Spatial Data Analysis

With increasing accessibility to geographic information systems (GIS) software, statisticians and data analysts routinely encounter scientific data sets with geocoded locations. This has generated considerable interest in statistical modeling for location-referenced spatial data. In public health, s...

Full description

Saved in:
Bibliographic Details
Published inAnnual review of public health Vol. 37; p. 47
Main Author Banerjee, Sudipto
Format Journal Article
LanguageEnglish
Published United States 18.03.2016
Subjects
Online AccessGet full text
ISSN0163-7525
1545-2093
1545-2093
DOI10.1146/annurev-publhealth-032315-021711

Cover

Abstract With increasing accessibility to geographic information systems (GIS) software, statisticians and data analysts routinely encounter scientific data sets with geocoded locations. This has generated considerable interest in statistical modeling for location-referenced spatial data. In public health, spatial data routinely arise as aggregates over regions, such as counts or rates over counties, census tracts, or some other administrative delineation. Such data are often referred to as areal data. This review article provides a brief overview of statistical models that account for spatial dependence in areal data. It does so in the context of two applications: disease mapping and spatial survival analysis. Disease maps are used to highlight geographic areas with high and low prevalence, incidence, or mortality rates of a specific disease and the variability of such rates over a spatial domain. They can also be used to detect hot spots or spatial clusters that may arise owing to common environmental, demographic, or cultural effects shared by neighboring regions. Spatial survival analysis refers to the modeling and analysis for geographically referenced time-to-event data, where a subject is followed up to an event (e.g., death or onset of a disease) or is censored, whichever comes first. Spatial survival analysis is used to analyze clustered survival data when the clustering arises from geographical regions or strata. Illustrations are provided in these application domains.
AbstractList With increasing accessibility to geographic information systems (GIS) software, statisticians and data analysts routinely encounter scientific data sets with geocoded locations. This has generated considerable interest in statistical modeling for location-referenced spatial data. In public health, spatial data routinely arise as aggregates over regions, such as counts or rates over counties, census tracts, or some other administrative delineation. Such data are often referred to as areal data. This review article provides a brief overview of statistical models that account for spatial dependence in areal data. It does so in the context of two applications: disease mapping and spatial survival analysis. Disease maps are used to highlight geographic areas with high and low prevalence, incidence, or mortality rates of a specific disease and the variability of such rates over a spatial domain. They can also be used to detect hot spots or spatial clusters that may arise owing to common environmental, demographic, or cultural effects shared by neighboring regions. Spatial survival analysis refers to the modeling and analysis for geographically referenced time-to-event data, where a subject is followed up to an event (e.g., death or onset of a disease) or is censored, whichever comes first. Spatial survival analysis is used to analyze clustered survival data when the clustering arises from geographical regions or strata. Illustrations are provided in these application domains.
Author Banerjee, Sudipto
Author_xml – sequence: 1
  givenname: Sudipto
  surname: Banerjee
  fullname: Banerjee, Sudipto
  email: sudipto@ucla.edu
  organization: Department of Biostatistics, University of California, Los Angeles, California 90095; email: sudipto@ucla.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26789381$$D View this record in MEDLINE/PubMed
BookMark eNpFzz9PwzAQhnELFdG0MLKijiwGnx3b8RiV8keqxADM1sWx1SA3REkKyrcnKAWme4fTI_0WZFZ_1J6Qa2A3AKm6xbo-tP6TNoci7jzGfkeZ4AIkZRw0wAlJQKaScmbEjCQMlKBacjkni657Z4wZLtUZmXOlMyMySMjlS4N9hXF1hz2u8hrj0FXdOTkNGDt_cbxL8na_eV0_0u3zw9M631KUWvdUKmdSDQVXZekyI0tXYODBjwuCZE6jU4YXaDITjAxKlai9UTxwlwUXjFiSfOoe6gaHL4zRNm21x3awwOwP2R7J9p9sJ7KdyGPjamqMH3tf_gV-jeIbS2RaiA
CitedBy_id crossref_primary_10_3390_ijerph19010399
crossref_primary_10_1371_journal_pone_0213120
crossref_primary_10_1007_s43076_020_00054_y
crossref_primary_10_1002_bdr2_1940
crossref_primary_10_47470_0044_197X_2022_66_3_251_258
crossref_primary_10_1097_TA_0000000000003075
crossref_primary_10_1007_s11356_021_15438_5
crossref_primary_10_4103_JETS_JETS_191_20
crossref_primary_10_1016_j_spasta_2021_100548
crossref_primary_10_1016_j_jvacx_2024_100428
crossref_primary_10_1158_1055_9965_EPI_16_1018
crossref_primary_10_2196_57807
crossref_primary_10_35627_2219_5238_2023_31_12_7_16
crossref_primary_10_1016_j_heliyon_2024_e32005
crossref_primary_10_1186_s12963_018_0164_6
crossref_primary_10_1186_s13031_019_0234_9
crossref_primary_10_1002_cjs_11588
crossref_primary_10_36472_msd_v11i9_1191
crossref_primary_10_1186_s12889_022_13629_4
crossref_primary_10_1038_s41584_023_01062_9
crossref_primary_10_1186_s12887_020_02332_1
crossref_primary_10_3389_fpubh_2023_1225261
crossref_primary_10_1007_s13753_023_00529_3
crossref_primary_10_1186_s12889_022_14469_y
crossref_primary_10_1007_s12061_021_09381_8
crossref_primary_10_1287_inte_2023_1161
crossref_primary_10_1080_2330443X_2017_1374897
crossref_primary_10_1007_s11606_023_08062_1
crossref_primary_10_1177_19322968211027230
crossref_primary_10_1016_j_sste_2024_100646
crossref_primary_10_1038_s41598_022_20517_9
crossref_primary_10_1136_bmjopen_2018_027276
crossref_primary_10_3390_tropicalmed7100312
crossref_primary_10_1007_s10586_018_2656_3
crossref_primary_10_1016_j_sste_2024_100643
crossref_primary_10_1080_10410236_2023_2170201
crossref_primary_10_1016_j_sste_2023_100584
crossref_primary_10_1371_journal_pntd_0009429
crossref_primary_10_3390_nu15030638
crossref_primary_10_1016_j_ecolmodel_2024_110756
crossref_primary_10_1016_j_ecolind_2023_111479
crossref_primary_10_1186_s40834_024_00264_0
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
ADTOC
UNPAY
DOI 10.1146/annurev-publhealth-032315-021711
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1545-2093
ExternalDocumentID 10.1146/annurev-publhealth-032315-021711
26789381
Genre Journal Article
Review
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: RC1 GM092400
– fundername: NCI NIH HHS
  grantid: R01 CA112444
GroupedDBID ---
-QD
-QH
-~X
..I
0R~
1CY
1KX
23M
36B
4.4
44B
51A
53G
5FA
5FB
5FC
5FD
5FE
5FF
5FG
5FH
5GY
5RE
6J9
70K
70N
70Q
70S
70W
70X
79.
7B-
7RV
7X7
7XC
85S
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8NG
8R4
8R5
AABJL
AAFWJ
AAGWO
AAKOE
AALHT
AALUV
AAOHI
AAQMF
AARJV
AAVPX
AAWJP
AAWTL
AAXSQ
AAYIS
AAZCL
ABBTB
ABDBF
ABDOG
ABGCZ
ABGRM
ABIPL
ABIVO
ABKGM
ABMRD
ABUWG
ABVYV
ABZNY
ACAHA
ACDVT
ACGFO
ACGFS
ACHQT
ACJYF
ACKHT
ACMXS
ACNCT
ACPHO
ACPRK
ACQCJ
ACQLW
ACRLM
ACSOE
ACUHS
ADBBV
ADEJD
ADGWB
ADHEY
ADLON
ADNJN
ADSVE
AEAIQ
AEKBM
AENEX
AEPIK
AEUYN
AEWNI
AFCZG
AFERR
AFKDQ
AFKEJ
AFKRA
AFONB
AFRAH
AHIXL
AHKZM
AHMBA
AHVNO
AI.
AICBU
AIDEK
AIJFW
AJAAW
AJOTX
ALAFQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTJG
AONFT
AOUBY
AQQLW
AQUVI
ATAUN
ATCPS
AZQEC
B0M
B9D
B9E
B9F
B9G
B9H
B9L
B9M
B9N
BBNVY
BCFVH
BENPR
BHPHI
BJPMW
BKEYQ
BKNYI
BMYRD
BPHCQ
BVIZK
BVXVI
CCPQU
CGR
CS3
CUY
