Algorithmically Guided Optical Nanosensor Selector (AGONS): Guiding Data Acquisition, Processing, and Discrimination for Biological Sampling

Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed algorithmically guided optical nanosensor selector (AGONS). The optical data processed/used by algorithms are obtained thro...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 94; no. 2; pp. 1195 - 1202
Main Authors Smith, Christopher W, Hizir, Mustafa Salih, Nandu, Nidhi, Yigit, Mehmet V
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.01.2022
Subjects
Online AccessGet full text
ISSN0003-2700
1520-6882
1520-6882
DOI10.1021/acs.analchem.1c04379

Cover

Abstract Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed algorithmically guided optical nanosensor selector (AGONS). The optical data processed/used by algorithms are obtained through a nanosensor array selected from a library of nanosensors through AGONS. The nanosensors are assembled using two-dimensional nanoparticles (2D-nps) and fluorescently labeled single-stranded DNAs (F-ssDNAs) with random sequences. Both 2D-np and F-ssDNA components are cost-efficient and easy to synthesize, allowing for scaled-up data collection essential for machine learning modeling. The nanosensor library was subjected to various target groups, including proteins, breast cancer cells, and lethal-7 (let-7) miRNA mimics. We have demonstrated that AGONS could select the most essential nanosensors while achieving 100% predictive accuracy in all cases. With this approach, we demonstrate that machine learning can guide the design of nanosensor arrays with greater predictive accuracy while minimizing manpower, material cost, computational resources, instrumentation usage, and time. The biomarker-free detection attribute makes this approach readily available for biological targets without any detectable biomarker. We believe that AGONS can guide optical nanosensor array setups, opening broader opportunities through a biomarker-free detection approach for most challenging biological targets.
AbstractList Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed algorithmically guided optical nanosensor selector (AGONS). The optical data processed/used by algorithms are obtained through a nanosensor array selected from a library of nanosensors through AGONS. The nanosensors are assembled using two-dimensional nanoparticles (2D-nps) and fluorescently labeled single-stranded DNAs (F-ssDNAs) with random sequences. Both 2D-np and F-ssDNA components are cost-efficient and easy to synthesize, allowing for scaled-up data collection essential for machine learning modeling. The nanosensor library was subjected to various target groups, including proteins, breast cancer cells, and lethal-7 (let-7) miRNA mimics. We have demonstrated that AGONS could select the most essential nanosensors while achieving 100% predictive accuracy in all cases. With this approach, we demonstrate that machine learning can guide the design of nanosensor arrays with greater predictive accuracy while minimizing manpower, material cost, computational resources, instrumentation usage, and time. The biomarker-free detection attribute makes this approach readily available for biological targets without any detectable biomarker. We believe that AGONS can guide optical nanosensor array setups, opening broader opportunities through a biomarker-free detection approach for most challenging biological targets.Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed algorithmically guided optical nanosensor selector (AGONS). The optical data processed/used by algorithms are obtained through a nanosensor array selected from a library of nanosensors through AGONS. The nanosensors are assembled using two-dimensional nanoparticles (2D-nps) and fluorescently labeled single-stranded DNAs (F-ssDNAs) with random sequences. Both 2D-np and F-ssDNA components are cost-efficient and easy to synthesize, allowing for scaled-up data collection essential for machine learning modeling. The nanosensor library was subjected to various target groups, including proteins, breast cancer cells, and lethal-7 (let-7) miRNA mimics. We have demonstrated that AGONS could select the most essential nanosensors while achieving 100% predictive accuracy in all cases. With this approach, we demonstrate that machine learning can guide the design of nanosensor arrays with greater predictive accuracy while minimizing manpower, material cost, computational resources, instrumentation usage, and time. The biomarker-free detection attribute makes this approach readily available for biological targets without any detectable biomarker. We believe that AGONS can guide optical nanosensor array setups, opening broader opportunities through a biomarker-free detection approach for most challenging biological targets.
Here we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed AGONS. The optical data processed/used by algorithms are obtained through a nanosensor array selected for a library of nanosensors through AGONS. The nanosensors are assembled using two-dimensional nanoparticles (2D-nps) and fluorescently labeled single-stranded DNAs (F-ssDNAs) with random sequences. Both 2D-np and F-ssDNA components are cost-efficient and easy to synthesize; allowing for scaled-up data collection essential for machine learning modeling. The nanosensor library was subjected to various target groups including proteins, breast cancer cells, and let-7 miRNA mimics. We have demonstrated that AGONS could select the most essential nanosensors while achieving 100% predictive accuracy in all cases. With this approach, we demonstrate that machine learning can guide the design of nanosensor arrays with greater predictive accuracy while minimizing manpower, material cost, computational resources, instrumentation usage, and time. The biomarker-free detection attribute makes this approach readily available for biological targets without any detectable biomarker. We believe that AGONS can guide optical nanosensor array setups, opening broader opportunities through a biomarker-free detection approach for most challenging biological targets.
Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed algorithmically guided optical nanosensor selector (AGONS). The optical data processed/used by algorithms are obtained through a nanosensor array selected from a library of nanosensors through AGONS. The nanosensors are assembled using two-dimensional nanoparticles (2D-nps) and fluorescently labeled single-stranded DNAs (F-ssDNAs) with random sequences. Both 2D-np and F-ssDNA components are cost-efficient and easy to synthesize, allowing for scaled-up data collection essential for machine learning modeling. The nanosensor library was subjected to various target groups, including proteins, breast cancer cells, and lethal-7 (let-7) miRNA mimics. We have demonstrated that AGONS could select the most essential nanosensors while achieving 100% predictive accuracy in all cases. With this approach, we demonstrate that machine learning can guide the design of nanosensor arrays with greater predictive accuracy while minimizing manpower, material cost, computational resources, instrumentation usage, and time. The biomarker-free detection attribute makes this approach readily available for biological targets without any detectable biomarker. We believe that AGONS can guide optical nanosensor array setups, opening broader opportunities through a biomarker-free detection approach for most challenging biological targets.
Author Yigit, Mehmet V
Hizir, Mustafa Salih
Smith, Christopher W
Nandu, Nidhi
AuthorAffiliation Department of Chemistry
The RNA Institute
University at Albany, State University of New York
AuthorAffiliation_xml – name: The RNA Institute
– name: Department of Chemistry
– name: University at Albany, State University of New York
Author_xml – sequence: 1
  givenname: Christopher W
  orcidid: 0000-0002-0828-3370
  surname: Smith
  fullname: Smith, Christopher W
  organization: University at Albany, State University of New York
– sequence: 2
  givenname: Mustafa Salih
  surname: Hizir
  fullname: Hizir, Mustafa Salih
  organization: Department of Chemistry
– sequence: 3
  givenname: Nidhi
  surname: Nandu
  fullname: Nandu, Nidhi
  organization: Department of Chemistry
– sequence: 4
  givenname: Mehmet V
  orcidid: 0000-0002-4349-3701
  surname: Yigit
  fullname: Yigit, Mehmet V
  email: myigit@albany.edu
  organization: University at Albany, State University of New York
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34964601$$D View this record in MEDLINE/PubMed
BookMark eNqNktFu0zAUhi00xLrBGyAUiZshLcV2bCfeBVLZoCBNK1Lh2nIdp_Xk2J2dMPUd9tA4bTdgF7ArWz7ff_z7Pz4CB847DcBrBMcIYvReqjiWTlq10u0YKUiKkj8DI0QxzFlV4QMwghAWOS4hPARHMV5DiBBE7AU4LAhnhEE0AncTu_TBdKvWKGntJpv2ptZ1Nlt3w0F2JZ2P2kUfsrm2WnVpczKZzq7m7862rHHL7EJ2Mpuom95E0xnvTrNvwSsdYyqeZtLV2YWJKpjWODnUsyZ1-Wi89cvtJXPZrm1iX4LnjbRRv9qvx-DH50_fz7_kl7Pp1_PJZS5pybqcLpoCVpjVWGHNNcE05cE5pVTLEtc1hKSs9KLhHNWckAbhRcV4UeuqwKVkZXEM6K5v79Zyc5veLdbJnQwbgaAY0hUpXXGfrtinm3Qfdrp1v2h1rbTrgvyt9dKIvyvOrMTS_xQcJXcEpgYn-wbB3_Q6dqJNwWhrpdO-jwKzghFEOSyfgKZJc85xkdC3j9Br34dkfqAwohWjjCTqzZ_mH1zf_4UEkB2ggo8x6OapoZw9kinTbcecIjD2f2K4Ew_VB9f_lPwCXO3xRg
CitedBy_id crossref_primary_10_1016_j_talanta_2025_127693
crossref_primary_10_1021_acsfoodscitech_2c00181
crossref_primary_10_1016_j_molliq_2024_124190
crossref_primary_10_2142_biophysico_bppb_v21_0017
crossref_primary_10_1016_j_talanta_2024_125873
crossref_primary_10_3390_agronomy14020341
crossref_primary_10_1002_cplu_202300610
crossref_primary_10_1016_j_foodchem_2024_141115
crossref_primary_10_1016_j_microc_2024_111307
Cites_doi 10.1021/acs.jcim.9b00266
10.1021/acs.langmuir.8b00788
10.1186/s12859-019-3310-7
10.1126/science.aah3398
10.1021/acs.chemmater.0c01907
10.1002/adma.201901989
10.1021/acs.analchem.8b01083
10.1021/jacs.0c09105
10.1021/acs.nanolett.9b04090
