: 2017 ident: 10.1016/j.jtcme.2019.10.002_bib45 article-title: Therapeutic interfaces of honey in diabetic wound pathology publication-title: Wound Med doi: 10.1016/j.wndm.2017.07.001 – volume: 7 start-page: 359 year: 2006 ident: 10.1016/j.jtcme.2019.10.002_bib19 article-title: VEGF receptor signalling--in control of vascular function publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1911 – volume: 20 start-page: 7 year: 2018 ident: 10.1016/j.jtcme.2019.10.002_bib38 article-title: Modulation of collagen population under honey assisted wound healing in diabetic rat model publication-title: Wound Med doi: 10.1016/j.wndm.2017.12.001 – volume: 4 start-page: 119 year: 2015 ident: 10.1016/j.jtcme.2019.10.002_bib8 article-title: Extracellular matrix reorganization during wound healing and its impact on abnormal scarring publication-title: Adv Wound Care doi: 10.1089/wound.2013.0485 – volume: 2014 start-page: 169130 year: 2014 ident: 10.1016/j.jtcme.2019.10.002_bib37 article-title: Honey: a potential therapeutic agent for managing diabetic wounds publication-title: Evid Based Complement Alternat Med doi: 10.1155/2014/169130 – volume: 28 start-page: 294 year: 2004 ident: 10.1016/j.jtcme.2019.10.002_bib22 article-title: Oxygen in wound healing—more than a nutrient publication-title: World J Surg doi: 10.1007/s00268-003-7400-2 – volume: 12 year: 2017 ident: 10.1016/j.jtcme.2019.10.002_bib32 article-title: Association between diabetic foot ulcer and diabetic retinopathy publication-title: PLoS One doi: 10.1371/journal.pone.0175270 – volume: 105 start-page: 19426 year: 2008 ident: 10.1016/j.jtcme.2019.10.002_bib15 article-title: Stabilization of HIF-1α is critical to improve wound healing in diabetic mice publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0805230105 – volume: 11 start-page: 53 year: 2002 ident: 10.1016/j.jtcme.2019.10.002_bib44 article-title: Why do some cavity wounds treated with honey or sugar paste heal without scarring? publication-title: J Wound Care doi: 10.12968/jowc.2002.11.2.26372 – volume: 33 start-page: 178 year: 2012 ident: 10.1016/j.jtcme.2019.10.002_bib41 article-title: Medicinal and cosmetic uses of bee’s honey–A review publication-title: Ayu doi: 10.4103/0974-8520.105233 – volume: 611 start-page: 77 year: 2009 ident: 10.1016/j.jtcme.2019.10.002_bib27 article-title: Propranolol improves cutaneous wound healing in streptozotocin-induced diabetic rats publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2009.03.053 – volume: 7 start-page: 301 year: 2014 ident: 10.1016/j.jtcme.2019.10.002_bib9 article-title: Fibroblasts and myofibroblasts in wound healing publication-title: Clin Cosmet Investig Dermatol – volume: 8 start-page: 959 year: 2015 ident: 10.1016/j.jtcme.2019.10.002_bib1 article-title: Wound repair: role of immune–epithelial interactions publication-title: Mucosal Immunol doi: 10.1038/mi.2015.63 – volume: 1 start-page: 1 year: 2002 ident: 10.1016/j.jtcme.2019.10.002_bib33 article-title: How hyperglycemia promotes atherosclerosis: molecular mechanisms publication-title: Cardiovasc Diabetol doi: 10.1186/1475-2840-1-1 – year: 2011 ident: 10.1016/j.jtcme.2019.10.002_bib23 – year: 2010 ident: 10.1016/j.jtcme.2019.10.002_bib24 article-title: Establishing primary adult fibroblast cultures from rodents publication-title: JoVE (Journal of Visualized Experiments) doi: 10.3791/2033-v – volume: 23 start-page: 412 year: 2015 ident: 10.1016/j.jtcme.2019.10.002_bib25 article-title: Honey dilution impact on in vitro wound healing: normoxic and hypoxic condition publication-title: Wound Repair Regen doi: 10.1111/wrr.12297 – volume: 366 start-page: 1736 year: 2005 ident: 10.1016/j.jtcme.2019.10.002_bib2 article-title: Wound healing and its impairment in the diabetic foot publication-title: The Lancet doi: 10.1016/S0140-6736(05)67700-8 – volume: 118 start-page: 873 year: 2005 ident: 10.1016/j.jtcme.2019.10.002_bib13 article-title: Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition publication-title: J Cell Sci doi: 10.1242/jcs.01634 – volume: 110 start-page: 133 year: 1990 ident: 10.1016/j.jtcme.2019.10.002_bib12 article-title: Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction publication-title: J Cell Biol doi: 10.1083/jcb.110.1.133 – volume: 4 start-page: 298 year: 2014 ident: 10.1016/j.jtcme.2019.10.002_bib20 article-title: The antinociceptive effects of Tualang honey in male Sprague-Dawley rats: a preliminary study publication-title: J Tradit Complement Med doi: 10.4103/2225-4110.139115 – volume: 9 start-page: 319 year: 2019 ident: 10.1016/j.jtcme.2019.10.002_bib35 article-title: Profiling and determination of phenolic compounds in poly herbal formulations and their comparative evaluation publication-title: J Tradit Complement Med doi: 10.1016/j.jtcme.2017.12.001 – volume: 303 start-page: G1270 year: 2012 ident: 10.1016/j.jtcme.2019.10.002_bib14 article-title: IL-1β stimulation of CCD-18co myofibroblasts enhances repair of epithelial monolayers through Wnt-5a publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00458.2011 – volume: 79 start-page: 1634 year: 2010 ident: 10.1016/j.jtcme.2019.10.002_bib48 article-title: Role of modulation of vascular endothelial growth factor and tumor necrosis factor-alpha in gastric ulcer healing in diabetic rats publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2010.02.001 – volume: 1 start-page: 32 year: 2013 ident: 10.1016/j.jtcme.2019.10.002_bib30 article-title: Honey exposure stimulates wound repair of human dermal fibroblasts publication-title: Burns Trauma doi: 10.4103/2321-3868.113333 – volume: 9 start-page: 477 year: 2019 ident: 10.1016/j.jtcme.2019.10.002_bib4 article-title: Argon mitigates impaired wound healing process and enhances wound healing in vitro and in vivo publication-title: Theranos doi: 10.7150/thno.29361 – reference: 38707918 - J Tradit Complement Med. 2023 Oct 04;14(3):350-352 |
SSID | ssj0000884191 |
Score | 2.3636072 |
Snippet | Diabetic patients are frequently afflicted with impaired wound healing where linear progression of molecular and cellular events compromised. Despite of... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier airiti |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 529 |
