Introduction to Direction-of-Arrival Estimation
Direction-of-Arrival (DOA) estimation concerns the estimation of direction finding signals in the form of electromagnetic or acoustic waves, impinging on a sensor or antenna array. DOA estimation is used for locating and tracking signal sources in both civilian and military applications. This author...
Saved in:
Main Authors | , , |
---|---|
Format | eBook Book |
Language | English |
Published |
Boston
Artech
2010
Artech House |
Edition | 1 |
Series | Artech House signal processing library |
Subjects | |
Online Access | Get full text |
ISBN | 1596930896 9781596930896 9781596930902 159693090X |
Cover
Table of Contents:
- Introduction to Direction-of-Arrival Estimation -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Smart Antenna Architecture -- 1.2 Overview of This Book -- 1.3 Notations -- References -- Chapter 2 Antennas and Array Receiving System -- 2.1 Single Transmit Antenna -- 2.1.1 Directivity and Gain -- 2.1.2 Radiation Pattern -- 2.1.3 Equivalent Resonant Circuits and Bandwidth -- 2.2 Single Receive Antenna -- 2.3 Antenna Array -- 2.4 Conclusion -- Reference -- Chapter 3 Overview of Basic DOA Estimation Algorithms -- 3.1 Introduction -- 3.2 Data Model -- 3.2.1 Uniform Linear Array (ULA) -- 3.3 Centro-Symmetric Sensor Arrays -- 3.3.1 Uniform Linear Array -- 3.3.2 Uniform Rectangular Array (URA) -- 3.3.3 Covariance Matrices -- 3.4 Beamforming Techniques -- 3.4.1 Conventional Beamformer -- 3.4.2 Capon's Beamformer -- 3.4.3 Linear Prediction -- 3.5 Maximum Likelihood Techniques -- 3.6 Subspace-Based Techniques -- 3.6.1 Concept of Subspaces -- 3.6.2 MUSIC -- 3.6.3 Minimum Norm -- 3.6.4 ESPRIT -- 3.7 Conclusion -- References -- Chapter 4 Preprocessing Schemes and Model Order Estimation -- 4.1 Introduction -- 4.2 Preprocessing Schemes -- 4.2.1 Forward-Backward Averaging -- 4.2.2 Spatial Smoothing -- 4.3 Model Order Estimators -- 4.3.1 Classical Technique -- 4.3.2 Minimum Descriptive Length Criterion -- 4.3.3 Akaike Information Theoretic Criterion -- 4.4 Conclusion -- References -- Chapter 5 DOA Estimations with ESPRIT Algorithms -- 5.1 Introduction -- 5.2 Basic Principle -- 5.2.1 Signal and Data Model -- 5.2.2 Signal Subspace Estimation -- 5.2.3 Estimation of the Subspace Rotating Operator -- 5.3 Standard ESPRIT -- 5.3.1 Signal Subspace Estimation -- 5.3.2 Solution of Invariance Equation -- 5.3.3 Spatial Frequency and DOA Estimation -- 5.4 Real-Valued Transformation -- 5.5 Unitary ESPRIT in Element Space
- 5.5.1 One-Dimensional Unitary ESPRIT in Element Space -- 5.5.2 Two-Dimensional Unitary ESPRIT in Element Space -- 5.6 Beamspace Transformation -- 5.6.1 DFT Beamspace Invariance Structure -- 5.6.2 DFT Beamspace in a Reduced Dimension -- 5.7 Unitary ESPRIT in DFT Beamspace -- 5.7.1 One-Dimensional Unitary ESPRIT in DFT Beamspace -- 5.7.2 Two-Dimensional Unitary ESPRIT in DFT Beamspace -- 5.8 Conclusion -- References -- Chapter 6 Analysis of ESPRIT-Based DOA Estimation Algorithms -- 6.1 Introduction -- 6.2 Performance Analysis -- 6.2.1 Standard ESPRIT -- 6.2.2 The One-Dimensional Unitary ESPRIT -- 6.2.3 The Two-Dimensional Unitary ESPRIT -- 6.3 Comparative Analysis -- 6.4 Discussions -- 6.5 Conclusion -- References -- Chapter 7 Discussions and Conclusion -- 7.1 Summary -- 7.2 Advanced Topics on DOA Estimations -- References -- Appendix -- A.1 Kronecker Product -- A.2 Special Vectors and Matrix Notations -- A.3 FLOPS -- List of Abbreviations -- About the Authors -- Index