10.3390/nano10010116
10.1038/s41565-021-00870-y
10.1073/pnas.1919755117
10.1021/acssensors.0c00329
10.1021/acsanm.0c03001
10.3390/atmos12040522
10.1038/s41477-021-00946-6
10.1186/1758-2946-6-10
10.1021/acssensors.8b00450
10.1021/acs.langmuir.6b04502
10.1021/acsapm.0c00921
10.1371/journal.pone.0204425
10.1007/s10994-018-5735-z
10.1039/C7SC01522D
10.1371/journal.pone.0224365
10.1039/C5CS00151J
10.1088/2515-7639/ab0faa
10.1038/s41586-021-03544-w
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright American Chemical Society Jan 18, 2022
Copyright_xml – notice: 2021 American Chemical Society
– notice: Copyright American Chemical Society Jan 18, 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1021/acs.analchem.1c04379
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 1202
ExternalDocumentID oai:pubmedcentral.nih.gov:9195540
PMC9195540
34964601
10_1021_acs_analchem_1c04379
a162419015
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID -
02
23M
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
YZZ
---
-DZ
-~X
.DC
.K2
53G
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
CITATION
CUPRZ
ED~
JG~
KZ1
LMP
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
5PM
.GJ
.HR
186
1WB
2KS
3EH
3O-
6TJ
AAUTI
ABDPE
ABUFD
ACKIV
ACPVT
ACQAM
ACRPL
ADNMO
ADTOC
ADXHL
AETEA
AEYZD
AFFDN
AFFNX
AGQPQ
AIDAL
ANPPW
ANTXH
EJD
LG6
MVM
NHB
OHT
OMK
RNS
UBC
UBX
UNPAY
VOH
XOL
YQI
YQJ
YR5
YXE
YYP
ZCG
ZE2
ZGI
ID FETCH-LOGICAL-a576t-5bf30826d2c2e9e42502199555ea72dd00478ebf991d944f12b8693de8327a673
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Sun Oct 26 03:44:34 EDT 2025
Tue Sep 30 16:39:58 EDT 2025
Thu Jul 10 22:55:53 EDT 2025
Thu Oct 02 10:40:39 EDT 2025
Mon Jun 30 10:11:16 EDT 2025
Wed Feb 19 02:27:45 EST 2025
Tue Jul 01 01:19:36 EDT 2025
Thu Apr 24 23:09:38 EDT 2025
Thu Jan 20 03:47:30 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a576t-5bf30826d2c2e9e42502199555ea72dd00478ebf991d944f12b8693de8327a673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Present Addresses
The current affiliation of MSH is Bursa Technical University, Bursa/Turkey.
Author Contributions
MVY and CWS conceived the study. MVY designed the experiments. MSH collected the protein, breast cancer cell line and miRNA mimic datasets and performed PLSDA modeling. CWS collected the FBS datasets. CWS designed, programmed, and performed modeling with AGONS. NN helped with assay development and contributed intellectually. MVY and CWS wrote the paper.
ORCID 0000-0002-0828-3370
0000-0002-4349-3701
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9195540
PMID 34964601
PQID 2621586564
PQPubID 45400
PageCount 8
ParticipantIDs unpaywall_primary_10_1021_acs_analchem_1c04379
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9195540
proquest_miscellaneous_2636415907
proquest_miscellaneous_2615299923
proquest_journals_2621586564
pubmed_primary_34964601
crossref_primary_10_1021_acs_analchem_1c04379
crossref_citationtrail_10_1021_acs_analchem_1c04379
acs_journals_10_1021_acs_analchem_1c04379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-18
PublicationDateYYYYMMDD 2022-01-18
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
Pedregosa F. (ref26/cit26) 2011; 12
ref4/cit4
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref2/cit2
  doi: 10.1021/acs.jcim.9b00266
– ident: ref20/cit20
  doi: 10.1021/acs.langmuir.8b00788
– ident: ref25/cit25
  doi: 10.1186/s12859-019-3310-7
– ident: ref24/cit24
  doi: 10.1126/science.aah3398
– ident: ref3/cit3
  doi: 10.1021/acs.chemmater.0c01907
– ident: ref1/cit1
  doi: 10.1002/adma.201901989
– ident: ref19/cit19
  doi: 10.1021/acs.analchem.8b01083
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref26/cit26
  publication-title: J. Mach. Learn. Res.
– ident: ref4/cit4
  doi: 10.1021/jacs.0c09105
– ident: ref13/cit13
  doi: 10.1021/acs.nanolett.9b04090
– ident: ref14/cit14
  doi: 10.3390/nano10010116
– ident: ref9/cit9
  doi: 10.1038/s41565-021-00870-y
– ident: ref11/cit11
  doi: 10.1073/pnas.1919755117
– ident: ref6/cit6
– ident: ref10/cit10
  doi: 10.1021/acssensors.0c00329
– ident: ref21/cit21
  doi: 10.1021/acsanm.0c03001
– ident: ref5/cit5
  doi: 10.3390/atmos12040522
– ident: ref8/cit8
  doi: 10.1038/s41477-021-00946-6
– ident: ref15/cit15
  doi: 10.1186/1758-2946-6-10
– ident: ref17/cit17
  doi: 10.1021/acssensors.8b00450
– ident: ref22/cit22
  doi: 10.1021/acs.langmuir.6b04502
– ident: ref16/cit16
  doi: 10.1021/acsapm.0c00921
– ident: ref27/cit27
  doi: 10.1371/journal.pone.0204425
– ident: ref28/cit28
  doi: 10.1007/s10994-018-5735-z
– ident: ref18/cit18
  doi: 10.1039/C7SC01522D
– ident: ref29/cit29
  doi: 10.1371/journal.pone.0224365
– ident: ref23/cit23
  doi: 10.1039/C5CS00151J
– ident: ref12/cit12
  doi: 10.1088/2515-7639/ab0faa
– ident: ref7/cit7
  doi: 10.1038/s41586-021-03544-w
SSID ssj0011016
Score 2.4532423
Snippet Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational...
Here we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1195
SubjectTerms Accuracy
Algorithms
Analytical chemistry
Arrays
automation
Biological sampling
Biomarkers
Biosensing Techniques - methods
Breast cancer
breast neoplasms
Chemistry
Computer applications
cost effectiveness
Data acquisition
Data collection
DNA, Single-Stranded
Instrumentation
Learning algorithms
Libraries
Machine learning
Manpower
microRNA
MicroRNAs
miRNA
Nanoparticles
Nanosensors
Optical data processing
sensors (equipment)
Target detection
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5V6aFwoFCguBS0SByoVDve9drOcrNa2opDigiRyinal1sLxwmJLVR-Az-aWT9CQyVKr57Z2Jsd73zjnfkGobchwAompHB9LWKX8YC5UlDhQiSgmfRTLlWdIDuMzsbs40V4sYFIVwtTJ-0rmXlFPvWK7KrOrZxPVb_LE-tzwsEFQpS-GYUAv3toczz8lHztOuPRpuwE3BKERQAfu3I5SvpCLT0BywP_xtQjyrL6cOuU1HLdKd1CmrcTJreqYi6uf4g8v-GNTrbR524eTRLKN68qpad-_kXxeK-JPkaPWmyKk0b0BG2YYgdtHXUt4XbQwxvshU_RryS_nC2y8qpmHMiv8WmVaaPx-bz-Po5h454tIUqeLfDINKcD-F1yej4cHbyvdeFX8LEoBU7U9yprkscOcVu6AMJDLAqNjzO7s9mMHSvHALJx00CzvslI2JT44vIZGp98-HJ05rbNHVwBIU7phjK1TDmRpooabmDrgCXiMOPQiJhqbWksB0amgF81ZywlVA4iHmgDW1Asojh4jnrFrDAvEI6F7ZUmopSkjOk04IYY6lPlxyqSA00cdABrPGlfzuWkPnenZGIvdvYwae3BQUFnCRPVsqTbZh35HaPc1ah5wxJyh_5-Z2R_HotGAL8GgK-Zg96sxLDC9ghHFGZWWR0wbMD0NPiXThABLON-7KDdxm5XD2XbAzCIwR0Ur1n0SsGyja9LwDZr1vHWHB3krWz_v-a6d98BL9EDamtMfOKSwT7qlYvKvALkV8rX7bv-G_diW7c
  priority: 102
  providerName: Unpaywall
Title Algorithmically Guided Optical Nanosensor Selector (AGONS): Guiding Data Acquisition, Processing, and Discrimination for Biological Sampling
URI http://dx.doi.org/10.1021/acs.analchem.1c04379
https://www.ncbi.nlm.nih.gov/pubmed/34964601
https://www.proquest.com/docview/2621586564
https://www.proquest.com/docview/2615299923
https://www.proquest.com/docview/2636415907
https://pubmed.ncbi.nlm.nih.gov/PMC9195540
https://www.ncbi.nlm.nih.gov/pmc/articles/9195540
UnpaywallVersion submittedVersion
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-6882
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011016
  issn: 0003-2700
  databaseCode: ACS
  dateStart: 19470121
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BeygceJRHA6UyEgcqNdvEcR7mFm1pKw67SMtK5RQ5sdOuSJNlNxEqv4EfzTivdllByzUeJ_F4Yn-TGX8D8M5FWMFELExLCt9k3GFmLKgw0ROQLLZSHid1guzIO52yT2fu2bWj-GcEn9qHIlkOBCoVx3A5sBPNxcPvwyb1fF-n8IXDSR810J5oVyFPB1S7o3J_uYvekJLl6oa0hjLXkyW3qnwurn6ILLuxEx0_hnF3nqdJQPk2qMp4kPxcp3e84yCfwKMWlJKwsaKncE_l27A17GrBbcPDG7SFz-BXmJ0Xi1l5UVMNZFfkpJpJJcl4Xv8YJ7hiF0t0j4sFmagmLEDehyfj0WT_Qy2LdyFHohQkTL5XsyZr7IC0Zxaw8YCIXJKjmV7SdKqObieIrklTObN-yEToXPj8_DlMjz9-GZ6abVUHU6BvU5punGqKHE_ShCqucM1ABXDuuq4SPpVS81cGKk4RuErOWGrTOPC4IxWuPb7wfOcFbORFrnaA-EIXSRNeaqeMydThylbUoonlJ14cSNuAfVRs1H6Vy6gOuFM70hc7bUettg1wOjOIkpYeXVfpyG7pZfa95g09yC3yu52FXb8W9RB3BQismQFv-2acYR27EbkqKi2DQAvBPHX-JeN4iMe45RvwsjHa_qV0XQCGzrcB_oo59wKaZny1JZ9d1HTj3MbJYZYBg97w7zTWV_-h_dfwgOpzJZZt2sEubJSLSr1BtFfGe_Unvgeb09Hn8OtvLaJVDw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwEN4p5RA48CgvQwExw4HO1MGS5Ye4ZVLaACU9pGV688iW3GYIdkjsYcpv4Eez8qsNHSi9WmtFWq-kb7OrbwFeewgruIyl7SgZ2Fy43I4lkzZ6AorHTiripEqQHfujI_7x2DteA6-9C4ODWGJPyyqIf84uQN-aZxJ1i1P51qeJoeQRN-Cm53NqfK7BcNIFD4xD2hbKM3HV9sbcX3ox51KyXD2XLoHNyzmTvTKby7Mfcja7cCDt3oUv3VSqPJSv_bKI-8nPP1gerz3Xe3CngahkUNvUfVjT2Qb0hm1luA24fYHE8AH8GsxO8sW0OK2IB2ZnZK-cKq3Iwbz6m5zg_p0v0VnOF2Si6yABeTPYOxhPtt5VstgL2ZGFJIPkezmtc8i2SXODARu3icwU2ZmaDc4k7ph2glib1HU0qx-ZSJMZn508hKPd94fDkd3UeLAlejqF7cWpIczxFUuYFhp3EFSAEJ7naRkwpQybZajjFGGsEpynlMWhL1ylcScKpB-4j2A9yzP9BEggTck06ac05VylrtBUM4clTpD4caioBVuo2KhZo8uoCr8zGpmHrbajRtsWuK01RElDlm5qdsyueMvu3prXZCFXyG-2hnY-LOYjCgsRZnMLXnXN-IVNJEdmOi-NDMIuhPbM_ZeMi2vDE05gwePadrtBmSoBHF1xC4IVq-4EDOn4aks2Pa3IxwXFj8MdC_qd_f_XXJ9eQ_svoTc6_Lwf7X8Yf3oGt5i5ceJQm4absF4sSv0ccWARv6hW_W-ABlvB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkBg88DG-AgOMxAOTlpI4TlLzVrV040MdUpk07SVyYmerKGlpE6HxN_BHc5cvWiYY8Bo7rn25s3_XO_8O4LmPsEKoWNmOVqEtpCfsWHFloyegReykMk7KBNlRsH8o3h75RyulvnASSxxpWQbxyarnOq0ZBtyX9FyhfHE5nztuQrQ88jJc8QO0dkJF_XEbQCCntCmWR7HV5tbcb0ahsylZrp9N5wDn-bzJzSKbq7OvajpdOZSGN-G4XU6Zi_KpU-RxJ_n2C9Pjf633FtyooSrrVbp1Gy6ZbAs2-02FuC24vkJmeAe-96Yns8UkPy0JCKZnbK-YaKPZwbz8u5zhPj5botM8W7CxqYIF7EVv72A03nlV9sVR2EDlivWSL8WkyiXbZfVNBmzcZSrTbDChjY4SeKidIeZmVT3N8kfGijLks5O7cDh8_bG_b9e1HmyFHk9u-3FKxDmB5gk30uBOggKQ0vd9o0KuNbFadk2cIpzVUojU5XE3kJ42uCOFKgi9e7CRzTLzAFioqHSaClI3FUKnnjSu4Q5PnDAJ4q52LdhBwUa1rS6jMgzP3YgeNtKOamlb4DUaESU1aTrV7phe8JbdvjWvSEMu6L_dKNvPafEA0VgX4baw4FnbjF-YIjoqM7OC-iD8QojPvT_18QJEadIJLbhf6W87KaoWINAltyBc0-y2A5GPr7dkk9OShFy6-HGEY0GntYG_WuvDf5D-U7j6YTCM3r8ZvXsE1zhdPHFc2-1uw0a-KMxjhIN5_KQ0_B9lIl5E
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5V6aFwoFCguBS0SByoVDve9drOcrNa2opDigiRyinal1sLxwmJLVR-Az-aWT9CQyVKr57Z2Jsd73zjnfkGobchwAompHB9LWKX8YC5UlDhQiSgmfRTLlWdIDuMzsbs40V4sYFIVwtTJ-0rmXlFPvWK7KrOrZxPVb_LE-tzwsEFQpS-GYUAv3toczz8lHztOuPRpuwE3BKERQAfu3I5SvpCLT0BywP_xtQjyrL6cOuU1HLdKd1CmrcTJreqYi6uf4g8v-GNTrbR524eTRLKN68qpad-_kXxeK-JPkaPWmyKk0b0BG2YYgdtHXUt4XbQwxvshU_RryS_nC2y8qpmHMiv8WmVaaPx-bz-Po5h454tIUqeLfDINKcD-F1yej4cHbyvdeFX8LEoBU7U9yprkscOcVu6AMJDLAqNjzO7s9mMHSvHALJx00CzvslI2JT44vIZGp98-HJ05rbNHVwBIU7phjK1TDmRpooabmDrgCXiMOPQiJhqbWksB0amgF81ZywlVA4iHmgDW1Asojh4jnrFrDAvEI6F7ZUmopSkjOk04IYY6lPlxyqSA00cdABrPGlfzuWkPnenZGIvdvYwae3BQUFnCRPVsqTbZh35HaPc1ah5wxJyh_5-Z2R_HotGAL8GgK-Zg96sxLDC9ghHFGZWWR0wbMD0NPiXThABLON-7KDdxm5XD2XbAzCIwR0Ur1n0SsGyja9LwDZr1vHWHB3krWz_v-a6d98BL9EDamtMfOKSwT7qlYvKvALkV8rX7bv-G_diW7c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithmically+Guided+Optical+Nanosensor+Selector+%28AGONS%29%3A+Guiding+Data+Acquisition%2C+Processing%2C+and+Discrimination+for+Biological+Sampling&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Smith%2C+Christopher+W.&rft.au=Hizir%2C+Mustafa+Salih&rft.au=Nandu%2C+Nidhi&rft.au=Yigit%2C+Mehmet+V.&rft.date=2022-01-18&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=94&rft.issue=2&rft.spage=1195&rft.epage=1202&rft_id=info:doi/10.1021%2Facs.analchem.1c04379&rft_id=info%3Apmid%2F34964601&rft.externalDocID=PMC9195540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon