Spatial Data Analysis
With increasing accessibility to geographic information systems (GIS) software, statisticians and data analysts routinely encounter scientific data sets with geocoded locations. This has generated considerable interest in statistical modeling for location-referenced spatial data. In public health, s...
Saved in:
| Published in | Annual review of public health Vol. 37; p. 47 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
United States
18.03.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0163-7525 1545-2093 1545-2093 |
| DOI | 10.1146/annurev-publhealth-032315-021711 |
Cover
| Abstract | With increasing accessibility to geographic information systems (GIS) software, statisticians and data analysts routinely encounter scientific data sets with geocoded locations. This has generated considerable interest in statistical modeling for location-referenced spatial data. In public health, spatial data routinely arise as aggregates over regions, such as counts or rates over counties, census tracts, or some other administrative delineation. Such data are often referred to as areal data. This review article provides a brief overview of statistical models that account for spatial dependence in areal data. It does so in the context of two applications: disease mapping and spatial survival analysis. Disease maps are used to highlight geographic areas with high and low prevalence, incidence, or mortality rates of a specific disease and the variability of such rates over a spatial domain. They can also be used to detect hot spots or spatial clusters that may arise owing to common environmental, demographic, or cultural effects shared by neighboring regions. Spatial survival analysis refers to the modeling and analysis for geographically referenced time-to-event data, where a subject is followed up to an event (e.g., death or onset of a disease) or is censored, whichever comes first. Spatial survival analysis is used to analyze clustered survival data when the clustering arises from geographical regions or strata. Illustrations are provided in these application domains. |
|---|---|
| AbstractList | With increasing accessibility to geographic information systems (GIS) software, statisticians and data analysts routinely encounter scientific data sets with geocoded locations. This has generated considerable interest in statistical modeling for location-referenced spatial data. In public health, spatial data routinely arise as aggregates over regions, such as counts or rates over counties, census tracts, or some other administrative delineation. Such data are often referred to as areal data. This review article provides a brief overview of statistical models that account for spatial dependence in areal data. It does so in the context of two applications: disease mapping and spatial survival analysis. Disease maps are used to highlight geographic areas with high and low prevalence, incidence, or mortality rates of a specific disease and the variability of such rates over a spatial domain. They can also be used to detect hot spots or spatial clusters that may arise owing to common environmental, demographic, or cultural effects shared by neighboring regions. Spatial survival analysis refers to the modeling and analysis for geographically referenced time-to-event data, where a subject is followed up to an event (e.g., death or onset of a disease) or is censored, whichever comes first. Spatial survival analysis is used to analyze clustered survival data when the clustering arises from geographical regions or strata. Illustrations are provided in these application domains. |
| Author | Banerjee, Sudipto |
| Author_xml | – sequence: 1 givenname: Sudipto surname: Banerjee fullname: Banerjee, Sudipto email: sudipto@ucla.edu organization: Department of Biostatistics, University of California, Los Angeles, California 90095; email: sudipto@ucla.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26789381$$D View this record in MEDLINE/PubMed |
| BookMark | eNpFzz9PwzAQhnELFdG0MLKijiwGnx3b8RiV8keqxADM1sWx1SA3REkKyrcnKAWme4fTI_0WZFZ_1J6Qa2A3AKm6xbo-tP6TNoci7jzGfkeZ4AIkZRw0wAlJQKaScmbEjCQMlKBacjkni657Z4wZLtUZmXOlMyMySMjlS4N9hXF1hz2u8hrj0FXdOTkNGDt_cbxL8na_eV0_0u3zw9M631KUWvdUKmdSDQVXZekyI0tXYODBjwuCZE6jU4YXaDITjAxKlai9UTxwlwUXjFiSfOoe6gaHL4zRNm21x3awwOwP2R7J9p9sJ7KdyGPjamqMH3tf_gV-jeIbS2RaiA |
| CitedBy_id | crossref_primary_10_3390_ijerph19010399 crossref_primary_10_1371_journal_pone_0213120 crossref_primary_10_1007_s43076_020_00054_y crossref_primary_10_1002_bdr2_1940 crossref_primary_10_47470_0044_197X_2022_66_3_251_258 crossref_primary_10_1097_TA_0000000000003075 crossref_primary_10_1007_s11356_021_15438_5 crossref_primary_10_4103_JETS_JETS_191_20 crossref_primary_10_1016_j_spasta_2021_100548 crossref_primary_10_1016_j_jvacx_2024_100428 crossref_primary_10_1158_1055_9965_EPI_16_1018 crossref_primary_10_2196_57807 crossref_primary_10_35627_2219_5238_2023_31_12_7_16 crossref_primary_10_1016_j_heliyon_2024_e32005 crossref_primary_10_1186_s12963_018_0164_6 crossref_primary_10_1186_s13031_019_0234_9 crossref_primary_10_1002_cjs_11588 crossref_primary_10_36472_msd_v11i9_1191 crossref_primary_10_1186_s12889_022_13629_4 crossref_primary_10_1038_s41584_023_01062_9 crossref_primary_10_1186_s12887_020_02332_1 crossref_primary_10_3389_fpubh_2023_1225261 crossref_primary_10_1007_s13753_023_00529_3 crossref_primary_10_1186_s12889_022_14469_y crossref_primary_10_1007_s12061_021_09381_8 crossref_primary_10_1287_inte_2023_1161 crossref_primary_10_1080_2330443X_2017_1374897 crossref_primary_10_1007_s11606_023_08062_1 crossref_primary_10_1177_19322968211027230 crossref_primary_10_1016_j_sste_2024_100646 crossref_primary_10_1038_s41598_022_20517_9 crossref_primary_10_1136_bmjopen_2018_027276 crossref_primary_10_3390_tropicalmed7100312 crossref_primary_10_1007_s10586_018_2656_3 crossref_primary_10_1016_j_sste_2024_100643 crossref_primary_10_1080_10410236_2023_2170201 crossref_primary_10_1016_j_sste_2023_100584 crossref_primary_10_1371_journal_pntd_0009429 crossref_primary_10_3390_nu15030638 crossref_primary_10_1016_j_ecolmodel_2024_110756 crossref_primary_10_1016_j_ecolind_2023_111479 crossref_primary_10_1186_s40834_024_00264_0 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM ADTOC UNPAY |
| DOI | 10.1146/annurev-publhealth-032315-021711 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 1545-2093 |
| ExternalDocumentID | 10.1146/annurev-publhealth-032315-021711 26789381 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: RC1 GM092400 – fundername: NCI NIH HHS grantid: R01 CA112444 |
| GroupedDBID | --- -QD -QH -~X ..I 0R~ 1CY 1KX 23M 36B 4.4 44B 51A 53G 5FA 5FB 5FC 5FD 5FE 5FF 5FG 5FH 5GY 5RE 6J9 70K 70N 70Q 70S 70W 70X 79. 7B- 7RV 7X7 7XC 85S 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8NG 8R4 8R5 AABJL AAFWJ AAGWO AAKOE AALHT AALUV AAOHI AAQMF AARJV AAVPX AAWJP AAWTL AAXSQ AAYIS AAZCL ABBTB ABDBF ABDOG ABGCZ ABGRM ABIPL ABIVO ABKGM ABMRD ABUWG ABVYV ABZNY ACAHA ACDVT ACGFO ACGFS ACHQT ACJYF ACKHT ACMXS ACNCT ACPHO ACPRK ACQCJ ACQLW ACRLM ACSOE ACUHS ADBBV ADEJD ADGWB ADHEY ADLON ADNJN ADSVE AEAIQ AEKBM AENEX AEPIK AEUYN AEWNI AFCZG AFERR AFKDQ AFKEJ AFKRA AFONB AFRAH AHIXL AHKZM AHMBA AHVNO AI. AICBU AIDEK AIJFW AJAAW AJOTX ALAFQ ALIPV ALMA_UNASSIGNED_HOLDINGS AMTJG AONFT AOUBY AQQLW AQUVI ATAUN ATCPS AZQEC B0M B9D B9E B9F B9G B9H B9L B9M B9N BBNVY BCFVH BENPR BHPHI BJPMW BKEYQ BKNYI BMYRD BPHCQ BVIZK BVXVI CCPQU CGR CS3 CUY CVF DWQXO EAP EAS EBC EBD EBS ECM ECV EHN EIF EJD EMB EMK EMOBN ENC EPT ESX EX3 F-Q F-S F-V F-X F-Y F-Z F.1 F5P FIWKU FIXEU FMZAJ FQMFW FT0 FU. FUEKT FW- FXG FYUFA GJQJI GLOEX GNDDA GNUQQ GOAVI GQXMV GUQSH GURLG H13 HCIFZ HMCUK HZ~ H~9 J1V K9- LK8 M0R M0T M1P M22 M2O M7P N9A NAPCQ NHB NPM O9- OK1 P0P P2P PATMY PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PYCSY Q2X Q~Q RAR RAV RNS SV3 TUS UAP UKHRP UPT VH1 WH7 WOW XZL YSK ZGI ZYWBE ~8M ~KM ADTOC RIG UNPAY |
| ID | FETCH-LOGICAL-a577t-56c9471b26ddc895dcbaf2fe95d1f50c7ac692ba989f95f66da7e962f2c8fcf93 |
| IEDL.DBID | UNPAY |
| ISSN | 0163-7525 1545-2093 |
| IngestDate | Sun Oct 26 03:53:06 EDT 2025 Mon Jul 21 05:47:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | multivariate CAR models conditional autoregressive (CAR) models Bayesian hierarchical modeling multivariate disease mapping spatial survival analysis disease mapping cure rate models |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a577t-56c9471b26ddc895dcbaf2fe95d1f50c7ac692ba989f95f66da7e962f2c8fcf93 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.annualreviews.org/doi/pdf/10.1146/annurev-publhealth-032315-021711 |
| PMID | 26789381 |
| ParticipantIDs | unpaywall_primary_10_1146_annurev_publhealth_032315_021711 pubmed_primary_26789381 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-03-18 |
| PublicationDateYYYYMMDD | 2016-03-18 |
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-18 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Annual review of public health |
| PublicationTitleAlternate | Annu Rev Public Health |
| PublicationYear | 2016 |
| SSID | ssj0009256 |
| Score | 2.3887644 |
| SecondaryResourceType | review_article |
| Snippet | With increasing accessibility to geographic information systems (GIS) software, statisticians and data analysts routinely encounter scientific data sets with... |
| SourceID | unpaywall pubmed |
| SourceType | Open Access Repository Index Database |
| StartPage | 47 |
| SubjectTerms | Bayes Theorem Geographic Information Systems Geographic Mapping Humans Markov Chains Models, Statistical Multivariate Analysis Spatial Analysis Survival Analysis |
| Title | Spatial Data Analysis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26789381 https://www.annualreviews.org/doi/pdf/10.1146/annurev-publhealth-032315-021711 |
| UnpaywallVersion | publishedVersion |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGP2YG6gg_pw6f4wePHiJNG2TNN6GOoawsoODeSppmlwc3ZBO0b_eZFnn5knQWyG0kMcr3yP53vsArqSPpdZcoCyWCkWaMHu_myGV49wwTGLNrDm5n9DeMHockVENksoLY9sq19I457f59vee5rrKtq1GtCAbBe38gsgPjVKxZmPMrNW3QYnR5nVoDJNB59kFfIeIkfkUVisbDD14uAnXv_3kSoXamhVT8fEuxuOVUtTdg0m1CdeB8nIzK7Mb-fkj3_H_drkPuwvV6nUczQ6gpopD2HFHfp5zMh1B0443NnT27kUpvCrtpAnD7sPTXQ8tpi4gQRgrEaGSm4qVBTTPZcxJLjOhA63ME9bEl0xIyoNM8JhrTjSluWCK00AHMtZS8_AY6sWkUKfgYaZYJKnCIZWR0SGCBzT0I820isKM-C04cZimUxetkQamdnIjIlpwuwR5ubjuoX5Lv3FJHS6pw-XsLy-fw7bRRNS2meH4Aurl60xdGt1RZm3YSAb99oJSX3PQ10Q |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGP0YG6gg_pw6f9GDBy8ZTdskjbehjiE4PDiYp5KkycXRjdEp-tebLOvcPAl6K4QW8njleyTfex_AlQqxMoYLJFOlUWIIc_e7Eukc55ZhChvmzMmPfdobJA9DMqxBv_LCuLbKtTTO-W2--70nuamybasRLchFQXu_IApjq1Sc2RgzZ_VtUGK1eR0ag_5T58UHfMeIkfkUVicbLD14vAHXv_3kSoXanBUT8fEuRqOVUtTdhXG1Cd-B8tqelbKtPn_kO_7fLvdgZ6Fag46n2T7UdHEA2_7IL_BOpkNouvHGls7BnShFUKWdNGHQvX--7aHF1AUkCGMlIlRxW7FkRPNcpZzkSgoTGW2fsCGhYkJRHknBU244MZTmgmlOIxOp1CjD4yOoF-NCn0CAmWaJohrHVCVWhwge0ThMDDM6iSUJW3DsMc0mPloji2zt5FZEtOBmCfJycd1D_ZZ945J5XDKPy-lfXj6DLauJqGszw-k51MvpTF9Y3VHKywWZvgBtXtY4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Data+Analysis&rft.jtitle=Annual+review+of+public+health&rft.date=2016-03-18&rft.issn=0163-7525&rft_id=info:doi/10.1146%2Fannurev-publhealth-032315-021711&rft.externalDocID=10.1146%2Fannurev-publhealth-032315-021711 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-7525&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-7525&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-7525&client=summon |