SubjectTerms | Angiogenesis Diabetic wound Jamun honey Original Reepithelialization Wound closure |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD4gL4puUgozEsYE4tpP4WFCrqhKIAxW9Wf6YtKnabNXdPfTCb2fGSVYbkMqF0-5ms3acefG8WY_fMPYBnUD00rW5E17nShuTe1PFXImmdhJKATElyH6rjk_VyZk-2yr1RTlhgzzwcOM-QdOGUBpfm8orbwovWxGcAEDXhO8TNSpMsRVMpTm4aZRI5fIonsGeRTFJDqXkrstVuCaRTGE-ptyuEh2Q60hGaOafkoz_zE39TUP_zKbcck9HT9jjkVfyg2E8T9kD6J-xh1_HlfPn7NdPqp_EiReis-JAyhEu3PFFy0_c9brnF4se7njX8-Hf2C5wKlTPU6UcPlbz4bcAN7SJ4wpRO27g3OcJSohDHmFKAeMO-3L9ebc4p7m0W75gp0eHP74c52Pthdxpo1a5UK4CBc5LU0FE1lVj7CFD8IUBLVpar9ZNVDo2XkDrgy994WJlWqhLqKWUL9lOjxf-mvEQYkAjaA-twmAweBli6bVpHVRVMEXGDodbb8fHZ2m_k2WQy9ZoGVsWRFLGl4KKnFbzD7o0ViuZsXKynA2jwDnV2biyUybbpU12t9Q6HcTWM7a_-dHNoO9x_-mfCRKbU0mcOx1AyNoRsvZfkM1YNQHKjjxn4C_YVHd_7-8n-FmcBWhpx_WwWC8tLV8j8UJulrFXAxw31yglifaVJmP1DKizQcy_6buLpDSOwWQjZbP7P0b9hj0iqw37OPfYzup2DW-R0K38u_Ts_gYwP0dA priority: 102 providerName: Directory of Open Access Journals |
Title | Wound healing efficacy of Jamun honey in diabetic mice model through reepithelialization, collagen deposition and angiogenesis |
URI | https://www.airitilibrary.com/Article/Detail/P20190807002-202011-202011090006-202011090006-529-543 https://dx.doi.org/10.1016/j.jtcme.2019.10.002 https://www.ncbi.nlm.nih.gov/pubmed/33134129 https://www.proquest.com/docview/2456853613 https://pubmed.ncbi.nlm.nih.gov/PMC7588338 https://doaj.org/article/e8fcc29b796b4b90b3f1ca1ee181b3fa |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhhdJL6bvuI6jQYxwsS7KtQyhtSQiBlh66NDchyfLGYeNN9gHdS357Z2R5W7ch0NPuer2yVvN55hvPaIaQ92AEastNkxpmZSqkUqlVRZ0KVpWG-5z5OiTIfi1OJuL0TJ7tkKEralzA5a2uHfaTmixmBz-vNx_ghj_8nat1sXKXWPOSqYOQqgU6-V4IGGEuX-T7QTVXlWChix66OTAhlg2ViG4fB-ySabG60Mhsher-I-v1Lzv9O8nyD6t1_Ig8jHSTfuzx8Zjs-O4Juf8lBtSfkpsf2FaJIl0EG0Y9FpQwbkPnDT01l-uOns87v6FtR_uHtK2j2L-ehgY6NDb5oQvvr3BvxwzAHPd17tOAMIAnrf2QGUYNXMt003Y-RRXbLp-RyfHR988naWzJkBqpxCplwhReeGO5KnwNZKwEl4Q7ZzPlJWswjC2rWsi6ssw31tncZqYuVOPL3Jec8-dkt4OJvyTUudqBEKT1jQAf0Vnu6txK1RhfFE5lCTnql14PoNDfUDJAcUuQjM4z5C7xJcPep8X4g8yVloInJB8kp12se47tN2Z6SHC70EHuGkfHgzB6Qva3P7rqy37cffonhMT2VKzZHQ7MF1MdVYD2VeNcrmypCiusyixvmDPMeyBZ8N4kpBgApSP96WkNDNXeffV3A_w0KAeM-JjOz9dLjVFt4GNA2RLyoofjdo6cYy2_XCWkHAF19CfG33TteShADj5mxXn16v8W6TV5gPLpN3K-Iburxdq_BUa3snvhScheuFd_AQSyR5A |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wound+healing+efficacy+of+Jamun+honey+in+diabetic+mice+model+through+reepithelialization%2C+collagen+deposition+and+angiogenesis&rft.jtitle=Journal+of+traditional+and+complementary+medicine&rft.au=Chaudhary%2C+Amrita&rft.au=Bag%2C+Swarnendu&rft.au=Banerjee%2C+Provas&rft.au=Chatterjee%2C+Jyotirmoy&rft.date=2020-11-01&rft.issn=2225-4110&rft.eissn=2225-4110&rft.volume=10&rft.issue=6&rft.spage=529&rft.epage=543&rft_id=info:doi/10.1016%2Fj.jtcme.2019.10.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jtcme_2019_10_002 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2FP20190807002-c.jpg |