CVF
DWQXO
EAP
EAS
EBC
EBD
EBS
ECM
ECV
EHN
EIF
EJD
EMB
EMK
EMOBN
ENC
EPT
ESX
EX3
F-Q
F-S
F-V
F-X
F-Y
F-Z
F.1
F5P
FIWKU
FIXEU
FMZAJ
FQMFW
FT0
FU.
FUEKT
FW-
FXG
FYUFA
GJQJI
GLOEX
GNDDA
GNUQQ
GOAVI
GQXMV
GUQSH
GURLG
H13
HCIFZ
HMCUK
HZ~
H~9
J1V
K9-
LK8
M0R
M0T
M1P
M22
M2O
M7P
N9A
NAPCQ
NHB
NPM
O9-
OK1
P0P
P2P
PATMY
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PYCSY
Q2X
Q~Q
RAR
RAV
RNS
SV3
TUS
UAP
UKHRP
UPT
VH1
WH7
WOW
XZL
YSK
ZGI
ZYWBE
~8M
~KM
ADTOC
RIG
UNPAY
ID FETCH-LOGICAL-a577t-56c9471b26ddc895dcbaf2fe95d1f50c7ac692ba989f95f66da7e962f2c8fcf93
IEDL.DBID UNPAY
ISSN 0163-7525
1545-2093
IngestDate Sun Oct 26 03:53:06 EDT 2025
Mon Jul 21 05:47:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords multivariate CAR models
conditional autoregressive (CAR) models
Bayesian hierarchical modeling
multivariate disease mapping
spatial survival analysis
disease mapping
cure rate models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a577t-56c9471b26ddc895dcbaf2fe95d1f50c7ac692ba989f95f66da7e962f2c8fcf93
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.annualreviews.org/doi/pdf/10.1146/annurev-publhealth-032315-021711
PMID 26789381
ParticipantIDs unpaywall_primary_10_1146_annurev_publhealth_032315_021711
pubmed_primary_26789381
PublicationCentury 2000
PublicationDate 2016-03-18
PublicationDateYYYYMMDD 2016-03-18
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annual review of public health
PublicationTitleAlternate Annu Rev Public Health
PublicationYear 2016
SSID ssj0009256
Score 2.3887644
SecondaryResourceType review_article
Snippet With increasing accessibility to geographic information systems (GIS) software, statisticians and data analysts routinely encounter scientific data sets with...
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
StartPage 47
SubjectTerms Bayes Theorem
Geographic Information Systems
Geographic Mapping
Humans
Markov Chains
Models, Statistical
Multivariate Analysis
Spatial Analysis
Survival Analysis
Title Spatial Data Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/26789381
https://www.annualreviews.org/doi/pdf/10.1146/annurev-publhealth-032315-021711
UnpaywallVersion publishedVersion
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGP2YG6gg_pw6f4wePHiJNG2TNN6GOoawsoODeSppmlwc3ZBO0b_eZFnn5knQWyG0kMcr3yP53vsArqSPpdZcoCyWCkWaMHu_myGV49wwTGLNrDm5n9DeMHockVENksoLY9sq19I457f59vee5rrKtq1GtCAbBe38gsgPjVKxZmPMrNW3QYnR5nVoDJNB59kFfIeIkfkUVisbDD14uAnXv_3kSoXamhVT8fEuxuOVUtTdg0m1CdeB8nIzK7Mb-fkj3_H_drkPuwvV6nUczQ6gpopD2HFHfp5zMh1B0443NnT27kUpvCrtpAnD7sPTXQ8tpi4gQRgrEaGSm4qVBTTPZcxJLjOhA63ME9bEl0xIyoNM8JhrTjSluWCK00AHMtZS8_AY6sWkUKfgYaZYJKnCIZWR0SGCBzT0I820isKM-C04cZimUxetkQamdnIjIlpwuwR5ubjuoX5Lv3FJHS6pw-XsLy-fw7bRRNS2meH4Aurl60xdGt1RZm3YSAb99oJSX3PQ10Q
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGP0YG6gg_pw6f9GDBy8ZTdskjbehjiE4PDiYp5KkycXRjdEp-tebLOvcPAl6K4QW8njleyTfex_AlQqxMoYLJFOlUWIIc_e7Eukc55ZhChvmzMmPfdobJA9DMqxBv_LCuLbKtTTO-W2--70nuamybasRLchFQXu_IApjq1Sc2RgzZ_VtUGK1eR0ag_5T58UHfMeIkfkUVicbLD14vAHXv_3kSoXanBUT8fEuRqOVUtTdhXG1Cd-B8tqelbKtPn_kO_7fLvdgZ6Fag46n2T7UdHEA2_7IL_BOpkNouvHGls7BnShFUKWdNGHQvX--7aHF1AUkCGMlIlRxW7FkRPNcpZzkSgoTGW2fsCGhYkJRHknBU244MZTmgmlOIxOp1CjD4yOoF-NCn0CAmWaJohrHVCVWhwge0ThMDDM6iSUJW3DsMc0mPloji2zt5FZEtOBmCfJycd1D_ZZ945J5XDKPy-lfXj6DLauJqGszw-k51MvpTF9Y3VHKywWZvgBtXtY4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Data+Analysis&rft.jtitle=Annual+review+of+public+health&rft.date=2016-03-18&rft.issn=0163-7525&rft_id=info:doi/10.1146%2Fannurev-publhealth-032315-021711&rft.externalDocID=10.1146%2Fannurev-publhealth-032315-021711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-7525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-7525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-7525&client=summon