Algorithmically Guided Optical Nanosensor Selector (AGONS): Guiding Data Acquisition, Processing, and Discrimination for Biological Sampling
Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed algorithmically guided optical nanosensor selector (AGONS). The optical data processed/used by algorithms are obtained thro...
        Saved in:
      
    
          | Published in | Analytical chemistry (Washington) Vol. 94; no. 2; pp. 1195 - 1202 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Chemical Society
    
        18.01.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0003-2700 1520-6882 1520-6882  | 
| DOI | 10.1021/acs.analchem.1c04379 | 
Cover
| Abstract | Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed algorithmically guided optical nanosensor selector (AGONS). The optical data processed/used by algorithms are obtained through a nanosensor array selected from a library of nanosensors through AGONS. The nanosensors are assembled using two-dimensional nanoparticles (2D-nps) and fluorescently labeled single-stranded DNAs (F-ssDNAs) with random sequences. Both 2D-np and F-ssDNA components are cost-efficient and easy to synthesize, allowing for scaled-up data collection essential for machine learning modeling. The nanosensor library was subjected to various target groups, including proteins, breast cancer cells, and lethal-7 (let-7) miRNA mimics. We have demonstrated that AGONS could select the most essential nanosensors while achieving 100% predictive accuracy in all cases. With this approach, we demonstrate that machine learning can guide the design of nanosensor arrays with greater predictive accuracy while minimizing manpower, material cost, computational resources, instrumentation usage, and time. The biomarker-free detection attribute makes this approach readily available for biological targets without any detectable biomarker. We believe that AGONS can guide optical nanosensor array setups, opening broader opportunities through a biomarker-free detection approach for most challenging biological targets. | 
    
|---|---|
| AbstractList | Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed algorithmically guided optical nanosensor selector (AGONS). The optical data processed/used by algorithms are obtained through a nanosensor array selected from a library of nanosensors through AGONS. The nanosensors are assembled using two-dimensional nanoparticles (2D-nps) and fluorescently labeled single-stranded DNAs (F-ssDNAs) with random sequences. Both 2D-np and F-ssDNA components are cost-efficient and easy to synthesize, allowing for scaled-up data collection essential for machine learning modeling. The nanosensor library was subjected to various target groups, including proteins, breast cancer cells, and lethal-7 (let-7) miRNA mimics. We have demonstrated that AGONS could select the most essential nanosensors while achieving 100% predictive accuracy in all cases. With this approach, we demonstrate that machine learning can guide the design of nanosensor arrays with greater predictive accuracy while minimizing manpower, material cost, computational resources, instrumentation usage, and time. The biomarker-free detection attribute makes this approach readily available for biological targets without any detectable biomarker. We believe that AGONS can guide optical nanosensor array setups, opening broader opportunities through a biomarker-free detection approach for most challenging biological targets.Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed algorithmically guided optical nanosensor selector (AGONS). The optical data processed/used by algorithms are obtained through a nanosensor array selected from a library of nanosensors through AGONS. The nanosensors are assembled using two-dimensional nanoparticles (2D-nps) and fluorescently labeled single-stranded DNAs (F-ssDNAs) with random sequences. Both 2D-np and F-ssDNA components are cost-efficient and easy to synthesize, allowing for scaled-up data collection essential for machine learning modeling. The nanosensor library was subjected to various target groups, including proteins, breast cancer cells, and lethal-7 (let-7) miRNA mimics. We have demonstrated that AGONS could select the most essential nanosensors while achieving 100% predictive accuracy in all cases. With this approach, we demonstrate that machine learning can guide the design of nanosensor arrays with greater predictive accuracy while minimizing manpower, material cost, computational resources, instrumentation usage, and time. The biomarker-free detection attribute makes this approach readily available for biological targets without any detectable biomarker. We believe that AGONS can guide optical nanosensor array setups, opening broader opportunities through a biomarker-free detection approach for most challenging biological targets. Here we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed AGONS. The optical data processed/used by algorithms are obtained through a nanosensor array selected for a library of nanosensors through AGONS. The nanosensors are assembled using two-dimensional nanoparticles (2D-nps) and fluorescently labeled single-stranded DNAs (F-ssDNAs) with random sequences. Both 2D-np and F-ssDNA components are cost-efficient and easy to synthesize; allowing for scaled-up data collection essential for machine learning modeling. The nanosensor library was subjected to various target groups including proteins, breast cancer cells, and let-7 miRNA mimics. We have demonstrated that AGONS could select the most essential nanosensors while achieving 100% predictive accuracy in all cases. With this approach, we demonstrate that machine learning can guide the design of nanosensor arrays with greater predictive accuracy while minimizing manpower, material cost, computational resources, instrumentation usage, and time. The biomarker-free detection attribute makes this approach readily available for biological targets without any detectable biomarker. We believe that AGONS can guide optical nanosensor array setups, opening broader opportunities through a biomarker-free detection approach for most challenging biological targets. Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed algorithmically guided optical nanosensor selector (AGONS). The optical data processed/used by algorithms are obtained through a nanosensor array selected from a library of nanosensors through AGONS. The nanosensors are assembled using two-dimensional nanoparticles (2D-nps) and fluorescently labeled single-stranded DNAs (F-ssDNAs) with random sequences. Both 2D-np and F-ssDNA components are cost-efficient and easy to synthesize, allowing for scaled-up data collection essential for machine learning modeling. The nanosensor library was subjected to various target groups, including proteins, breast cancer cells, and lethal-7 (let-7) miRNA mimics. We have demonstrated that AGONS could select the most essential nanosensors while achieving 100% predictive accuracy in all cases. With this approach, we demonstrate that machine learning can guide the design of nanosensor arrays with greater predictive accuracy while minimizing manpower, material cost, computational resources, instrumentation usage, and time. The biomarker-free detection attribute makes this approach readily available for biological targets without any detectable biomarker. We believe that AGONS can guide optical nanosensor array setups, opening broader opportunities through a biomarker-free detection approach for most challenging biological targets.  | 
    
| Author | Yigit, Mehmet V Hizir, Mustafa Salih Smith, Christopher W Nandu, Nidhi  | 
    
| AuthorAffiliation | Department of Chemistry The RNA Institute University at Albany, State University of New York  | 
    
| AuthorAffiliation_xml | – name: The RNA Institute – name: Department of Chemistry – name: University at Albany, State University of New York  | 
    
| Author_xml | – sequence: 1 givenname: Christopher W orcidid: 0000-0002-0828-3370 surname: Smith fullname: Smith, Christopher W organization: University at Albany, State University of New York – sequence: 2 givenname: Mustafa Salih surname: Hizir fullname: Hizir, Mustafa Salih organization: Department of Chemistry – sequence: 3 givenname: Nidhi surname: Nandu fullname: Nandu, Nidhi organization: Department of Chemistry – sequence: 4 givenname: Mehmet V orcidid: 0000-0002-4349-3701 surname: Yigit fullname: Yigit, Mehmet V email: myigit@albany.edu organization: University at Albany, State University of New York  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34964601$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNktFu0zAUhi00xLrBGyAUiZshLcV2bCfeBVLZoCBNK1Lh2nIdp_Xk2J2dMPUd9tA4bTdgF7ArWz7ff_z7Pz4CB847DcBrBMcIYvReqjiWTlq10u0YKUiKkj8DI0QxzFlV4QMwghAWOS4hPARHMV5DiBBE7AU4LAhnhEE0AncTu_TBdKvWKGntJpv2ptZ1Nlt3w0F2JZ2P2kUfsrm2WnVpczKZzq7m7862rHHL7EJ2Mpuom95E0xnvTrNvwSsdYyqeZtLV2YWJKpjWODnUsyZ1-Wi89cvtJXPZrm1iX4LnjbRRv9qvx-DH50_fz7_kl7Pp1_PJZS5pybqcLpoCVpjVWGHNNcE05cE5pVTLEtc1hKSs9KLhHNWckAbhRcV4UeuqwKVkZXEM6K5v79Zyc5veLdbJnQwbgaAY0hUpXXGfrtinm3Qfdrp1v2h1rbTrgvyt9dKIvyvOrMTS_xQcJXcEpgYn-wbB3_Q6dqJNwWhrpdO-jwKzghFEOSyfgKZJc85xkdC3j9Br34dkfqAwohWjjCTqzZ_mH1zf_4UEkB2ggo8x6OapoZw9kinTbcecIjD2f2K4Ew_VB9f_lPwCXO3xRg | 
    
| CitedBy_id | crossref_primary_10_1016_j_talanta_2025_127693 crossref_primary_10_1021_acsfoodscitech_2c00181 crossref_primary_10_1016_j_molliq_2024_124190 crossref_primary_10_2142_biophysico_bppb_v21_0017 crossref_primary_10_1016_j_talanta_2024_125873 crossref_primary_10_3390_agronomy14020341 crossref_primary_10_1002_cplu_202300610 crossref_primary_10_1016_j_foodchem_2024_141115 crossref_primary_10_1016_j_microc_2024_111307  | 
    
| Cites_doi | 10.1021/acs.jcim.9b00266 10.1021/acs.langmuir.8b00788 10.1186/s12859-019-3310-7 10.1126/science.aah3398 10.1021/acs.chemmater.0c01907 10.1002/adma.201901989 10.1021/acs.analchem.8b01083 10.1021/jacs.0c09105 10.1021/acs.nanolett.9b04090 10.3390/nano10010116 10.1038/s41565-021-00870-y 10.1073/pnas.1919755117 10.1021/acssensors.0c00329 10.1021/acsanm.0c03001 10.3390/atmos12040522 10.1038/s41477-021-00946-6 10.1186/1758-2946-6-10 10.1021/acssensors.8b00450 10.1021/acs.langmuir.6b04502 10.1021/acsapm.0c00921 10.1371/journal.pone.0204425 10.1007/s10994-018-5735-z 10.1039/C7SC01522D 10.1371/journal.pone.0224365 10.1039/C5CS00151J 10.1088/2515-7639/ab0faa 10.1038/s41586-021-03544-w  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 American Chemical Society Copyright American Chemical Society Jan 18, 2022  | 
    
| Copyright_xml | – notice: 2021 American Chemical Society – notice: Copyright American Chemical Society Jan 18, 2022  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 5PM ADTOC UNPAY  | 
    
| DOI | 10.1021/acs.analchem.1c04379 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic AGRICOLA Materials Research Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Chemistry  | 
    
| EISSN | 1520-6882 | 
    
| EndPage | 1202 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:9195540 PMC9195540 34964601 10_1021_acs_analchem_1c04379 a162419015  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural  | 
    
| GroupedDBID | - 02 23M 4.4 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABOCM ABPPZ ABPTK ABUCX ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED F5P GGK GNL IH9 IHE JG K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y YZZ --- -DZ -~X .DC .K2 53G 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV CITATION CUPRZ ED~ JG~ KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 5PM .GJ .HR 186 1WB 2KS 3EH 3O- 6TJ AAUTI ABDPE ABUFD ACKIV ACPVT ACQAM ACRPL ADNMO ADTOC ADXHL AETEA AEYZD AFFDN AFFNX AGQPQ AIDAL ANPPW ANTXH EJD LG6 MVM NHB OHT OMK RNS UBC UBX UNPAY VOH XOL YQI YQJ YR5 YXE YYP ZCG ZE2 ZGI  | 
    
| ID | FETCH-LOGICAL-a576t-5bf30826d2c2e9e42502199555ea72dd00478ebf991d944f12b8693de8327a673 | 
    
| IEDL.DBID | ACS | 
    
| ISSN | 0003-2700 1520-6882  | 
    
| IngestDate | Sun Oct 26 03:44:34 EDT 2025 Tue Sep 30 16:39:58 EDT 2025 Thu Jul 10 22:55:53 EDT 2025 Thu Oct 02 10:40:39 EDT 2025 Mon Jun 30 10:11:16 EDT 2025 Wed Feb 19 02:27:45 EST 2025 Tue Jul 01 01:19:36 EDT 2025 Thu Apr 24 23:09:38 EDT 2025 Thu Jan 20 03:47:30 EST 2022  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a576t-5bf30826d2c2e9e42502199555ea72dd00478ebf991d944f12b8693de8327a673 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Present Addresses The current affiliation of MSH is Bursa Technical University, Bursa/Turkey. Author Contributions MVY and CWS conceived the study. MVY designed the experiments. MSH collected the protein, breast cancer cell line and miRNA mimic datasets and performed PLSDA modeling. CWS collected the FBS datasets. CWS designed, programmed, and performed modeling with AGONS. NN helped with assay development and contributed intellectually. MVY and CWS wrote the paper.  | 
    
| ORCID | 0000-0002-0828-3370 0000-0002-4349-3701  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9195540 | 
    
| PMID | 34964601 | 
    
| PQID | 2621586564 | 
    
| PQPubID | 45400 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1021_acs_analchem_1c04379 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9195540 proquest_miscellaneous_2636415907 proquest_miscellaneous_2615299923 proquest_journals_2621586564 pubmed_primary_34964601 crossref_primary_10_1021_acs_analchem_1c04379 crossref_citationtrail_10_1021_acs_analchem_1c04379 acs_journals_10_1021_acs_analchem_1c04379  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-01-18 | 
    
| PublicationDateYYYYMMDD | 2022-01-18 | 
    
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-18 day: 18  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Washington  | 
    
| PublicationTitle | Analytical chemistry (Washington) | 
    
| PublicationTitleAlternate | Anal. Chem | 
    
| PublicationYear | 2022 | 
    
| Publisher | American Chemical Society | 
    
| Publisher_xml | – name: American Chemical Society | 
    
| References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 Pedregosa F. (ref26/cit26) 2011; 12 ref4/cit4 ref1/cit1 ref24/cit24 ref7/cit7  | 
    
| References_xml | – ident: ref2/cit2 doi: 10.1021/acs.jcim.9b00266 – ident: ref20/cit20 doi: 10.1021/acs.langmuir.8b00788 – ident: ref25/cit25 doi: 10.1186/s12859-019-3310-7 – ident: ref24/cit24 doi: 10.1126/science.aah3398 – ident: ref3/cit3 doi: 10.1021/acs.chemmater.0c01907 – ident: ref1/cit1 doi: 10.1002/adma.201901989 – ident: ref19/cit19 doi: 10.1021/acs.analchem.8b01083 – volume: 12 start-page: 2825 year: 2011 ident: ref26/cit26 publication-title: J. Mach. Learn. Res. – ident: ref4/cit4 doi: 10.1021/jacs.0c09105 – ident: ref13/cit13 doi: 10.1021/acs.nanolett.9b04090 – ident: ref14/cit14 doi: 10.3390/nano10010116 – ident: ref9/cit9 doi: 10.1038/s41565-021-00870-y – ident: ref11/cit11 doi: 10.1073/pnas.1919755117 – ident: ref6/cit6 – ident: ref10/cit10 doi: 10.1021/acssensors.0c00329 – ident: ref21/cit21 doi: 10.1021/acsanm.0c03001 – ident: ref5/cit5 doi: 10.3390/atmos12040522 – ident: ref8/cit8 doi: 10.1038/s41477-021-00946-6 – ident: ref15/cit15 doi: 10.1186/1758-2946-6-10 – ident: ref17/cit17 doi: 10.1021/acssensors.8b00450 – ident: ref22/cit22 doi: 10.1021/acs.langmuir.6b04502 – ident: ref16/cit16 doi: 10.1021/acsapm.0c00921 – ident: ref27/cit27 doi: 10.1371/journal.pone.0204425 – ident: ref28/cit28 doi: 10.1007/s10994-018-5735-z – ident: ref18/cit18 doi: 10.1039/C7SC01522D – ident: ref29/cit29 doi: 10.1371/journal.pone.0224365 – ident: ref23/cit23 doi: 10.1039/C5CS00151J – ident: ref12/cit12 doi: 10.1088/2515-7639/ab0faa – ident: ref7/cit7 doi: 10.1038/s41586-021-03544-w  | 
    
| SSID | ssj0011016 | 
    
| Score | 2.4532423 | 
    
| Snippet | Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational... Here we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref acs  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1195 | 
    
| SubjectTerms | Accuracy Algorithms Analytical chemistry Arrays automation Biological sampling Biomarkers Biosensing Techniques - methods Breast cancer breast neoplasms Chemistry Computer applications cost effectiveness Data acquisition Data collection DNA, Single-Stranded Instrumentation Learning algorithms Libraries Machine learning Manpower microRNA MicroRNAs miRNA Nanoparticles Nanosensors Optical data processing sensors (equipment) Target detection  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5V6aFwoFCguBS0SByoVDve9drOcrNa2opDigiRyinal1sLxwmJLVR-Az-aWT9CQyVKr57Z2Jsd73zjnfkGobchwAompHB9LWKX8YC5UlDhQiSgmfRTLlWdIDuMzsbs40V4sYFIVwtTJ-0rmXlFPvWK7KrOrZxPVb_LE-tzwsEFQpS-GYUAv3toczz8lHztOuPRpuwE3BKERQAfu3I5SvpCLT0BywP_xtQjyrL6cOuU1HLdKd1CmrcTJreqYi6uf4g8v-GNTrbR524eTRLKN68qpad-_kXxeK-JPkaPWmyKk0b0BG2YYgdtHXUt4XbQwxvshU_RryS_nC2y8qpmHMiv8WmVaaPx-bz-Po5h454tIUqeLfDINKcD-F1yej4cHbyvdeFX8LEoBU7U9yprkscOcVu6AMJDLAqNjzO7s9mMHSvHALJx00CzvslI2JT44vIZGp98-HJ05rbNHVwBIU7phjK1TDmRpooabmDrgCXiMOPQiJhqbWksB0amgF81ZywlVA4iHmgDW1Asojh4jnrFrDAvEI6F7ZUmopSkjOk04IYY6lPlxyqSA00cdABrPGlfzuWkPnenZGIvdvYwae3BQUFnCRPVsqTbZh35HaPc1ah5wxJyh_5-Z2R_HotGAL8GgK-Zg96sxLDC9ghHFGZWWR0wbMD0NPiXThABLON-7KDdxm5XD2XbAzCIwR0Ur1n0SsGyja9LwDZr1vHWHB3krWz_v-a6d98BL9EDamtMfOKSwT7qlYvKvALkV8rX7bv-G_diW7c priority: 102 providerName: Unpaywall  | 
    
| Title | Algorithmically Guided Optical Nanosensor Selector (AGONS): Guiding Data Acquisition, Processing, and Discrimination for Biological Sampling | 
    
| URI | http://dx.doi.org/10.1021/acs.analchem.1c04379 https://www.ncbi.nlm.nih.gov/pubmed/34964601 https://www.proquest.com/docview/2621586564 https://www.proquest.com/docview/2615299923 https://www.proquest.com/docview/2636415907 https://pubmed.ncbi.nlm.nih.gov/PMC9195540 https://www.ncbi.nlm.nih.gov/pmc/articles/9195540  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 94 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-6882 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011016 issn: 0003-2700 databaseCode: ACS dateStart: 19470121 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BeygceJRHA6UyEgcqNdvEcR7mFm1pKw67SMtK5RQ5sdOuSJNlNxEqv4EfzTivdllByzUeJ_F4Yn-TGX8D8M5FWMFELExLCt9k3GFmLKgw0ROQLLZSHid1guzIO52yT2fu2bWj-GcEn9qHIlkOBCoVx3A5sBPNxcPvwyb1fF-n8IXDSR810J5oVyFPB1S7o3J_uYvekJLl6oa0hjLXkyW3qnwurn6ILLuxEx0_hnF3nqdJQPk2qMp4kPxcp3e84yCfwKMWlJKwsaKncE_l27A17GrBbcPDG7SFz-BXmJ0Xi1l5UVMNZFfkpJpJJcl4Xv8YJ7hiF0t0j4sFmagmLEDehyfj0WT_Qy2LdyFHohQkTL5XsyZr7IC0Zxaw8YCIXJKjmV7SdKqObieIrklTObN-yEToXPj8_DlMjz9-GZ6abVUHU6BvU5punGqKHE_ShCqucM1ABXDuuq4SPpVS81cGKk4RuErOWGrTOPC4IxWuPb7wfOcFbORFrnaA-EIXSRNeaqeMydThylbUoonlJ14cSNuAfVRs1H6Vy6gOuFM70hc7bUettg1wOjOIkpYeXVfpyG7pZfa95g09yC3yu52FXb8W9RB3BQismQFv-2acYR27EbkqKi2DQAvBPHX-JeN4iMe45RvwsjHa_qV0XQCGzrcB_oo59wKaZny1JZ9d1HTj3MbJYZYBg97w7zTWV_-h_dfwgOpzJZZt2sEubJSLSr1BtFfGe_Unvgeb09Hn8OtvLaJVDw | 
    
| linkProvider | American Chemical Society | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwEN4p5RA48CgvQwExw4HO1MGS5Ye4ZVLaACU9pGV688iW3GYIdkjsYcpv4Eez8qsNHSi9WmtFWq-kb7OrbwFeewgruIyl7SgZ2Fy43I4lkzZ6AorHTiripEqQHfujI_7x2DteA6-9C4ODWGJPyyqIf84uQN-aZxJ1i1P51qeJoeQRN-Cm53NqfK7BcNIFD4xD2hbKM3HV9sbcX3ox51KyXD2XLoHNyzmTvTKby7Mfcja7cCDt3oUv3VSqPJSv_bKI-8nPP1gerz3Xe3CngahkUNvUfVjT2Qb0hm1luA24fYHE8AH8GsxO8sW0OK2IB2ZnZK-cKq3Iwbz6m5zg_p0v0VnOF2Si6yABeTPYOxhPtt5VstgL2ZGFJIPkezmtc8i2SXODARu3icwU2ZmaDc4k7ph2glib1HU0qx-ZSJMZn508hKPd94fDkd3UeLAlejqF7cWpIczxFUuYFhp3EFSAEJ7naRkwpQybZajjFGGsEpynlMWhL1ylcScKpB-4j2A9yzP9BEggTck06ac05VylrtBUM4clTpD4caioBVuo2KhZo8uoCr8zGpmHrbajRtsWuK01RElDlm5qdsyueMvu3prXZCFXyG-2hnY-LOYjCgsRZnMLXnXN-IVNJEdmOi-NDMIuhPbM_ZeMi2vDE05gwePadrtBmSoBHF1xC4IVq-4EDOn4aks2Pa3IxwXFj8MdC_qd_f_XXJ9eQ_svoTc6_Lwf7X8Yf3oGt5i5ceJQm4absF4sSv0ccWARv6hW_W-ABlvB | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkBg88DG-AgOMxAOTlpI4TlLzVrV040MdUpk07SVyYmerKGlpE6HxN_BHc5cvWiYY8Bo7rn25s3_XO_8O4LmPsEKoWNmOVqEtpCfsWHFloyegReykMk7KBNlRsH8o3h75RyulvnASSxxpWQbxyarnOq0ZBtyX9FyhfHE5nztuQrQ88jJc8QO0dkJF_XEbQCCntCmWR7HV5tbcb0ahsylZrp9N5wDn-bzJzSKbq7OvajpdOZSGN-G4XU6Zi_KpU-RxJ_n2C9Pjf633FtyooSrrVbp1Gy6ZbAs2-02FuC24vkJmeAe-96Yns8UkPy0JCKZnbK-YaKPZwbz8u5zhPj5botM8W7CxqYIF7EVv72A03nlV9sVR2EDlivWSL8WkyiXbZfVNBmzcZSrTbDChjY4SeKidIeZmVT3N8kfGijLks5O7cDh8_bG_b9e1HmyFHk9u-3FKxDmB5gk30uBOggKQ0vd9o0KuNbFadk2cIpzVUojU5XE3kJ42uCOFKgi9e7CRzTLzAFioqHSaClI3FUKnnjSu4Q5PnDAJ4q52LdhBwUa1rS6jMgzP3YgeNtKOamlb4DUaESU1aTrV7phe8JbdvjWvSEMu6L_dKNvPafEA0VgX4baw4FnbjF-YIjoqM7OC-iD8QojPvT_18QJEadIJLbhf6W87KaoWINAltyBc0-y2A5GPr7dkk9OShFy6-HGEY0GntYG_WuvDf5D-U7j6YTCM3r8ZvXsE1zhdPHFc2-1uw0a-KMxjhIN5_KQ0_B9lIl5E | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5V6aFwoFCguBS0SByoVDve9drOcrNa2opDigiRyinal1sLxwmJLVR-Az-aWT9CQyVKr57Z2Jsd73zjnfkGobchwAompHB9LWKX8YC5UlDhQiSgmfRTLlWdIDuMzsbs40V4sYFIVwtTJ-0rmXlFPvWK7KrOrZxPVb_LE-tzwsEFQpS-GYUAv3toczz8lHztOuPRpuwE3BKERQAfu3I5SvpCLT0BywP_xtQjyrL6cOuU1HLdKd1CmrcTJreqYi6uf4g8v-GNTrbR524eTRLKN68qpad-_kXxeK-JPkaPWmyKk0b0BG2YYgdtHXUt4XbQwxvshU_RryS_nC2y8qpmHMiv8WmVaaPx-bz-Po5h454tIUqeLfDINKcD-F1yej4cHbyvdeFX8LEoBU7U9yprkscOcVu6AMJDLAqNjzO7s9mMHSvHALJx00CzvslI2JT44vIZGp98-HJ05rbNHVwBIU7phjK1TDmRpooabmDrgCXiMOPQiJhqbWksB0amgF81ZywlVA4iHmgDW1Asojh4jnrFrDAvEI6F7ZUmopSkjOk04IYY6lPlxyqSA00cdABrPGlfzuWkPnenZGIvdvYwae3BQUFnCRPVsqTbZh35HaPc1ah5wxJyh_5-Z2R_HotGAL8GgK-Zg96sxLDC9ghHFGZWWR0wbMD0NPiXThABLON-7KDdxm5XD2XbAzCIwR0Ur1n0SsGyja9LwDZr1vHWHB3krWz_v-a6d98BL9EDamtMfOKSwT7qlYvKvALkV8rX7bv-G_diW7c | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithmically+Guided+Optical+Nanosensor+Selector+%28AGONS%29%3A+Guiding+Data+Acquisition%2C+Processing%2C+and+Discrimination+for+Biological+Sampling&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Smith%2C+Christopher+W.&rft.au=Hizir%2C+Mustafa+Salih&rft.au=Nandu%2C+Nidhi&rft.au=Yigit%2C+Mehmet+V.&rft.date=2022-01-18&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=94&rft.issue=2&rft.spage=1195&rft.epage=1202&rft_id=info:doi/10.1021%2Facs.analchem.1c04379&rft_id=info%3Apmid%2F34964601&rft.externalDocID=PMC9195540 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |