Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction

Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 120; no. 15; pp. 7152 - 7218
Main Authors Baiz, Carlos R, Błasiak, Bartosz, Bredenbeck, Jens, Cho, Minhaeng, Choi, Jun-Ho, Corcelli, Steven A, Dijkstra, Arend G, Feng, Chi-Jui, Garrett-Roe, Sean, Ge, Nien-Hui, Hanson-Heine, Magnus W. D, Hirst, Jonathan D, Jansen, Thomas L. C, Kwac, Kijeong, Kubarych, Kevin J, Londergan, Casey H, Maekawa, Hiroaki, Reppert, Mike, Saito, Shinji, Roy, Santanu, Skinner, James L, Stock, Gerhard, Straub, John E, Thielges, Megan C, Tominaga, Keisuke, Tokmakoff, Andrei, Torii, Hajime, Wang, Lu, Webb, Lauren J, Zanni, Martin T
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.08.2020
Subjects
Online AccessGet full text
ISSN0009-2665
1520-6890
1520-6890
DOI10.1021/acs.chemrev.9b00813

Cover

Abstract Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute–solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
AbstractList Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute–solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and inter-protein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository website (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Author Cho, Minhaeng
Tokmakoff, Andrei
Thielges, Megan C
Jansen, Thomas L. C
Dijkstra, Arend G
Skinner, James L
Hirst, Jonathan D
Saito, Shinji
Choi, Jun-Ho
Torii, Hajime
Londergan, Casey H
Błasiak, Bartosz
Webb, Lauren J
Zanni, Martin T
Roy, Santanu
Straub, John E
Corcelli, Steven A
Baiz, Carlos R
Reppert, Mike
Garrett-Roe, Sean
Stock, Gerhard
Hanson-Heine, Magnus W. D
Kubarych, Kevin J
Feng, Chi-Jui
Tominaga, Keisuke
Bredenbeck, Jens
Ge, Nien-Hui
Maekawa, Hiroaki
Wang, Lu
Kwac, Kijeong
AuthorAffiliation University of Chicago
School of Chemistry and School of Physics and Astronomy
University of Groningen
Rutgers University
School of Chemistry
Zernike Institute for Advanced Materials
University of Toronto
Institute for Molecular Engineering
Department of Chemistry
Department of Physical and Quantum Chemistry
Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology
Korea University
Biomolecular Dynamics, Institute of Physics
Center for Molecular Spectroscopy and Dynamics
Chemical Sciences Division
Molecular Photoscience Research Center
The University of Texas at Austin
University of Pittsburgh
Institute of Biophysics
Department of Theoretical and Computational Molecular Science
Department of Chemistry and Biochemistry
Chemical Physics Theory Group, Department of Chemistry
Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine
Department of Chemistry, J
AuthorAffiliation_xml – name: Korea University
– name: Department of Chemistry
– name: Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine
– name: Center for Molecular Spectroscopy and Dynamics
– name: University of Toronto
– name: Biomolecular Dynamics, Institute of Physics
– name: Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology
– name: Zernike Institute for Advanced Materials
– name: Institute of Biophysics
– name: The University of Texas at Austin
– name: School of Chemistry and School of Physics and Astronomy
– name: Department of Theoretical and Computational Molecular Science
– name: Institute for Molecular Engineering
– name: Chemical Sciences Division
– name: Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics
– name: Rutgers University
– name: Chemical Physics Theory Group, Department of Chemistry
– name: Department of Physical and Quantum Chemistry
– name: University of Groningen
– name: University of Chicago
– name: Molecular Photoscience Research Center
– name: Department of Chemistry and Biochemistry
– name: University of Pittsburgh
– name: School of Chemistry
– name: 16 Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
– name: 27 Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1396, U.S.A
– name: 23 Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013, Japan
– name: 24 Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu 432-8561, Japan
– name: 6 Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
– name: 8 School of Chemistry and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
– name: 7 Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
– name: 18 Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A
– name: 4 Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
– name: 20 Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
– name: 2 Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
– name: 9 Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
– name: 17 Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan
– name: 21 Department of Chemistry, Boston University, Boston, MA 02215, U.S.A
– name: 12 School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
– name: 3 Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
– name: 5 Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
– name: 11 Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
– name: 14 Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, U.S.A
– name: 13 University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
– name: 10 Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
– name: 26 Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, STOP A5300, Austin, Texas 78712, U.S.A
– name: 1 Department of Chemistry, University of Texas at Austin, Austin, TX 78712, U.S.A
– name: 19 Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
– name: 15 Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, U.S.A
– name: 22 Department of Chemistry, Indiana University, 800 East Kirkwood, Bloomington, Indiana 47405, U.S.A
– name: 25 Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, U.S.A
Author_xml – sequence: 1
  givenname: Carlos R
  orcidid: 0000-0003-0699-8468
  surname: Baiz
  fullname: Baiz, Carlos R
  organization: Department of Chemistry
– sequence: 2
  givenname: Bartosz
  orcidid: 0000-0003-1968-3465
  surname: Błasiak
  fullname: Błasiak, Bartosz
  organization: Department of Physical and Quantum Chemistry
– sequence: 3
  givenname: Jens
  orcidid: 0000-0003-1929-9092
  surname: Bredenbeck
  fullname: Bredenbeck, Jens
  organization: Institute of Biophysics
– sequence: 4
  givenname: Minhaeng
  orcidid: 0000-0003-1618-1056
  surname: Cho
  fullname: Cho, Minhaeng
  email: mcho@korea.ac.kr
  organization: Korea University
– sequence: 5
  givenname: Jun-Ho
  orcidid: 0000-0001-5237-5566
  surname: Choi
  fullname: Choi, Jun-Ho
  organization: Department of Chemistry
– sequence: 6
  givenname: Steven A
  orcidid: 0000-0001-6451-4447
  surname: Corcelli
  fullname: Corcelli, Steven A
  organization: Department of Chemistry and Biochemistry
– sequence: 7
  givenname: Arend G
  surname: Dijkstra
  fullname: Dijkstra, Arend G
  organization: School of Chemistry and School of Physics and Astronomy
– sequence: 8
  givenname: Chi-Jui
  orcidid: 0000-0002-4006-9489
  surname: Feng
  fullname: Feng, Chi-Jui
  organization: Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics
– sequence: 9
  givenname: Sean
  orcidid: 0000-0001-6199-8773
  surname: Garrett-Roe
  fullname: Garrett-Roe, Sean
  organization: University of Pittsburgh
– sequence: 10
  givenname: Nien-Hui
  surname: Ge
  fullname: Ge, Nien-Hui
  organization: Department of Chemistry
– sequence: 11
  givenname: Magnus W. D
  orcidid: 0000-0002-6709-297X
  surname: Hanson-Heine
  fullname: Hanson-Heine, Magnus W. D
  organization: School of Chemistry
– sequence: 12
  givenname: Jonathan D
  orcidid: 0000-0002-2726-0983
  surname: Hirst
  fullname: Hirst, Jonathan D
  organization: School of Chemistry
– sequence: 13
  givenname: Thomas L. C
  orcidid: 0000-0001-6066-6080
  surname: Jansen
  fullname: Jansen, Thomas L. C
  organization: Zernike Institute for Advanced Materials
– sequence: 14
  givenname: Kijeong
  surname: Kwac
  fullname: Kwac, Kijeong
  organization: Center for Molecular Spectroscopy and Dynamics
– sequence: 15
  givenname: Kevin J
  orcidid: 0000-0003-1152-4734
  surname: Kubarych
  fullname: Kubarych, Kevin J
  organization: Department of Chemistry
– sequence: 16
  givenname: Casey H
  orcidid: 0000-0002-5257-559X
  surname: Londergan
  fullname: Londergan, Casey H
  organization: Department of Chemistry
– sequence: 17
  givenname: Hiroaki
  surname: Maekawa
  fullname: Maekawa, Hiroaki
  organization: Department of Chemistry
– sequence: 18
  givenname: Mike
  surname: Reppert
  fullname: Reppert, Mike
  organization: University of Toronto
– sequence: 19
  givenname: Shinji
  orcidid: 0000-0003-4982-4820
  surname: Saito
  fullname: Saito, Shinji
  organization: Department of Theoretical and Computational Molecular Science
– sequence: 20
  givenname: Santanu
  orcidid: 0000-0001-6991-8205
  surname: Roy
  fullname: Roy, Santanu
  organization: Chemical Sciences Division
– sequence: 21
  givenname: James L
  orcidid: 0000-0001-6939-9759
  surname: Skinner
  fullname: Skinner, James L
  organization: University of Chicago
– sequence: 22
  givenname: Gerhard
  orcidid: 0000-0002-3302-3044
  surname: Stock
  fullname: Stock, Gerhard
  organization: Biomolecular Dynamics, Institute of Physics
– sequence: 23
  givenname: John E
  surname: Straub
  fullname: Straub, John E
  organization: Department of Chemistry
– sequence: 24
  givenname: Megan C
  orcidid: 0000-0002-4520-6673
  surname: Thielges
  fullname: Thielges, Megan C
  organization: Department of Chemistry
– sequence: 25
  givenname: Keisuke
  orcidid: 0000-0002-4680-2362
  surname: Tominaga
  fullname: Tominaga, Keisuke
  organization: Molecular Photoscience Research Center
– sequence: 26
  givenname: Andrei
  orcidid: 0000-0002-2434-8744
  surname: Tokmakoff
  fullname: Tokmakoff, Andrei
  organization: Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics
– sequence: 27
  givenname: Hajime
  orcidid: 0000-0002-6061-9599
  surname: Torii
  fullname: Torii, Hajime
  organization: Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology
– sequence: 28
  givenname: Lu
  orcidid: 0000-0001-6230-1835
  surname: Wang
  fullname: Wang, Lu
  organization: Rutgers University
– sequence: 29
  givenname: Lauren J
  orcidid: 0000-0001-9999-5500
  surname: Webb
  fullname: Webb, Lauren J
  organization: The University of Texas at Austin
– sequence: 30
  givenname: Martin T
  orcidid: 0000-0001-7191-9768
  surname: Zanni
  fullname: Zanni, Martin T
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32598850$$D View this record in MEDLINE/PubMed
BookMark eNqNkVFr1TAUx4NM3N30EwhS8MWH9e4kadLkRZAxdTDxwamP4TRNXUfb1KTduN_eXHudOtDtKYTz-x_-_M4B2Rv84Ah5TmFNgdFjtHFtL10f3PVaVwCK8kdkRQWDXCoNe2QFADpnUop9chDjVfoKwconZJ8zoZUSsCJfv7RVwKn1A3bZp9HZKfho_dja7AOOR9k_xpujDIc6OxsmF3rfOTt3GJYv2i3-lDxusIvu2e49JJ_fnl6cvM_PP747O3lznqMo2ZSjaiyjFHUNXCM2DJV1dcMFbwSvHW2w4FIqp5nVIKm0oKsKagogGQpt-SEplr3zMOLmBrvOjKHtMWwMBbP1ZJIns_Nkdp5S7PUSG-eqd7V1wxTwd9Rja_6eDO2l-eavTVlSoAzSgle7BcF_n12cTN9G67oOB-fnaJgoU_NCSXU_WlANWkhdJvTlHfTKzyG531JcqIIVUCTqxZ_lb1v_umoC-ALYdK0YXPNAJ_pOyrbTz9snA213T_Z4yW6Ht53_l_gBZbvezQ
CitedBy_id crossref_primary_10_3390_cryst11050509
crossref_primary_10_1021_acs_jpcb_3c01977
crossref_primary_10_1016_j_molstruc_2022_133503
crossref_primary_10_1021_acs_jpclett_3c03499
crossref_primary_10_1021_jacs_3c05339
crossref_primary_10_1021_acs_jpclett_1c01453
crossref_primary_10_1021_acsnano_1c11507
crossref_primary_10_1063_5_0047885
crossref_primary_10_1021_acs_jpcb_4c05511
crossref_primary_10_1016_j_xcrp_2021_100419
crossref_primary_10_1021_acs_chemrev_2c00329
crossref_primary_10_1039_D4BM00794H
crossref_primary_10_1080_00268976_2023_2263593
crossref_primary_10_1021_acs_cgd_3c00302
crossref_primary_10_1021_acs_jpcb_1c01546
crossref_primary_10_1002_smll_202208052
crossref_primary_10_1016_j_saa_2020_119066
crossref_primary_10_1021_acs_jpcb_1c06698
crossref_primary_10_1002_slct_202400136
crossref_primary_10_1021_acs_jpclett_4c00522
crossref_primary_10_1016_j_bpj_2023_03_014
crossref_primary_10_1038_s42004_024_01170_x
crossref_primary_10_1002_jcc_27452
crossref_primary_10_1016_j_saa_2021_120675
crossref_primary_10_1063_5_0253434
crossref_primary_10_1063_5_0064092
crossref_primary_10_1002_jrs_6356
crossref_primary_10_1021_acs_jpcb_4c06295
crossref_primary_10_1039_D4CP00673A
crossref_primary_10_1007_s10800_023_01944_6
crossref_primary_10_1016_j_saa_2021_119574
crossref_primary_10_1021_acs_jctc_1c00540
crossref_primary_10_1021_acs_jpca_2c05962
crossref_primary_10_1021_acs_jpcb_1c08764
crossref_primary_10_1038_s41467_022_33477_5
crossref_primary_10_3390_molecules28124638
crossref_primary_10_3390_pr10040738
crossref_primary_10_1021_acsfoodscitech_4c00070
crossref_primary_10_1039_D1SC01876K
crossref_primary_10_1021_acs_jpcb_4c00712
crossref_primary_10_1021_acs_jpcc_4c06002
crossref_primary_10_1103_PhysRevA_104_033519
crossref_primary_10_1016_j_saa_2021_119918
crossref_primary_10_1063_5_0136376
crossref_primary_10_1016_j_bpj_2024_08_015
crossref_primary_10_1039_D2RA07613F
crossref_primary_10_1021_acs_jpca_4c02881
crossref_primary_10_1063_5_0160556
crossref_primary_10_1038_s42004_023_00835_3
crossref_primary_10_1063_5_0242857
crossref_primary_10_1021_acs_jpcc_1c01268
crossref_primary_10_1039_D1CC05367A
crossref_primary_10_1016_j_molstruc_2022_133972
crossref_primary_10_1039_D1CP04490G
crossref_primary_10_1063_5_0135273
crossref_primary_10_1016_j_micron_2025_103800
crossref_primary_10_1039_D3CP02018E
crossref_primary_10_1039_D1CP04393E
crossref_primary_10_1007_s12161_024_02578_w
crossref_primary_10_1007_s00214_024_03151_8
crossref_primary_10_1021_acs_jpclett_1c02451
crossref_primary_10_1063_5_0190343
crossref_primary_10_1002_EXP_20230033
crossref_primary_10_1126_science_ads4369
crossref_primary_10_1039_D1CP03628A
crossref_primary_10_1021_acs_jpcb_2c03341
crossref_primary_10_1021_acs_jpclett_3c01679
crossref_primary_10_1021_acs_jctc_3c01037
crossref_primary_10_1111_bju_16226
crossref_primary_10_1146_annurev_physchem_090722_010230
crossref_primary_10_1063_5_0082969
crossref_primary_10_1021_acs_jctc_4c01130
crossref_primary_10_1016_j_molstruc_2024_140123
crossref_primary_10_1088_2516_1075_acb7b8
crossref_primary_10_1021_acs_jpcb_2c04280
crossref_primary_10_1063_5_0052628
crossref_primary_10_1063_5_0229181
crossref_primary_10_1063_5_0233578
crossref_primary_10_1021_acs_jpcb_2c05372
crossref_primary_10_1063_5_0146084
crossref_primary_10_1016_j_saa_2023_122424
crossref_primary_10_1364_OPTICA_440533
crossref_primary_10_3389_fchem_2022_810837
crossref_primary_10_31857_S0044450223100109
crossref_primary_10_1007_s00894_024_06098_6
crossref_primary_10_1002_qua_26953
crossref_primary_10_1063_5_0159042
crossref_primary_10_1021_acs_jpcb_1c06370
crossref_primary_10_1016_j_supflu_2024_106470
crossref_primary_10_1063_5_0047727
crossref_primary_10_1063_5_0149363
crossref_primary_10_1016_j_chemphys_2025_112605
crossref_primary_10_1016_j_foodres_2025_116009
crossref_primary_10_1016_j_molliq_2022_119714
crossref_primary_10_1063_5_0218180
crossref_primary_10_3390_ijms24076740
crossref_primary_10_1016_j_vibspec_2023_103534
crossref_primary_10_1021_acs_accounts_3c00603
crossref_primary_10_1063_5_0064518
crossref_primary_10_1002_smll_202402349
crossref_primary_10_1055_a_2184_4836
crossref_primary_10_1063_5_0142381
crossref_primary_10_1088_2516_1075_acaa7a
crossref_primary_10_1021_acs_analchem_4c01972
crossref_primary_10_1021_acs_jpca_3c06312
crossref_primary_10_3390_polym13111838
crossref_primary_10_1021_acs_jpca_3c01420
crossref_primary_10_1016_j_foodhyd_2021_107417
crossref_primary_10_1021_acs_jpcb_2c03556
crossref_primary_10_1021_acs_jpcb_2c05954
crossref_primary_10_1021_acs_jpca_2c07658
crossref_primary_10_1021_acs_jpca_1c03061
crossref_primary_10_1021_jacs_4c17464
crossref_primary_10_1039_D0CP05831A
crossref_primary_10_1021_acs_jpclett_4c01871
crossref_primary_10_1039_D3SC05223K
crossref_primary_10_1515_pac_2023_1202
crossref_primary_10_3390_molecules26082148
crossref_primary_10_1021_acs_jpcc_3c00753
crossref_primary_10_1021_acs_jpclett_3c02619
crossref_primary_10_3390_molecules27134082
crossref_primary_10_1021_acs_jpca_2c08061
crossref_primary_10_1063_5_0044911
crossref_primary_10_1016_j_pathol_2023_11_008
crossref_primary_10_1039_D0CP04307A
crossref_primary_10_3390_cryst13050773
crossref_primary_10_1021_acs_jpca_3c02489
crossref_primary_10_1021_acs_jpclett_4c01449
crossref_primary_10_1021_acs_jpcb_3c01334
crossref_primary_10_1021_acs_jpcc_2c05108
crossref_primary_10_1021_jacs_4c18102
crossref_primary_10_1063_5_0247251
crossref_primary_10_1016_j_molliq_2023_123111
crossref_primary_10_1021_acs_chemrev_3c00944
crossref_primary_10_1016_j_yjsbx_2024_100108
crossref_primary_10_1016_j_molstruc_2024_139203
crossref_primary_10_1021_acs_accounts_0c00302
crossref_primary_10_1080_08927022_2024_2307521
crossref_primary_10_1016_j_molliq_2021_117349
crossref_primary_10_3390_ijms24021803
crossref_primary_10_3390_molecules27072153
crossref_primary_10_1021_acs_analchem_4c01639
crossref_primary_10_1021_acsomega_3c07147
crossref_primary_10_1063_5_0040739
crossref_primary_10_1021_jacs_3c12258
crossref_primary_10_3390_plants13141955
crossref_primary_10_3390_ijms241612971
crossref_primary_10_1063_5_0150387
crossref_primary_10_1021_acs_jpcb_4c03068
crossref_primary_10_1016_j_imu_2023_101254
crossref_primary_10_1039_D3NR03499B
crossref_primary_10_1016_j_optlastec_2024_112099
crossref_primary_10_1021_acs_jctc_4c00882
crossref_primary_10_3390_molecules29122811
crossref_primary_10_1371_journal_pone_0257098
crossref_primary_10_1063_5_0107087
crossref_primary_10_1021_acs_jpca_3c05755
crossref_primary_10_1039_D2SC03188D
crossref_primary_10_1063_5_0185580
crossref_primary_10_1515_pac_2023_1118
crossref_primary_10_1021_acs_jctc_2c00113
crossref_primary_10_1021_jacs_3c11513
crossref_primary_10_1021_acs_jpcb_0c07988
crossref_primary_10_1021_acs_jpcb_4c06419
crossref_primary_10_1063_5_0119631
crossref_primary_10_1063_5_0172702
crossref_primary_10_1021_acs_jpcb_1c09572
crossref_primary_10_1021_acs_jpcb_3c05480
crossref_primary_10_1016_j_solmat_2024_113271
crossref_primary_10_1039_D4CP04757E
crossref_primary_10_1002_cplu_202400487
crossref_primary_10_1021_acs_jpclett_3c03627
crossref_primary_10_1108_IJSI_01_2022_0006
crossref_primary_10_1021_acs_jctc_5c00062
crossref_primary_10_1021_acs_energyfuels_3c01937
crossref_primary_10_1021_acs_jpclett_4c00585
crossref_primary_10_1021_acs_jpcb_1c08014
crossref_primary_10_1063_5_0021731
crossref_primary_10_1111_jmi_13132
crossref_primary_10_1021_acs_jpclett_0c03827
crossref_primary_10_1016_j_foodres_2025_116102
crossref_primary_10_1021_acs_jpclett_3c02662
crossref_primary_10_1021_acs_jpca_2c03803
crossref_primary_10_1021_acs_jpcb_2c08915
crossref_primary_10_1021_acs_jpclett_3c01159
crossref_primary_10_3390_metrology4040043
crossref_primary_10_1021_acs_jpcb_1c05554
crossref_primary_10_1039_D1SC03455C
crossref_primary_10_1364_OL_496376
crossref_primary_10_1021_acs_jpcb_1c03257
crossref_primary_10_1063_5_0082322
crossref_primary_10_1002_cphc_202300587
crossref_primary_10_1016_j_jechem_2023_10_031
crossref_primary_10_1016_j_ccr_2024_216396
crossref_primary_10_1021_acs_jpcc_4c00433
crossref_primary_10_1039_D4SC03219E
crossref_primary_10_1016_j_omx_2022_100216
crossref_primary_10_1073_pnas_2220852120
crossref_primary_10_1134_S1061934823100106
crossref_primary_10_1021_acs_jpcb_2c07394
crossref_primary_10_1021_acs_jpclett_2c02707
crossref_primary_10_1021_acs_jpcb_2c04321
crossref_primary_10_1364_OE_471984
crossref_primary_10_1021_acs_jctc_1c00690
crossref_primary_10_1021_acs_jpcc_3c02091
crossref_primary_10_1021_jacs_2c00675
crossref_primary_10_1038_s41557_022_00937_w
crossref_primary_10_1021_acs_jpcb_1c06775
crossref_primary_10_1002_macp_202400201
crossref_primary_10_1021_acs_jctc_1c00314
crossref_primary_10_1016_j_molliq_2022_120459
crossref_primary_10_1016_j_apsusc_2024_160345
crossref_primary_10_1063_5_0156297
crossref_primary_10_1007_s13399_024_05675_2
crossref_primary_10_1016_j_molstruc_2023_134903
crossref_primary_10_1063_5_0139133
crossref_primary_10_1016_j_jmb_2023_168227
crossref_primary_10_1146_annurev_biophys_111622_091140
crossref_primary_10_1002_aenm_202202504
crossref_primary_10_1021_acs_jpcb_2c06071
crossref_primary_10_1021_jacs_4c10893
crossref_primary_10_1021_acs_jpcb_0c08959
crossref_primary_10_1063_5_0195386
crossref_primary_10_1063_5_0138958
crossref_primary_10_1063_5_0190809
crossref_primary_10_1021_jacs_4c12716
crossref_primary_10_1021_acs_jpcb_2c00212
crossref_primary_10_1063_5_0225308
crossref_primary_10_1016_j_molstruc_2023_136087
crossref_primary_10_1021_acs_jpcb_2c07605
crossref_primary_10_3390_ijms25179358
crossref_primary_10_1021_acs_jpca_2c05881
crossref_primary_10_1016_j_sbi_2021_08_008
crossref_primary_10_1063_5_0129480
crossref_primary_10_1088_2515_7639_ad229a
crossref_primary_10_1016_j_mseb_2025_118213
crossref_primary_10_1038_s41377_024_01453_x
crossref_primary_10_1155_2023_8608428
crossref_primary_10_1021_jacsau_4c00811
crossref_primary_10_1063_5_0139166
crossref_primary_10_1088_1742_6596_2172_1_012010
crossref_primary_10_1021_acs_jpclett_0c03006
crossref_primary_10_1146_annurev_anchem_091520_091009
crossref_primary_10_1038_s41557_020_00629_3
crossref_primary_10_1016_j_bpr_2022_100066
crossref_primary_10_1021_acs_jpca_2c04428
crossref_primary_10_1063_5_0054428
crossref_primary_10_1016_j_molliq_2021_116436
crossref_primary_10_1021_acsmeasuresciau_3c00010
crossref_primary_10_1063_5_0243509
crossref_primary_10_1021_acs_jpcb_3c05307
crossref_primary_10_1021_acs_jpcc_4c03060
crossref_primary_10_1039_D3AN00042G
crossref_primary_10_1063_1674_0068_cjcp2008150
crossref_primary_10_1073_pnas_2409257121
crossref_primary_10_1103_PhysRevA_108_013104
crossref_primary_10_1063_4_0000124
crossref_primary_10_1021_acs_jpclett_4c01359
crossref_primary_10_1063_5_0107348
crossref_primary_10_1021_acs_accounts_3c00682
crossref_primary_10_1073_pnas_2320337121
crossref_primary_10_1139_cjc_2022_0254
crossref_primary_10_1021_acs_jpcb_0c11461
crossref_primary_10_1116_6_0001951
Cites_doi 10.1146/annurev.physchem.48.1.213
10.1063/1.5120777
10.1021/ja060851s
10.1039/b817113k
10.1021/jp070852m
10.1021/jp301095v
10.1063/1.4985665
10.1021/acs.jpclett.8b03568
10.1021/jp104017h
10.1023/A:1022573825058
10.1021/ja0779607
10.1021/jacs.6b03916
10.1021/acs.accounts.7b00002
10.1073/pnas.1401587111
10.1021/ja900505e
10.1002/anie.201503155
10.1021/jp201591c
10.1146/annurev.physchem.51.1.691
10.1021/ja00418a009
10.1016/j.molstruc.2004.10.082
10.1039/c0cp02138e
10.1039/c2an16031e
10.1016/j.bbamem.2012.11.020
10.1063/1.4894507
10.1021/jp011724f
10.1039/C1CC13186A
10.1002/bip.360250307
10.1021/jp206986v
10.1021/ja01464a042
10.1021/ct100730a
10.1021/jp5012445
10.1039/C7SC02267K
10.1021/jp5091679
10.1016/j.molliq.2008.02.013
10.1021/jp204245z
10.1103/PhysRevLett.86.1566
10.1063/1.4934234
10.1021/ja3039486
10.1063/1.2148409
10.1063/1.3454733
10.1073/pnas.1211968110
10.1002/qua.560100211
10.1063/1.4802991
10.1016/j.chemphys.2007.06.043
10.1016/j.cplett.2010.12.001
10.1021/ar700188n
10.1021/jz501055d
10.1002/bip.1976.360151210
10.1021/ja00103a033
10.1021/jp510157y
10.1063/1.4816041
10.1063/1.2961020
10.1063/1.4872040
10.1002/anie.201402011
10.1021/cr3005185
10.1021/acs.jpcb.7b10791
10.1021/acs.jpcb.6b08678
10.1021/jp901504r
10.1063/1.2771178
10.1039/c1cp22235j
10.1021/ja8094922
10.1063/1.475389
10.1021/acs.jpclett.9b00291
10.1002/anie.200905693
10.1039/C8CP03315C
10.1021/ja2042589
10.1080/00268979609482543
10.1016/S0301-4622(03)00035-8
10.1021/ja067723o
10.1021/cr500003w
10.1063/1.3120771
10.1080/00268970500052387
10.1016/0584-8539(91)80277-P
10.1021/acs.jpcb.8b03870
10.1021/jp9045879
10.1016/j.chemphys.2018.03.012
10.1016/0301-0104(76)87050-4
10.1021/jp036266k
10.1073/pnas.1116289109
10.1023/A:1008202821328
10.1038/nchem.1293
10.1016/j.chemphys.2017.08.002
10.1063/1.4995437
10.1063/1.1536979
10.1073/pnas.1222017110
10.1201/9781420084306
10.1093/nar/gkh242
10.1002/anie.201003325
10.1021/ja0543651
10.1021/jp401642b
10.1063/1.1622384
10.1021/cr200093j
10.1002/jcc.21787
10.1021/ja204035k
10.1021/jp109357d
10.1126/science.1087251
10.1016/j.cbpa.2006.08.013
10.1021/jacs.6b05854
10.1016/j.cplett.2003.10.111
10.1021/jp070369b
10.1021/ar900006u
10.1021/jp0624808
10.1063/1.4751477
10.1080/00268970512331317336
10.1139/v84-242
10.1021/jp055813u
10.1063/1.3654005
10.1021/jp062033s
10.1063/1.4993952
10.1002/cphc.200500047
10.1021/acs.jchemed.5b01014
10.1063/1.2196884
10.1063/1.2766943
10.1021/jp405853j
10.1021/ct300045c
10.1016/j.cplett.2008.06.060
10.1529/biophysj.106.098442
10.1063/1.452037
10.1039/c0cp00214c
10.1063/1.4746157
10.1021/cr00031a008
10.1021/acs.jpcb.5b11643
10.1063/1.3553717
10.1039/C4CP01498G
10.1007/s10582-003-0101-0
10.1039/tf9605600753
10.1021/jp049893y
10.1021/ja01299a050
10.1063/1.4722584
10.1021/jp806644x
10.1021/cr00088a004
10.1021/acs.jpclett.7b00731
10.1063/1.2213257
10.1021/ja983878n
10.1021/jp807528q
10.1063/1.4984766
10.1063/1.1803532
10.1073/pnas.0805957106
10.1063/1.4947213
10.1021/jp5115288
10.1063/1.4918644
10.1063/1.4944743
10.1021/ja00018a052
10.1021/acs.jpcb.8b03907
10.1002/jcc.20289
10.1073/pnas.72.12.4933
10.1002/bip.360221211
10.1039/b907260h
10.1038/nature10173
10.1016/S0009-2614(02)02001-8
10.1111/j.1467-9868.2005.00503.x
10.1063/1.5055041
10.1073/pnas.0508833103
10.1021/acs.jpcb.9b07036
10.1103/PhysRevA.28.3480
10.1002/bip.21250
10.1063/1.4964723
10.1063/1.4897265
10.1021/jp002242r
10.1039/c2cp23710e
10.1038/nsb0397-209
10.1021/jp003455j
10.1063/1.3139003
10.1063/1.4895968
10.1063/1.3100185
10.1021/acs.jpcb.8b12157
10.1002/jcc.21865
10.1021/jp500733s
10.1016/S0010-8545(00)82094-9
10.1021/ja064468z
10.1021/jp405210s
10.1021/ja049890z
10.1063/1.1898215
10.1021/bi0352926
10.1016/0301-0104(81)85090-2
10.1021/acs.jpclett.5b00356
10.1063/1.481684
10.1021/jp710136c
10.1021/acs.jpcb.6b04319
10.1021/ja00879a012
10.1038/ncomms14658
10.1002/jrs.757
10.1073/pnas.0408037102
10.1021/j100064a033
10.1021/acs.jpclett.8b03468
10.1063/1.5083186
10.1021/jp046685x
10.1073/pnas.2533089100
10.1021/jp402942s
10.1021/jp034727w
10.1038/nchem.1158
10.1063/1.3482708
10.1007/s10822-016-9938-8
10.1021/jacs.5b12370
10.1021/acs.jctc.5b01198
10.1098/rspa.1958.0237
10.1021/jp0203043
10.1073/pnas.96.5.2036
10.1063/1.3077690
10.1021/jp301054e
10.1039/qr9591300183
10.1016/j.chemphys.2007.10.034
10.1063/1.1580807
10.1073/pnas.1409207111
10.1063/1.5083966
10.1002/jcc.540100209
10.1021/bi00053a001
10.1021/jp061065c
10.1039/C8CP06146G
10.1021/jacs.6b02171
10.1021/jp026419o
10.1016/j.bbabio.2007.06.004
10.1021/jp060014c
10.1021/acs.jpclett.6b01451
10.1021/acs.analchem.9b03997
10.1039/B918314K
10.1063/1674-0068/30/cjcp1709169
10.1063/1.3580776
10.1146/annurev-physchem-040214-121802
10.1103/PhysRevLett.98.146401
10.1002/jcc.540161202
10.1021/acs.langmuir.9b01693
10.1039/p29740000268
10.1063/1.2200690
10.1021/jp0506540
10.1002/anie.200806239
10.1021/jp412827s
10.1016/0584-8539(84)80027-6
10.1063/1.3079609
10.1063/1.2205367
10.1063/1.2424711
10.1002/anie.201209916
10.1063/1.1818107
10.1021/jp052324l
10.1073/pnas.1103027108
10.1021/jp0761158
10.1021/ja00426a036
10.1039/b908588b
10.1063/1.4919686
10.1021/acs.jpcb.5b08070
10.1021/jp201641h
10.1016/j.saa.2004.11.028
10.1146/annurev.physchem.47.1.109
10.1039/C7CP02442H
10.1063/1.5111016
10.1016/j.bpj.2018.08.044
10.1021/jz400954r
10.1063/1.4921574
10.1073/pnas.1117704109
10.1063/1.1407842
10.1021/acs.jpclett.5b00004
10.1021/jp050257p
10.1021/acs.jctc.7b01075
10.1021/jp034835i
10.1063/1.1683072
10.1063/1.462100
10.1021/ct400292q
10.1146/annurev-physchem-040412-110138
10.1021/acs.jctc.5b00099
10.1073/pnas.0931292100
10.1063/1.3516460
10.1039/C9CP06808B
10.1021/jp504267h
10.1039/P29930000799
10.1063/1.1370960
10.1063/1.2904558
10.1002/anie.201603676
10.1021/jp9035452
10.1074/jbc.275.12.8492
10.1021/jp211792j
10.1063/1.475888
10.1063/1.3665417
10.1021/acs.jpclett.7b03314
10.1021/ja307898g
10.1002/anie.201704162
10.1021/acs.jpcb.8b08368
10.1039/C8CP00846A
10.1038/nature03383
10.1063/1.1730999
10.1021/jp9045512
10.1073/pnas.1100587108
10.1093/oso/9780198558842.001.0001
10.1063/1.4932983
10.1021/acs.jpcb.5b06541
10.1063/1.3615717
10.1021/jp049365m
10.1063/1.3655671
10.1063/1.3560104
10.1021/jp109742p
10.1063/1.1314351
10.1063/1.445721
10.1021/jp020837b
10.1063/1.2844787
10.1063/1.2218516
10.1146/annurev-physchem-040412-110031
10.1063/1.4915271
10.1063/1.1961472
10.1021/acs.jctc.6b00420
10.1073/pnas.0607758104
10.1063/1.461939
10.1063/1.1791632
10.1021/acs.biochem.8b00283
10.1063/1.5111046
10.1021/jp992329g
10.1021/jp3059239
10.1021/cr078377b
10.1063/1.475462
10.1073/pnas.0504865102
10.1016/S0301-0104(01)00224-5
10.1146/annurev-physchem-052516-050602
10.1002/chem.201402189
10.1063/1.4916522
10.1021/ja104573b
10.1021/j100043a018
10.1039/b910269h
10.1016/S0009-2614(98)01140-3
10.1002/qua.20543
10.5012/bkcs.2003.24.8.1061
10.1021/jp0674874
10.1002/cphc.200400243
10.1002/jcc.540160613
10.1063/1.4747828
10.1073/pnas.1317459110
10.1016/j.cplett.2005.02.007
10.1109/72.914517
10.1021/jp040642z
10.1039/C5CP08008H
10.1063/1.465484
10.1063/1.481014
10.1063/1.4923462
10.1016/j.chemphys.2009.05.016
10.1002/cphc.201402251
10.1063/1.4827018
10.1063/1.2919050
10.1016/j.cplett.2009.01.010
10.1016/j.bpj.2018.05.003
10.1039/C8CP05399E
10.1007/978-981-13-9753-0
10.1021/ja503107h
10.1103/PhysRevLett.87.027401
10.1063/1.4962755
10.1021/jp900480r
10.1021/jp035473h
10.1021/acs.jpcb.5b04499
10.1021/jp104822e
10.1021/ja9101776
10.1016/j.bpj.2014.12.061
10.1063/1.1559681
10.1063/1.1749489
10.1021/acs.jpca.8b00276
10.1063/1.4798938
10.1021/jp0310697
10.1021/acs.jpclett.7b02623
10.1063/1.3012568
10.1021/acs.jpca.7b05836
10.1021/jz200980g
10.1021/jz400683v
10.1021/jp013104k
10.1039/C6CP01578F
10.1021/jp105527n
10.1021/acs.jpcc.6b08607
10.1063/1.4934667
10.1021/acs.jctc.5b01168
10.1039/C4CP00233D
10.1146/annurev-physchem-040215-112055
10.1021/jp802039e
10.1063/1.462285
10.1063/1.477756
10.1021/jp501631m
10.1021/acs.jpcb.7b00345
10.1063/1.5129464
10.1016/j.cplett.2007.02.033
10.1021/ja303895k
10.1039/ft9928801755
10.1021/jp046912v
10.1002/anie.201812995
10.1063/1.3001915
10.1063/1.1525802
10.1063/1.3613623
10.1529/biophysj.105.061689
10.1021/ja3084384
10.1021/ja3074962
10.1021/ja8007165
10.1021/acs.jpcb.8b01445
10.1021/jp064795t
10.1021/acs.jpclett.5b01973
10.1021/acs.jpca.6b06607
10.1021/jp9105844
10.1051/jphysrad:0193800908031900
10.1073/pnas.131549798
10.1021/acs.analchem.6b01520
10.1002/jrs.1303
10.1063/1.480772
10.1111/j.2042-7158.1969.tb08235.x
10.1021/jacs.7b08830
10.1021/ja807572f
10.1016/j.cplett.2017.03.008
10.1021/jz3014776
10.1063/1.2806179
10.1039/ft9969201701
10.1063/1.2213258
10.1021/acs.jpca.6b11962
10.1021/ja075605a
10.1063/1.4895546
10.1017/CBO9780511675935
10.1021/acs.jpcb.9b04633
10.1063/1.1877272
10.1063/1.4958967
10.1021/jp402772x
10.1021/jp062597w
10.1038/2201315a0
10.1021/acs.jpclett.9b02157
10.1016/j.molliq.2019.04.008
10.1063/1.1749393
10.1021/jp075683k
10.1021/ja020213j
10.1021/jp9813286
10.1021/acs.chemrev.6b00582
10.1021/jp200745r
10.1063/1.1506151
10.1021/j100139a007
10.1063/1.1763889
10.1021/acs.jpca.6b02887
10.1016/j.cplett.2006.04.051
10.1063/5.0005591
10.1021/acs.jpclett.8b00969
10.1021/acs.jpcc.6b08980
10.1021/jp9523985
10.1038/nchem.2642
10.1063/1.1536980
10.1073/pnas.1314481110
10.1039/C5CP04413H
10.1021/jp0344693
10.1063/1.3430518
10.1021/jacs.5b11999
10.1021/jp804900u
10.1063/1.4896536
10.1021/ja027610e
10.1016/j.cplett.2005.07.114
10.1063/1.3242083
10.1021/ja9926414
10.1063/1.4928637
10.1016/0009-2614(95)00389-L
10.1021/jp408064b
10.1063/1.479710
10.1021/jp960694r
10.1021/acs.jpcb.8b03887
10.1021/acs.jctc.7b00577
10.1063/1.1633549
10.1021/ar500464j
10.1021/ja065179d
10.1073/pnas.0700560104
10.1038/432823a
10.1039/b110898k
10.1063/1.479711
10.1021/jz301780k
10.1063/1.1883605
10.1073/pnas.0701482104
10.1063/1.2715602
10.1016/j.str.2008.12.015
10.1039/C7CP05096H
10.1021/ja0400685
10.1021/acs.chemrev.6b00625
10.1039/df9654000007
10.1063/1.481634
10.1039/C5CP07264F
10.1021/ja037998t
10.1021/jp8054119
10.1063/1.5053466
10.1016/j.cplett.2006.01.081
10.1021/ja00460a031
10.1063/1.4917467
10.1063/1.479709
10.1021/acs.jpcb.8b05221
10.1063/1.4951011
10.1063/1.2925258
10.1021/jp951752w
10.1063/1.1839175
10.1021/jp908695g
10.1039/C7CP90063E
10.1021/bi00295a043
10.1063/1.1750343
10.1021/jp906784t
10.1021/acs.jpcb.9b02026
10.1021/acs.jpcb.6b02732
10.1021/acs.jctc.9b00698
10.1073/pnas.0901571106
10.1063/1.2969900
10.1021/ja205636h
10.1021/acs.jpcb.7b10574
10.1063/1.1581855
10.1002/(SICI)1097-4555(199801)29:1<81::AID-JRS214>3.0.CO;2-H
10.1246/bcsj.75.985
10.1021/acs.analchem.8b03813
10.1021/cr9904009
10.1021/jp300835k
10.1002/anie.196901771
10.1021/jp109431a
10.1021/ja0033741
10.1016/j.softx.2015.06.001
10.1063/1.4919716
10.1021/jp050409g
10.1063/1.2213259
10.1073/pnas.0700959104
10.1021/jp0603334
ContentType Journal Article
Copyright Copyright American Chemical Society Aug 12, 2020
Copyright_xml – notice: Copyright American Chemical Society Aug 12, 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1021/acs.chemrev.9b00813
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Materials Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
EndPage 7218
ExternalDocumentID oai:nottingham-repository.worktribe.com:4744462
PMC7710120
32598850
10_1021_acs_chemrev_9b00813
e14609012
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM130697
– fundername: NIGMS NIH HHS
  grantid: R35 GM133359
– fundername: NIGMS NIH HHS
  grantid: R01 GM114500
GroupedDBID -
.K2
02
1AW
29B
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DU5
DZ
EBS
ED
ED~
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-~X
.DC
4.4
53G
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
~02
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
5PM
.GJ
.HR
186
1WB
3EH
6TJ
AAUTI
ABFSI
ABHMW
ACPVT
ACRPL
ADNMO
ADTOC
ADXHL
AETEA
AEYZD
AFFDN
AGNAY
AGQPQ
AI.
AIDAL
ANPPW
ANTXH
E.L
EJD
MVM
NHB
OHT
RNS
UBC
UHB
UNPAY
UQL
VH1
YQJ
YR5
YXE
YYP
ZCG
ZY4
ID FETCH-LOGICAL-a572t-a8fc211a9d039aaf2a8cedf353f53de1fa43668e92c90616c09bb0d10062a59c3
IEDL.DBID ACS
ISSN 0009-2665
1520-6890
IngestDate Sun Oct 26 04:04:59 EDT 2025
Tue Sep 30 15:00:23 EDT 2025
Fri Jul 11 08:45:24 EDT 2025
Fri Jul 11 13:10:27 EDT 2025
Mon Jun 30 08:32:16 EDT 2025
Mon Jul 21 06:00:19 EDT 2025
Tue Jul 01 03:16:19 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Thu Aug 27 13:41:55 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a572t-a8fc211a9d039aaf2a8cedf353f53de1fa43668e92c90616c09bb0d10062a59c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5257-559X
0000-0003-4982-4820
0000-0003-1152-4734
0000-0002-4680-2362
0000-0001-5237-5566
0000-0002-4006-9489
0000-0001-6939-9759
0000-0001-9999-5500
0000-0003-1929-9092
0000-0002-4520-6673
0000-0001-6451-4447
0000-0002-3302-3044
0000-0002-2726-0983
0000-0001-7191-9768
0000-0001-6991-8205
0000-0002-2434-8744
0000-0003-0699-8468
0000-0001-6199-8773
0000-0003-1618-1056
0000-0003-1968-3465
0000-0001-6066-6080
0000-0001-6230-1835
0000-0002-6709-297X
0000-0002-6061-9599
0000-0003-0782-4486
0000-0003-2298-4736
OpenAccessLink https://proxy.k.utb.cz/login?url=https://nottingham-repository.worktribe.com/output/4744462
PMID 32598850
PQID 2435842404
PQPubID 45407
PageCount 67
ParticipantIDs unpaywall_primary_10_1021_acs_chemrev_9b00813
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7710120
proquest_miscellaneous_2574364868
proquest_miscellaneous_2419095697
proquest_journals_2435842404
pubmed_primary_32598850
crossref_primary_10_1021_acs_chemrev_9b00813
crossref_citationtrail_10_1021_acs_chemrev_9b00813
acs_journals_10_1021_acs_chemrev_9b00813
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-12
PublicationDateYYYYMMDD 2020-08-12
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem. Rev
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref332/cit332
ref476/cit476
ref406/cit406
ref472/cit472
ref402/cit402
ref185/cit185
ref23/cit23
ref115/cit115
ref259/cit259
ref181/cit181
ref111/cit111
ref255/cit255
ref399/cit399
ref329/cit329
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref93/cit93
ref251/cit251
ref325/cit325
ref483/cit483
ref42/cit42
ref321/cit321
ref178/cit178
ref122/cit122
ref248/cit248
Case D. A. (ref214/cit214) 2018
Mukamel S. (ref3/cit3) 1995
ref61/cit61
ref126/cit126
ref240/cit240
ref384/cit384
ref458/cit458
ref137/cit137
ref380/cit380
ref310/cit310
ref454/cit454
ref318/cit318
ref174/cit174
ref314/cit314
Cho M. (ref70/cit70) 2019
ref170/cit170
ref244/cit244
ref388/cit388
Wüthrich K. (ref72/cit72) 1991
ref80/cit80
ref133/cit133
ref207/cit207
ref450/cit450
ref28/cit28
ref524/cit524
ref203/cit203
ref461/cit461
ref233/cit233
Price K. V. (ref520/cit520) 2005
ref148/cit148
ref307/cit307
ref391/cit391
ref55/cit55
ref144/cit144
ref303/cit303
ref218/cit218
ref395/cit395
ref469/cit469
ref167/cit167
ref465/cit465
ref163/cit163
ref237/cit237
Krizhevsky A. (ref526/cit526) 2012
ref66/cit66
Torii H. (ref249/cit249) 1996
ref87/cit87
ref140/cit140
ref98/cit98
ref210/cit210
ref369/cit369
ref222/cit222
ref366/cit366
ref295/cit295
ref155/cit155
ref229/cit229
ref156/cit156
ref85/cit85
ref501/cit501
ref509/cit509
ref34/cit34
ref221/cit221
ref292/cit292
ref432/cit432
ref506/cit506
ref361/cit361
ref435/cit435
ref17/cit17
ref219/cit219
ref82/cit82
ref232/cit232
ref306/cit306
ref377/cit377
ref145/cit145
Rasmussen C. E. (ref521/cit521) 2006
ref21/cit21
ref166/cit166
ref350/cit350
ref424/cit424
ref491/cit491
ref284/cit284
ref443/cit443
ref358/cit358
ref499/cit499
ref211/cit211
ref36/cit36
ref79/cit79
ref243/cit243
ref317/cit317
ref270/cit270
ref200/cit200
ref344/cit344
ref418/cit418
ref57/cit57
ref413/cit413
ref278/cit278
ref134/cit134
ref208/cit208
ref40/cit40
ref273/cit273
ref347/cit347
ref320/cit320
ref289/cit289
Herzberg G. (ref1/cit1) 1950
ref15/cit15
ref180/cit180
ref494/cit494
ref58/cit58
ref104/cit104
ref262/cit262
ref421/cit421
ref177/cit177
ref336/cit336
ref123/cit123
ref196/cit196
ref281/cit281
ref355/cit355
ref7/cit7
ref429/cit429
ref45/cit45
ref405/cit405
ref477/cit477
ref471/cit471
ref401/cit401
ref258/cit258
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref328/cit328
ref112/cit112
ref390/cit390
ref89/cit89
ref460/cit460
ref412/cit412
ref96/cit96
ref466/cit466
ref394/cit394
ref191/cit191
ref339/cit339
ref13/cit13
ref193/cit193
ref407/cit407
ref105/cit105
ref335/cit335
ref263/cit263
ref197/cit197
ref38/cit38
ref90/cit90
ref269/cit269
ref383/cit383
ref6/cit6
Buckingham A. D. (ref146/cit146) 1960; 255
ref171/cit171
ref97/cit97
ref101/cit101
ref319/cit319
ref241/cit241
ref488/cit488
ref39/cit39
ref346/cit346
ref416/cit416
ref132/cit132
ref91/cit91
ref372/cit372
Mitchell T. (ref527/cit527) 1997
ref252/cit252
ref12/cit12
ref423/cit423
ref121/cit121
ref175/cit175
ref357/cit357
ref516/cit516
ref44/cit44
ref427/cit427
ref9/cit9
ref225/cit225
ref296/cit296
ref226/cit226
ref154/cit154
ref439/cit439
ref367/cit367
ref159/cit159
ref92/cit92
ref504/cit504
ref505/cit505
ref290/cit290
ref220/cit220
ref291/cit291
ref438/cit438
ref433/cit433
ref88/cit88
ref362/cit362
ref449/cit449
ref160/cit160
ref143/cit143
ref302/cit302
ref373/cit373
ref53/cit53
Murphy K. P. (ref528/cit528) 2012
ref149/cit149
ref308/cit308
ref46/cit46
ref236/cit236
Longuet-Higgins H. C. (ref60/cit60) 1956; 235
Cho M. (ref26/cit26) 1999; 12
ref49/cit49
ref422/cit422
ref493/cit493
ref356/cit356
ref515/cit515
ref215/cit215
ref280/cit280
ref428/cit428
ref50/cit50
ref455/cit455
ref313/cit313
ref209/cit209
ref138/cit138
ref100/cit100
ref389/cit389
ref242/cit242
ref487/cit487
ref417/cit417
ref340/cit340
ref51/cit51
ref94/cit94
ref274/cit274
ref204/cit204
ref378/cit378
ref231/cit231
ref165/cit165
ref324/cit324
ref482/cit482
ref95/cit95
ref192/cit192
ref351/cit351
ref510/cit510
ref47/cit47
ref127/cit127
ref285/cit285
ref444/cit444
ref498/cit498
ref99/cit99
ref470/cit470
ref81/cit81
ref330/cit330
ref474/cit474
ref404/cit404
ref16/cit16
ref400/cit400
Hamm P. (ref5/cit5) 2011
ref187/cit187
ref327/cit327
ref113/cit113
ref183/cit183
ref257/cit257
ref117/cit117
ref48/cit48
ref35/cit35
Ernst R. R. (ref71/cit71) 1987
ref481/cit481
ref253/cit253
ref323/cit323
ref120/cit120
Gowers R. J. (ref212/cit212) 2016
ref478/cit478
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref54/cit54
ref11/cit11
ref102/cit102
ref29/cit29
ref86/cit86
ref271/cit271
ref345/cit345
ref489/cit489
ref419/cit419
ref341/cit341
ref485/cit485
ref415/cit415
ref43/cit43
ref279/cit279
ref275/cit275
ref349/cit349
Mantsch H. H. (ref247/cit247) 1986; 13
Li Y. (ref517/cit517) 2015
ref411/cit411
ref264/cit264
ref338/cit338
ref22/cit22
ref496/cit496
ref260/cit260
ref334/cit334
ref408/cit408
ref492/cit492
ref106/cit106
ref190/cit190
ref198/cit198
ref194/cit194
ref268/cit268
ref153/cit153
ref297/cit297
ref227/cit227
ref150/cit150
ref294/cit294
ref368/cit368
ref224/cit224
ref56/cit56
ref158/cit158
ref503/cit503
ref8/cit8
ref59/cit59
ref500/cit500
ref363/cit363
ref437/cit437
ref37/cit37
ref360/cit360
ref434/cit434
ref508/cit508
ref147/cit147
ref519/cit519
ref230/cit230
ref304/cit304
ref238/cit238
ref379/cit379
ref164/cit164
ref352/cit352
ref511/cit511
Krimm S. (ref139/cit139) 1986; 38
ref213/cit213
ref286/cit286
ref371/cit371
ref445/cit445
ref426/cit426
ref497/cit497
ref78/cit78
ref382/cit382
ref312/cit312
ref456/cit456
ref525/cit525
ref83/cit83
ref172/cit172
ref246/cit246
ref385/cit385
ref459/cit459
ref14/cit14
ref169/cit169
ref486/cit486
ref522/cit522
ref451/cit451
ref131/cit131
ref205/cit205
ref161/cit161
ref142/cit142
ref216/cit216
ref301/cit301
ref374/cit374
ref448/cit448
Gordon M. S. (ref63/cit63) 2007; 3
ref235/cit235
ref309/cit309
ref62/cit62
ref393/cit393
ref467/cit467
ref41/cit41
ref84/cit84
ref440/cit440
ref514/cit514
ref331/cit331
ref475/cit475
ref333/cit333
ref473/cit473
ref403/cit403
ref184/cit184
ref114/cit114
ref254/cit254
ref398/cit398
ref256/cit256
ref77/cit77
ref188/cit188
ref20/cit20
ref118/cit118
ref462/cit462
ref464/cit464
ref19/cit19
ref410/cit410
ref468/cit468
ref396/cit396
ref392/cit392
ref107/cit107
ref337/cit337
ref265/cit265
ref109/cit109
ref261/cit261
ref409/cit409
Cho M. (ref4/cit4) 2009
ref199/cit199
ref267/cit267
ref195/cit195
ref64/cit64
ref311/cit311
ref457/cit457
ref18/cit18
ref136/cit136
ref453/cit453
ref65/cit65
ref245/cit245
Taillandier E. (ref480/cit480) 1992; 211
ref315/cit315
ref76/cit76
ref387/cit387
ref32/cit32
ref272/cit272
ref202/cit202
ref168/cit168
ref484/cit484
ref342/cit342
ref206/cit206
ref523/cit523
ref276/cit276
ref376/cit376
ref287/cit287
ref446/cit446
ref326/cit326
ref322/cit322
ref179/cit179
ref33/cit33
ref283/cit283
ref442/cit442
ref129/cit129
ref353/cit353
ref512/cit512
ref125/cit125
ref152/cit152
ref298/cit298
ref27/cit27
ref228/cit228
ref299/cit299
ref293/cit293
ref223/cit223
ref151/cit151
Herzberg G. (ref2/cit2) 1956
ref157/cit157
ref502/cit502
ref430/cit430
ref431/cit431
ref31/cit31
ref436/cit436
ref364/cit364
ref365/cit365
ref507/cit507
ref234/cit234
ref217/cit217
ref288/cit288
ref447/cit447
ref375/cit375
ref162/cit162
ref495/cit495
ref420/cit420
ref75/cit75
ref24/cit24
ref141/cit141
ref300/cit300
ref354/cit354
ref513/cit513
ref282/cit282
ref441/cit441
ref529/cit529
ref452/cit452
ref381/cit381
ref25/cit25
ref173/cit173
ref103/cit103
ref386/cit386
ref316/cit316
ref343/cit343
ref201/cit201
ref414/cit414
ref277/cit277
ref135/cit135
ref68/cit68
ref130/cit130
ref348/cit348
ref305/cit305
ref463/cit463
ref73/cit73
ref69/cit69
Stone A. J. (ref52/cit52) 1996
ref239/cit239
ref397/cit397
ref250/cit250
ref108/cit108
ref266/cit266
ref425/cit425
ref490/cit490
ref479/cit479
ref30/cit30
ref370/cit370
ref359/cit359
ref518/cit518
34709802 - Chem Rev. 2021 Nov 10;121(21):13698
References_xml – ident: ref180/cit180
  doi: 10.1146/annurev.physchem.48.1.213
– ident: ref518/cit518
  doi: 10.1063/1.5120777
– ident: ref454/cit454
  doi: 10.1021/ja060851s
– ident: ref108/cit108
  doi: 10.1039/b817113k
– ident: ref445/cit445
  doi: 10.1021/jp070852m
– ident: ref240/cit240
  doi: 10.1021/jp301095v
– ident: ref119/cit119
  doi: 10.1063/1.4985665
– ident: ref471/cit471
  doi: 10.1021/acs.jpclett.8b03568
– ident: ref311/cit311
  doi: 10.1021/jp104017h
– ident: ref328/cit328
  doi: 10.1023/A:1022573825058
– ident: ref439/cit439
  doi: 10.1021/ja0779607
– ident: ref442/cit442
  doi: 10.1021/jacs.6b03916
– ident: ref40/cit40
  doi: 10.1021/acs.accounts.7b00002
– ident: ref255/cit255
  doi: 10.1073/pnas.1401587111
– ident: ref449/cit449
  doi: 10.1021/ja900505e
– ident: ref37/cit37
  doi: 10.1002/anie.201503155
– ident: ref190/cit190
  doi: 10.1021/jp201591c
– ident: ref6/cit6
  doi: 10.1146/annurev.physchem.51.1.691
– ident: ref169/cit169
  doi: 10.1021/ja00418a009
– ident: ref258/cit258
  doi: 10.1016/j.molstruc.2004.10.082
– ident: ref508/cit508
  doi: 10.1039/c0cp02138e
– ident: ref283/cit283
  doi: 10.1039/c2an16031e
– ident: ref305/cit305
  doi: 10.1016/j.bbamem.2012.11.020
– ident: ref287/cit287
  doi: 10.1063/1.4894507
– ident: ref174/cit174
  doi: 10.1021/jp011724f
– ident: ref186/cit186
  doi: 10.1039/C1CC13186A
– ident: ref245/cit245
  doi: 10.1002/bip.360250307
– ident: ref350/cit350
  doi: 10.1021/jp206986v
– ident: ref242/cit242
  doi: 10.1021/ja01464a042
– ident: ref157/cit157
  doi: 10.1021/ct100730a
– ident: ref265/cit265
  doi: 10.1021/jp5012445
– ident: ref529/cit529
  doi: 10.1039/C7SC02267K
– ident: ref77/cit77
  doi: 10.1021/jp5091679
– ident: ref326/cit326
  doi: 10.1016/j.molliq.2008.02.013
– ident: ref489/cit489
  doi: 10.1021/jp204245z
– ident: ref34/cit34
  doi: 10.1103/PhysRevLett.86.1566
– ident: ref289/cit289
  doi: 10.1063/1.4934234
– ident: ref310/cit310
  doi: 10.1021/ja3039486
– ident: ref231/cit231
  doi: 10.1063/1.2148409
– ident: ref430/cit430
  doi: 10.1063/1.3454733
– ident: ref75/cit75
  doi: 10.1073/pnas.1211968110
– ident: ref142/cit142
  doi: 10.1002/qua.560100211
– ident: ref421/cit421
  doi: 10.1063/1.4802991
– volume-title: Principles of Nonlinear Optical Spectroscopy
  year: 1995
  ident: ref3/cit3
– ident: ref387/cit387
  doi: 10.1016/j.chemphys.2007.06.043
– ident: ref496/cit496
  doi: 10.1016/j.cplett.2010.12.001
– ident: ref243/cit243
  doi: 10.1021/ar700188n
– ident: ref306/cit306
  doi: 10.1021/jz501055d
– ident: ref314/cit314
  doi: 10.1002/bip.1976.360151210
– ident: ref253/cit253
  doi: 10.1021/ja00103a033
– ident: ref502/cit502
  doi: 10.1021/jp510157y
– ident: ref185/cit185
  doi: 10.1063/1.4816041
– ident: ref318/cit318
  doi: 10.1063/1.2961020
– ident: ref143/cit143
  doi: 10.1063/1.4872040
– ident: ref51/cit51
  doi: 10.1002/anie.201402011
– ident: ref38/cit38
  doi: 10.1021/cr3005185
– ident: ref238/cit238
  doi: 10.1021/acs.jpcb.7b10791
– ident: ref267/cit267
  doi: 10.1021/acs.jpcb.6b08678
– ident: ref216/cit216
  doi: 10.1021/jp901504r
– ident: ref429/cit429
  doi: 10.1063/1.2771178
– ident: ref428/cit428
  doi: 10.1039/c1cp22235j
– ident: ref85/cit85
  doi: 10.1021/ja8094922
– ident: ref189/cit189
  doi: 10.1063/1.475389
– ident: ref504/cit504
  doi: 10.1021/acs.jpclett.9b00291
– ident: ref466/cit466
  doi: 10.1002/anie.200905693
– ident: ref377/cit377
  doi: 10.1039/C8CP03315C
– ident: ref467/cit467
  doi: 10.1021/ja2042589
– ident: ref205/cit205
  doi: 10.1080/00268979609482543
– ident: ref481/cit481
  doi: 10.1016/S0301-4622(03)00035-8
– ident: ref324/cit324
  doi: 10.1021/ja067723o
– ident: ref372/cit372
  doi: 10.1021/cr500003w
– ident: ref122/cit122
  doi: 10.1063/1.3120771
– ident: ref225/cit225
  doi: 10.1080/00268970500052387
– volume-title: Molecular Spectra and Molecular Structure II: Infrared and Raman of Polyatomic Molecules
  year: 1956
  ident: ref2/cit2
– ident: ref493/cit493
  doi: 10.1016/0584-8539(91)80277-P
– ident: ref336/cit336
  doi: 10.1021/acs.jpcb.8b03870
– ident: ref78/cit78
  doi: 10.1021/jp9045879
– ident: ref49/cit49
  doi: 10.1016/j.chemphys.2018.03.012
– ident: ref135/cit135
  doi: 10.1016/0301-0104(76)87050-4
– ident: ref383/cit383
  doi: 10.1021/jp036266k
– volume-title: Principles of Nuclear Magnetic Resonance in One and Two Dimensions
  year: 1987
  ident: ref71/cit71
– ident: ref103/cit103
  doi: 10.1073/pnas.1116289109
– ident: ref519/cit519
  doi: 10.1023/A:1008202821328
– ident: ref309/cit309
  doi: 10.1038/nchem.1293
– ident: ref337/cit337
  doi: 10.1016/j.chemphys.2017.08.002
– ident: ref503/cit503
  doi: 10.1063/1.4995437
– ident: ref147/cit147
  doi: 10.1063/1.1536979
– ident: ref400/cit400
  doi: 10.1073/pnas.1222017110
– volume-title: Two-Dimensional Optical Spectroscopy
  year: 2009
  ident: ref4/cit4
  doi: 10.1201/9781420084306
– ident: ref473/cit473
  doi: 10.1093/nar/gkh242
– volume-title: Amber 2018
  year: 2018
  ident: ref214/cit214
– ident: ref355/cit355
  doi: 10.1002/anie.201003325
– ident: ref150/cit150
  doi: 10.1021/ja0543651
– ident: ref199/cit199
  doi: 10.1021/jp401642b
– ident: ref368/cit368
– ident: ref221/cit221
  doi: 10.1063/1.1622384
– ident: ref65/cit65
  doi: 10.1021/cr200093j
– ident: ref211/cit211
  doi: 10.1002/jcc.21787
– ident: ref312/cit312
  doi: 10.1021/ja204035k
– ident: ref510/cit510
  doi: 10.1021/jp109357d
– ident: ref104/cit104
  doi: 10.1126/science.1087251
– ident: ref300/cit300
  doi: 10.1016/j.cbpa.2006.08.013
– ident: ref96/cit96
  doi: 10.1021/jacs.6b05854
– ident: ref301/cit301
  doi: 10.1016/j.cplett.2003.10.111
– ident: ref327/cit327
  doi: 10.1021/jp070369b
– ident: ref482/cit482
  doi: 10.1021/ar900006u
– ident: ref117/cit117
  doi: 10.1021/jp0624808
– ident: ref188/cit188
  doi: 10.1063/1.4751477
– ident: ref149/cit149
  doi: 10.1080/00268970512331317336
– ident: ref485/cit485
  doi: 10.1139/v84-242
– ident: ref273/cit273
  doi: 10.1021/jp055813u
– volume-title: Molecular Spectra and Molecular Structure I: Spectra of Diatomic Molecules
  year: 1950
  ident: ref1/cit1
– ident: ref418/cit418
  doi: 10.1063/1.3654005
– ident: ref420/cit420
  doi: 10.1021/jp062033s
– ident: ref128/cit128
  doi: 10.1063/1.4993952
– ident: ref194/cit194
  doi: 10.1002/cphc.200500047
– ident: ref365/cit365
  doi: 10.1021/acs.jchemed.5b01014
– ident: ref144/cit144
  doi: 10.1063/1.2196884
– ident: ref416/cit416
  doi: 10.1063/1.2766943
– ident: ref408/cit408
  doi: 10.1021/jp405853j
– ident: ref121/cit121
  doi: 10.1021/ct300045c
– ident: ref152/cit152
  doi: 10.1016/j.cplett.2008.06.060
– ident: ref358/cit358
  doi: 10.1529/biophysj.106.098442
– ident: ref57/cit57
  doi: 10.1063/1.452037
– ident: ref197/cit197
  doi: 10.1039/c0cp00214c
– ident: ref402/cit402
  doi: 10.1063/1.4746157
– ident: ref141/cit141
  doi: 10.1021/cr00031a008
– ident: ref331/cit331
  doi: 10.1021/acs.jpcb.5b11643
– ident: ref524/cit524
  doi: 10.1063/1.3553717
– ident: ref48/cit48
  doi: 10.1039/C4CP01498G
– ident: ref353/cit353
  doi: 10.1007/s10582-003-0101-0
– ident: ref62/cit62
  doi: 10.1039/tf9605600753
– ident: ref91/cit91
  doi: 10.1021/jp049893y
– ident: ref134/cit134
  doi: 10.1021/ja01299a050
– ident: ref268/cit268
  doi: 10.1063/1.4722584
– ident: ref398/cit398
  doi: 10.1021/jp806644x
– ident: ref140/cit140
  doi: 10.1021/cr00088a004
– ident: ref285/cit285
  doi: 10.1021/acs.jpclett.7b00731
– ident: ref476/cit476
  doi: 10.1063/1.2213257
– ident: ref164/cit164
  doi: 10.1021/ja983878n
– ident: ref233/cit233
  doi: 10.1021/jp807528q
– ident: ref348/cit348
  doi: 10.1063/1.4984766
– ident: ref388/cit388
  doi: 10.1063/1.1803532
– ident: ref308/cit308
  doi: 10.1073/pnas.0805957106
– ident: ref294/cit294
  doi: 10.1063/1.4947213
– ident: ref333/cit333
  doi: 10.1021/jp5115288
– ident: ref433/cit433
  doi: 10.1063/1.4918644
– ident: ref290/cit290
  doi: 10.1063/1.4944743
– ident: ref299/cit299
  doi: 10.1021/ja00018a052
– ident: ref184/cit184
  doi: 10.1021/acs.jpcb.8b03907
– ident: ref215/cit215
  doi: 10.1002/jcc.20289
– ident: ref270/cit270
  doi: 10.1073/pnas.72.12.4933
– ident: ref279/cit279
  doi: 10.1002/bip.360221211
– ident: ref208/cit208
  doi: 10.1039/b907260h
– ident: ref394/cit394
  doi: 10.1038/nature10173
– ident: ref382/cit382
  doi: 10.1016/S0009-2614(02)02001-8
– ident: ref514/cit514
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: ref371/cit371
  doi: 10.1063/1.5055041
– ident: ref86/cit86
  doi: 10.1073/pnas.0508833103
– ident: ref443/cit443
  doi: 10.1021/acs.jpcb.9b07036
– ident: ref109/cit109
  doi: 10.1103/PhysRevA.28.3480
– ident: ref455/cit455
  doi: 10.1002/bip.21250
– ident: ref423/cit423
  doi: 10.1063/1.4964723
– volume: 38
  volume-title: Adv. Protein Chem.
  year: 1986
  ident: ref139/cit139
– ident: ref434/cit434
  doi: 10.1063/1.4897265
– ident: ref175/cit175
  doi: 10.1021/jp002242r
– ident: ref431/cit431
  doi: 10.1039/c2cp23710e
– ident: ref357/cit357
  doi: 10.1038/nsb0397-209
– ident: ref494/cit494
  doi: 10.1021/jp003455j
– ident: ref391/cit391
  doi: 10.1063/1.3139003
– ident: ref406/cit406
  doi: 10.1063/1.4895968
– ident: ref447/cit447
  doi: 10.1063/1.3100185
– ident: ref88/cit88
  doi: 10.1021/acs.jpcb.8b12157
– ident: ref210/cit210
  doi: 10.1002/jcc.21865
– ident: ref113/cit113
  doi: 10.1021/jp500733s
– ident: ref163/cit163
  doi: 10.1016/S0010-8545(00)82094-9
– ident: ref452/cit452
  doi: 10.1021/ja064468z
– ident: ref360/cit360
  doi: 10.1021/jp405210s
– ident: ref453/cit453
  doi: 10.1021/ja049890z
– ident: ref269/cit269
  doi: 10.1063/1.1898215
– ident: ref177/cit177
  doi: 10.1021/bi0352926
– ident: ref137/cit137
  doi: 10.1016/0301-0104(81)85090-2
– ident: ref19/cit19
  doi: 10.1021/acs.jpclett.5b00356
– ident: ref32/cit32
  doi: 10.1063/1.481684
– ident: ref446/cit446
  doi: 10.1021/jp710136c
– ident: ref156/cit156
  doi: 10.1021/acs.jpcb.6b04319
– ident: ref470/cit470
  doi: 10.1021/ja00879a012
– ident: ref373/cit373
  doi: 10.1038/ncomms14658
– volume-title: Proceedings of the 15th Python in Science Conference
  year: 2016
  ident: ref212/cit212
– ident: ref251/cit251
  doi: 10.1002/jrs.757
– ident: ref284/cit284
  doi: 10.1073/pnas.0408037102
– ident: ref11/cit11
  doi: 10.1021/j100064a033
– ident: ref325/cit325
  doi: 10.1021/acs.jpclett.8b03468
– ident: ref296/cit296
  doi: 10.1063/1.5083186
– volume-title: Machine Learning
  year: 1997
  ident: ref527/cit527
– ident: ref227/cit227
  doi: 10.1021/jp046685x
– ident: ref275/cit275
  doi: 10.1073/pnas.2533089100
– ident: ref323/cit323
  doi: 10.1021/jp402942s
– ident: ref73/cit73
  doi: 10.1021/jp034727w
– ident: ref23/cit23
  doi: 10.1038/nchem.1158
– ident: ref460/cit460
  doi: 10.1063/1.3482708
– ident: ref516/cit516
  doi: 10.1007/s10822-016-9938-8
– ident: ref436/cit436
  doi: 10.1021/jacs.5b12370
– ident: ref297/cit297
  doi: 10.1021/acs.jctc.5b01198
– ident: ref145/cit145
  doi: 10.1098/rspa.1958.0237
– ident: ref356/cit356
  doi: 10.1021/jp0203043
– ident: ref254/cit254
  doi: 10.1073/pnas.96.5.2036
– ident: ref298/cit298
  doi: 10.1063/1.3077690
– ident: ref178/cit178
  doi: 10.1021/jp301054e
– ident: ref53/cit53
  doi: 10.1039/qr9591300183
– ident: ref129/cit129
  doi: 10.1016/j.chemphys.2007.10.034
– ident: ref219/cit219
  doi: 10.1063/1.1580807
– ident: ref21/cit21
  doi: 10.1073/pnas.1409207111
– ident: ref110/cit110
  doi: 10.1063/1.5083966
– ident: ref202/cit202
  doi: 10.1002/jcc.540100209
– volume-title: NMR of Proteins and Nucleic Acids
  year: 1991
  ident: ref72/cit72
– ident: ref248/cit248
  doi: 10.1021/bi00053a001
– ident: ref427/cit427
  doi: 10.1021/jp061065c
– ident: ref87/cit87
  doi: 10.1039/C8CP06146G
– ident: ref24/cit24
  doi: 10.1021/jacs.6b02171
– ident: ref385/cit385
  doi: 10.1021/jp026419o
– ident: ref250/cit250
  doi: 10.1016/j.bbabio.2007.06.004
– ident: ref257/cit257
  doi: 10.1021/jp060014c
– ident: ref293/cit293
  doi: 10.1021/acs.jpclett.6b01451
– ident: ref343/cit343
  doi: 10.1021/acs.analchem.9b03997
– ident: ref417/cit417
  doi: 10.1039/B918314K
– ident: ref359/cit359
  doi: 10.1063/1674-0068/30/cjcp1709169
– ident: ref234/cit234
  doi: 10.1063/1.3580776
– ident: ref39/cit39
  doi: 10.1146/annurev-physchem-040214-121802
– ident: ref523/cit523
  doi: 10.1103/PhysRevLett.98.146401
– ident: ref136/cit136
  doi: 10.1002/jcc.540161202
– ident: ref370/cit370
  doi: 10.1021/acs.langmuir.9b01693
– ident: ref459/cit459
  doi: 10.1039/p29740000268
– ident: ref69/cit69
  doi: 10.1063/1.2200690
– ident: ref415/cit415
  doi: 10.1021/jp0506540
– ident: ref440/cit440
  doi: 10.1002/anie.200806239
– ident: ref241/cit241
  doi: 10.1021/jp412827s
– ident: ref492/cit492
  doi: 10.1016/0584-8539(84)80027-6
– ident: ref148/cit148
  doi: 10.1063/1.3079609
– ident: ref116/cit116
  doi: 10.1063/1.2205367
– ident: ref281/cit281
  doi: 10.1063/1.2424711
– ident: ref352/cit352
  doi: 10.1002/anie.201209916
– ident: ref384/cit384
  doi: 10.1063/1.1818107
– ident: ref228/cit228
  doi: 10.1021/jp052324l
– ident: ref106/cit106
  doi: 10.1073/pnas.1103027108
– ident: ref339/cit339
  doi: 10.1021/jp0761158
– ident: ref170/cit170
  doi: 10.1021/ja00426a036
– ident: ref42/cit42
  doi: 10.1039/b908588b
– ident: ref20/cit20
  doi: 10.1063/1.4919686
– ident: ref332/cit332
  doi: 10.1021/acs.jpcb.5b08070
– volume: 12
  volume-title: Advances in Multi-Photon Processes and Spectroscopy
  year: 1999
  ident: ref26/cit26
– ident: ref505/cit505
  doi: 10.1021/jp201641h
– ident: ref151/cit151
  doi: 10.1016/j.saa.2004.11.028
– ident: ref123/cit123
  doi: 10.1146/annurev.physchem.47.1.109
– ident: ref168/cit168
  doi: 10.1039/C7CP02442H
– ident: ref511/cit511
  doi: 10.1063/1.5111016
– ident: ref364/cit364
  doi: 10.1016/j.bpj.2018.08.044
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: ref521/cit521
– ident: ref125/cit125
– ident: ref347/cit347
  doi: 10.1021/jz400954r
– ident: ref487/cit487
  doi: 10.1063/1.4921574
– ident: ref126/cit126
– ident: ref43/cit43
  doi: 10.1073/pnas.1117704109
– ident: ref90/cit90
  doi: 10.1063/1.1407842
– ident: ref237/cit237
  doi: 10.1021/acs.jpclett.5b00004
– ident: ref226/cit226
  doi: 10.1021/jp050257p
– ident: ref295/cit295
  doi: 10.1021/acs.jctc.7b01075
– ident: ref475/cit475
  doi: 10.1021/jp034835i
– ident: ref66/cit66
  doi: 10.1063/1.1683072
– ident: ref389/cit389
  doi: 10.1063/1.462100
– ident: ref413/cit413
  doi: 10.1021/ct400292q
– ident: ref9/cit9
  doi: 10.1146/annurev-physchem-040412-110138
– ident: ref522/cit522
  doi: 10.1021/acs.jctc.5b00099
– ident: ref320/cit320
  doi: 10.1073/pnas.0931292100
– ident: ref378/cit378
  doi: 10.1063/1.3516460
– ident: ref89/cit89
  doi: 10.1039/C9CP06808B
– ident: ref486/cit486
  doi: 10.1021/jp504267h
– ident: ref138/cit138
  doi: 10.1039/P29930000799
– ident: ref35/cit35
  doi: 10.1063/1.1370960
– ident: ref218/cit218
  doi: 10.1063/1.2904558
– ident: ref99/cit99
  doi: 10.1002/anie.201603676
– ident: ref195/cit195
  doi: 10.1021/jp9035452
– ident: ref462/cit462
  doi: 10.1074/jbc.275.12.8492
– ident: ref488/cit488
  doi: 10.1021/jp211792j
– ident: ref204/cit204
  doi: 10.1063/1.475888
– ident: ref235/cit235
  doi: 10.1063/1.3665417
– ident: ref98/cit98
  doi: 10.1021/acs.jpclett.7b03314
– ident: ref302/cit302
  doi: 10.1021/ja307898g
– ident: ref458/cit458
  doi: 10.1002/anie.201704162
– volume: 255
  start-page: 32
  year: 1960
  ident: ref146/cit146
  publication-title: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
– ident: ref50/cit50
  doi: 10.1021/acs.jpcb.8b08368
– ident: ref335/cit335
  doi: 10.1039/C8CP00846A
– ident: ref424/cit424
  doi: 10.1038/nature03383
– ident: ref246/cit246
  doi: 10.1063/1.1730999
– ident: ref263/cit263
  doi: 10.1021/jp9045512
– ident: ref84/cit84
  doi: 10.1073/pnas.1100587108
– volume-title: The Theory of Intermolecular Forces
  year: 1996
  ident: ref52/cit52
  doi: 10.1093/oso/9780198558842.001.0001
– ident: ref18/cit18
  doi: 10.1063/1.4932983
– ident: ref369/cit369
  doi: 10.1021/acs.jpcb.5b06541
– ident: ref404/cit404
  doi: 10.1063/1.3615717
– ident: ref153/cit153
  doi: 10.1021/jp049365m
– ident: ref403/cit403
  doi: 10.1063/1.3655671
– ident: ref422/cit422
  doi: 10.1063/1.3560104
– ident: ref112/cit112
  doi: 10.1021/jp109742p
– ident: ref33/cit33
  doi: 10.1063/1.1314351
– ident: ref55/cit55
  doi: 10.1063/1.445721
– volume-title: Machine Learning: A Probabilistic Perspective
  year: 2012
  ident: ref528/cit528
– ident: ref330/cit330
  doi: 10.1021/jp020837b
– ident: ref183/cit183
  doi: 10.1063/1.2844787
– ident: ref230/cit230
  doi: 10.1063/1.2218516
– ident: ref64/cit64
  doi: 10.1146/annurev-physchem-040412-110031
– ident: ref45/cit45
  doi: 10.1063/1.4915271
– ident: ref68/cit68
  doi: 10.1063/1.1961472
– ident: ref282/cit282
  doi: 10.1021/acs.jctc.6b00420
– ident: ref93/cit93
  doi: 10.1073/pnas.0607758104
– ident: ref274/cit274
  doi: 10.1063/1.461939
– ident: ref67/cit67
  doi: 10.1063/1.1791632
– ident: ref47/cit47
  doi: 10.1021/acs.biochem.8b00283
– ident: ref367/cit367
  doi: 10.1063/1.5111046
– ident: ref361/cit361
  doi: 10.1021/jp992329g
– ident: ref411/cit411
  doi: 10.1021/jp3059239
– ident: ref7/cit7
  doi: 10.1021/cr078377b
– ident: ref181/cit181
  doi: 10.1063/1.475462
– ident: ref115/cit115
  doi: 10.1073/pnas.0504865102
– ident: ref114/cit114
  doi: 10.1016/S0301-0104(01)00224-5
– ident: ref8/cit8
  doi: 10.1146/annurev-physchem-052516-050602
– volume: 235
  start-page: 537
  year: 1956
  ident: ref60/cit60
  publication-title: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
– ident: ref196/cit196
  doi: 10.1002/chem.201402189
– ident: ref16/cit16
  doi: 10.1063/1.4916522
– volume: 13
  volume-title: Spectroscopy of Biological Systems
  year: 1986
  ident: ref247/cit247
– ident: ref165/cit165
  doi: 10.1021/ja104573b
– ident: ref172/cit172
  doi: 10.1021/j100043a018
– ident: ref280/cit280
  doi: 10.1039/b910269h
– ident: ref13/cit13
  doi: 10.1016/S0009-2614(98)01140-3
– ident: ref223/cit223
  doi: 10.1002/qua.20543
– ident: ref334/cit334
  doi: 10.5012/bkcs.2003.24.8.1061
– ident: ref278/cit278
  doi: 10.1021/jp0674874
– ident: ref193/cit193
  doi: 10.1002/cphc.200400243
– ident: ref54/cit54
  doi: 10.1002/jcc.540160613
– ident: ref435/cit435
  doi: 10.1063/1.4747828
– ident: ref15/cit15
  doi: 10.1073/pnas.1317459110
– ident: ref499/cit499
  doi: 10.1016/j.cplett.2005.02.007
– ident: ref515/cit515
  doi: 10.1109/72.914517
– ident: ref444/cit444
  doi: 10.1021/jp040642z
– ident: ref239/cit239
  doi: 10.1039/C5CP08008H
– ident: ref10/cit10
  doi: 10.1063/1.465484
– ident: ref30/cit30
  doi: 10.1063/1.481014
– ident: ref491/cit491
  doi: 10.1063/1.4923462
– ident: ref316/cit316
  doi: 10.1016/j.chemphys.2009.05.016
– ident: ref288/cit288
  doi: 10.1002/cphc.201402251
– ident: ref405/cit405
  doi: 10.1063/1.4827018
– ident: ref130/cit130
  doi: 10.1063/1.2919050
– ident: ref397/cit397
  doi: 10.1016/j.cplett.2009.01.010
– ident: ref74/cit74
  doi: 10.1016/j.bpj.2018.05.003
– volume: 3
  volume-title: Annual Reports in Computational Chemistry
  year: 2007
  ident: ref63/cit63
– ident: ref342/cit342
  doi: 10.1039/C8CP05399E
– volume-title: Coherent Multidimensional Spectroscopy
  year: 2019
  ident: ref70/cit70
  doi: 10.1007/978-981-13-9753-0
– ident: ref441/cit441
  doi: 10.1021/ja503107h
– ident: ref380/cit380
  doi: 10.1103/PhysRevLett.87.027401
– ident: ref472/cit472
  doi: 10.1063/1.4962755
– ident: ref120/cit120
  doi: 10.1021/jp900480r
– ident: ref94/cit94
  doi: 10.1021/jp035473h
– ident: ref468/cit468
  doi: 10.1021/acs.jpcb.5b04499
– ident: ref206/cit206
  doi: 10.1021/jp104822e
– ident: ref100/cit100
  doi: 10.1021/ja9101776
– ident: ref44/cit44
  doi: 10.1016/j.bpj.2014.12.061
– ident: ref262/cit262
  doi: 10.1063/1.1559681
– ident: ref159/cit159
  doi: 10.1063/1.1749489
– ident: ref286/cit286
  doi: 10.1021/acs.jpca.8b00276
– ident: ref260/cit260
  doi: 10.1063/1.4798938
– ident: ref179/cit179
  doi: 10.1021/jp0310697
– ident: ref375/cit375
  doi: 10.1021/acs.jpclett.7b02623
– ident: ref399/cit399
  doi: 10.1063/1.3012568
– ident: ref490/cit490
  doi: 10.1021/acs.jpca.7b05836
– ident: ref236/cit236
  doi: 10.1021/jz200980g
– ident: ref501/cit501
  doi: 10.1021/jz400683v
– ident: ref379/cit379
  doi: 10.1021/jp013104k
– ident: ref155/cit155
  doi: 10.1039/C6CP01578F
– ident: ref321/cit321
  doi: 10.1021/jp105527n
– ident: ref376/cit376
  doi: 10.1021/acs.jpcc.6b08607
– ident: ref154/cit154
  doi: 10.1063/1.4934667
– ident: ref291/cit291
  doi: 10.1021/acs.jctc.5b01168
– ident: ref82/cit82
  doi: 10.1039/C4CP00233D
– ident: ref259/cit259
  doi: 10.1146/annurev-physchem-040215-112055
– ident: ref200/cit200
  doi: 10.1021/jp802039e
– ident: ref160/cit160
  doi: 10.1063/1.462285
– ident: ref12/cit12
  doi: 10.1063/1.477756
– ident: ref393/cit393
  doi: 10.1021/jp501631m
– volume-title: Infrared Spectroscopy of Biomolecules
  year: 1996
  ident: ref249/cit249
– ident: ref95/cit95
  doi: 10.1021/acs.jpcb.7b00345
– ident: ref461/cit461
  doi: 10.1063/1.5129464
– ident: ref276/cit276
  doi: 10.1016/j.cplett.2007.02.033
– ident: ref166/cit166
  doi: 10.1021/ja303895k
– ident: ref59/cit59
  doi: 10.1039/ft9928801755
– ident: ref209/cit209
  doi: 10.1021/jp046912v
– ident: ref354/cit354
  doi: 10.1002/anie.201812995
– ident: ref232/cit232
  doi: 10.1063/1.3001915
– ident: ref386/cit386
  doi: 10.1063/1.1525802
– ident: ref395/cit395
  doi: 10.1063/1.3613623
– ident: ref464/cit464
  doi: 10.1529/biophysj.105.061689
– ident: ref345/cit345
  doi: 10.1021/ja3084384
– ident: ref313/cit313
  doi: 10.1021/ja3074962
– ident: ref76/cit76
  doi: 10.1021/ja8007165
– ident: ref97/cit97
  doi: 10.1021/acs.jpcb.8b01445
– ident: ref124/cit124
  doi: 10.1021/jp064795t
– ident: ref469/cit469
  doi: 10.1021/acs.jpclett.5b01973
– ident: ref338/cit338
  doi: 10.1021/acs.jpca.6b06607
– ident: ref329/cit329
  doi: 10.1021/jp9105844
– ident: ref158/cit158
  doi: 10.1051/jphysrad:0193800908031900
– ident: ref463/cit463
  doi: 10.1073/pnas.131549798
– ident: ref46/cit46
  doi: 10.1021/acs.analchem.6b01520
– ident: ref224/cit224
  doi: 10.1002/jrs.1303
– ident: ref79/cit79
  doi: 10.1063/1.480772
– ident: ref456/cit456
  doi: 10.1111/j.2042-7158.1969.tb08235.x
– ident: ref256/cit256
  doi: 10.1021/jacs.7b08830
– ident: ref322/cit322
  doi: 10.1021/ja807572f
– ident: ref346/cit346
  doi: 10.1016/j.cplett.2017.03.008
– ident: ref495/cit495
  doi: 10.1021/jz3014776
– ident: ref118/cit118
  doi: 10.1063/1.2806179
– ident: ref58/cit58
  doi: 10.1039/ft9969201701
– ident: ref477/cit477
  doi: 10.1063/1.2213258
– ident: ref507/cit507
  doi: 10.1021/acs.jpca.6b11962
– ident: ref341/cit341
  doi: 10.1021/ja075605a
– ident: ref407/cit407
  doi: 10.1063/1.4895546
– volume-title: Concepts and Methods of 2D Infrared Spectroscopy
  year: 2011
  ident: ref5/cit5
  doi: 10.1017/CBO9780511675935
– ident: ref484/cit484
  doi: 10.1021/acs.jpcb.9b04633
– ident: ref229/cit229
  doi: 10.1063/1.1877272
– ident: ref396/cit396
  doi: 10.1063/1.4958967
– ident: ref451/cit451
  doi: 10.1021/jp402772x
– ident: ref474/cit474
  doi: 10.1021/jp062597w
– ident: ref457/cit457
  doi: 10.1038/2201315a0
– ident: ref381/cit381
  doi: 10.1021/acs.jpclett.9b02157
– ident: ref362/cit362
  doi: 10.1016/j.molliq.2019.04.008
– ident: ref132/cit132
  doi: 10.1063/1.1749393
– ident: ref80/cit80
  doi: 10.1021/jp075683k
– ident: ref191/cit191
  doi: 10.1021/ja020213j
– ident: ref25/cit25
  doi: 10.1021/jp9813286
– ident: ref244/cit244
  doi: 10.1021/acs.chemrev.6b00582
– ident: ref261/cit261
  doi: 10.1021/jp200745r
– ident: ref315/cit315
  doi: 10.1063/1.1506151
– ident: ref161/cit161
  doi: 10.1021/j100139a007
– ident: ref222/cit222
  doi: 10.1063/1.1763889
– ident: ref366/cit366
  doi: 10.1021/acs.jpca.6b02887
– ident: ref497/cit497
  doi: 10.1016/j.cplett.2006.04.051
– ident: ref525/cit525
  doi: 10.1063/5.0005591
– ident: ref203/cit203
  doi: 10.1021/acs.jpclett.8b00969
– ident: ref432/cit432
  doi: 10.1021/acs.jpcc.6b08980
– ident: ref173/cit173
  doi: 10.1021/jp9523985
– ident: ref17/cit17
  doi: 10.1038/nchem.2642
– ident: ref220/cit220
  doi: 10.1063/1.1536980
– ident: ref307/cit307
  doi: 10.1073/pnas.1314481110
– ident: ref167/cit167
  doi: 10.1039/C5CP04413H
– ident: ref187/cit187
  doi: 10.1021/jp0344693
– ident: ref410/cit410
  doi: 10.1063/1.3430518
– ident: ref450/cit450
  doi: 10.1021/jacs.5b11999
– ident: ref201/cit201
  doi: 10.1021/jp804900u
– ident: ref506/cit506
  doi: 10.1063/1.4896536
– ident: ref192/cit192
  doi: 10.1021/ja027610e
– ident: ref127/cit127
  doi: 10.1016/j.cplett.2005.07.114
– ident: ref392/cit392
  doi: 10.1063/1.3242083
– ident: ref14/cit14
  doi: 10.1021/ja9926414
– ident: ref264/cit264
  doi: 10.1063/1.4928637
– ident: ref56/cit56
  doi: 10.1016/0009-2614(95)00389-L
– ident: ref304/cit304
  doi: 10.1021/jp408064b
– ident: ref28/cit28
  doi: 10.1063/1.479710
– ident: ref207/cit207
  doi: 10.1021/jp960694r
– ident: ref351/cit351
  doi: 10.1021/acs.jpcb.8b03887
– ident: ref513/cit513
  doi: 10.1021/acs.jctc.7b00577
– ident: ref111/cit111
  doi: 10.1063/1.1633549
– ident: ref182/cit182
  doi: 10.1021/ar500464j
– ident: ref438/cit438
  doi: 10.1021/ja065179d
– ident: ref102/cit102
  doi: 10.1073/pnas.0700560104
– volume: 211
  volume-title: Methods Enzymol
  year: 1992
  ident: ref480/cit480
– ident: ref512/cit512
  doi: 10.1038/432823a
– year: 2015
  ident: ref517/cit517
  publication-title: arXiv:1511.05493
– ident: ref36/cit36
  doi: 10.1039/b110898k
– ident: ref29/cit29
  doi: 10.1063/1.479711
– ident: ref401/cit401
  doi: 10.1021/jz301780k
– ident: ref426/cit426
  doi: 10.1063/1.1883605
– ident: ref390/cit390
  doi: 10.1073/pnas.0701482104
– ident: ref479/cit479
  doi: 10.1063/1.2715602
– ident: ref107/cit107
  doi: 10.1016/j.str.2008.12.015
– ident: ref101/cit101
  doi: 10.1039/C7CP05096H
– ident: ref252/cit252
  doi: 10.1021/ja0400685
– ident: ref41/cit41
  doi: 10.1021/acs.chemrev.6b00625
– ident: ref61/cit61
  doi: 10.1039/df9654000007
– ident: ref31/cit31
  doi: 10.1063/1.481634
– ident: ref412/cit412
  doi: 10.1039/C5CP07264F
– volume-title: Differential Evolution: A Practical Approach to Global Optimization
  year: 2005
  ident: ref520/cit520
– ident: ref303/cit303
  doi: 10.1021/ja037998t
– ident: ref465/cit465
  doi: 10.1021/jp8054119
– ident: ref349/cit349
  doi: 10.1063/1.5053466
– volume-title: Advances in Neural Information Processing Systems 25
  year: 2012
  ident: ref526/cit526
– ident: ref425/cit425
  doi: 10.1016/j.cplett.2006.01.081
– ident: ref171/cit171
  doi: 10.1021/ja00460a031
– ident: ref198/cit198
  doi: 10.1063/1.4917467
– ident: ref27/cit27
  doi: 10.1063/1.479709
– ident: ref81/cit81
  doi: 10.1021/acs.jpcb.8b05221
– ident: ref292/cit292
  doi: 10.1063/1.4951011
– ident: ref419/cit419
  doi: 10.1063/1.2925258
– ident: ref162/cit162
  doi: 10.1021/jp951752w
– ident: ref500/cit500
  doi: 10.1063/1.1839175
– ident: ref217/cit217
  doi: 10.1021/jp908695g
– ident: ref340/cit340
  doi: 10.1039/C7CP90063E
– ident: ref363/cit363
  doi: 10.1021/bi00295a043
– ident: ref133/cit133
  doi: 10.1063/1.1750343
– ident: ref409/cit409
  doi: 10.1021/jp906784t
– ident: ref374/cit374
  doi: 10.1021/acs.jpcb.9b02026
– ident: ref344/cit344
  doi: 10.1021/acs.jpcb.6b02732
– ident: ref414/cit414
  doi: 10.1021/acs.jctc.9b00698
– ident: ref105/cit105
  doi: 10.1073/pnas.0901571106
– ident: ref509/cit509
  doi: 10.1063/1.2969900
– ident: ref483/cit483
  doi: 10.1021/ja205636h
– ident: ref22/cit22
  doi: 10.1021/acs.jpcb.7b10574
– ident: ref277/cit277
  doi: 10.1063/1.1581855
– ident: ref271/cit271
  doi: 10.1002/(SICI)1097-4555(199801)29:1<81::AID-JRS214>3.0.CO;2-H
– ident: ref272/cit272
  doi: 10.1246/bcsj.75.985
– ident: ref448/cit448
  doi: 10.1021/acs.analchem.8b03813
– ident: ref131/cit131
  doi: 10.1021/cr9904009
– ident: ref92/cit92
  doi: 10.1021/jp300835k
– ident: ref176/cit176
  doi: 10.1002/anie.196901771
– ident: ref319/cit319
  doi: 10.1021/jp109431a
– ident: ref437/cit437
  doi: 10.1021/ja0033741
– ident: ref213/cit213
  doi: 10.1016/j.softx.2015.06.001
– ident: ref266/cit266
  doi: 10.1063/1.4919716
– ident: ref498/cit498
  doi: 10.1021/jp050409g
– ident: ref478/cit478
  doi: 10.1063/1.2213259
– ident: ref83/cit83
  doi: 10.1073/pnas.0700959104
– ident: ref317/cit317
  doi: 10.1021/jp0603334
– reference: 34709802 - Chem Rev. 2021 Nov 10;121(21):13698
SSID ssj0005527
Score 2.6984997
SecondaryResourceType review_article
Snippet Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7152
SubjectTerms algorithms
chemical interactions
Chemical reactions
Correlation analysis
Dynamic structural analysis
Electric contacts
Electrochromism
Functional materials
Genetic algorithms
Humans
ligands
Machine learning
Models, Chemical
Molecular conformation
Molecular structure
Neural networks
Optical properties
protein structure
Proteins
Proteins - chemistry
Quantitative analysis
Reaction kinetics
semi-empirical models
spectral analysis
Spectroscopy
Spectrum analysis
Spectrum Analysis - methods
Spectrum Analysis, Raman
Static Electricity
Theory
Time correlation functions
Vibration
Websites
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQ9lAuvB-BgoLEgcNmmzh2bB-riqpCasWBhSIOkV_RrrqbjWgiVH49M3nBUrECjrHHUawZxzPj8fcR8tpwK7z0LjJWi4h5QSOtrI2MkkYpw6l3eDn57Dw7nbN3F_yir6rEuzDlpi33Xeh1hEnzqyUeNc-wRgkJoLr80qapq6Y-ZIJBLAO_372Mgx8-IXvz8_dHnwfqNNh5eAuWivGRVPEAOUSTQ21Bnwu_RpYXxASULbkBtG5vTjc8zpuFk_tNWenrb3q1-mVXOrlLvgzz6YpRLmdNbWb2-29Qj_834XvkTu-shkeddd0nt3z5gOwfDxxxD8mnjxhtd-nEEKnsawTH3FRLG57pahr-oft6GurShW02cj3w83aP3T2LR2R-8vbD8WnUUzVEmgtaR1oWFkJJrVycKq0LqqX1rkh5WvDU-aTQLM0y6RW1CjyIzMbKmNgleIVTc2XTx2RSbkr_lISJThxDDUpnWMwcvJIqJ5RiJkt8WgTkDWgq75faVd6eotMkx8ZeqXmv1IDQQZ257SHPkXljtXvQdBxUdYgfu8UPBjv5-U0UnFDJwFliAXk1doNu8DRGl37ToAz4YhCdKrFDhoODlzGZyYA86Uxv_KYUAlcpeRwQsWWUowACh2_3lMtFCyAuBKK6wchoNN-_meqzf5R_Tm5TzE4ggDA9IJP6a-NfgAtXm5f9Wv0BlexOVA
  priority: 102
  providerName: Unpaywall
Title Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction
URI http://dx.doi.org/10.1021/acs.chemrev.9b00813
https://www.ncbi.nlm.nih.gov/pubmed/32598850
https://www.proquest.com/docview/2435842404
https://www.proquest.com/docview/2419095697
https://www.proquest.com/docview/2574364868
https://pubmed.ncbi.nlm.nih.gov/PMC7710120
https://nottingham-repository.worktribe.com/output/4744462
UnpaywallVersion submittedVersion
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: ACS publications
  customDbUrl:
  eissn: 1520-6890
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005527
  issn: 1520-6890
  databaseCode: ACS
  dateStart: 19240401
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCaG9tBd9n546woP2GGHuLNlPY9BsKIY0GDAlq07GXoZLZo6weqgaH_9xPjRZtmCHG1RgkRRECmSHwE-GGaFl94lxmqRUC9IopW1iVHSKGUY8Q6Tk0_G_HhCv5yy03vJ6n958En2SdvA_DN_iSVZEMBPYo3aXcKFwAi-4ejbXURHV6EVnQacsw5k6N-D4HVkr1avozUdcz1Ucm9RzfXNtZ5O791DR49h3GXzNOEnF4eL2hza23Vwx-2W-AQetRppPGxE6Ck88NUz2Bt1heCew88faFI3b4Yx1quvEQFzNj-38YmeD-L_NN8MYl25ePnkeNkV4W0-m2SKFzA5-vx9dJy09RgSzQSpEy1LG-xFrVyaK61LoqX1rsxZXrLc-azUNOdcekWsCmoCt6kyJnUZ5mlqpmz-EnaqWeVfQ5zpzFHcKOkMTakLQxLlhFLU8MznZQQfA1OK9jxdFUtXOckK_Nlyqmg5FQHpdrCwLa45lteYbu406DvNG1iPzeT7nWjczYkETVPSoBHRCN73zWFv0OWiKz9bIE1QuIIJqsQGGha0OE4llxG8aqStn1MerFMpWRqBWJHDngDRwVdbqvOzJUq4EAjdFnomvcRus9Q323P-LTwk-PqAAMFkH3bq3wv_LqhotTlYHswD2J2Mvw5__QGL2j3N
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-h8VBeGN8EBgSJBx6akTi2Yz9O1aYC615YYW-RvyKmdWlFU6Hx1-PLV1cG1XiMfbZ854t85_P9DuCdZiZzwtlIG5VF1GUkUtKYSEuhpdSMOIvJyZMTPp7ST2fsrE0Kw1wYv4iln2lZB_HX6ALJB2zzbFxiZRbE8RNYqvYu4zRBl-tg9GX9sKMr1IqxA85ZhzX090nwVDLLzVPphql588XkYFUu1NVPNZtdO46OdmHaM1K_QrnYX1V63_z6A-Pxfzl9APdb-zQ8aBTqIdxx5SMYjLqycI_h21d0sJsbxBCr11eIhzlfnJtwohbD8B_dV8NQlTasLyAvu5K8zWeTWvEEpkeHp6Nx1FZniBTLSBUpURjvPSpp41QqVRAljLNFytKCpdYlhaIp58JJYqQ3GriJpdaxTTBrUzFp0qewU85L9xzCRCWW4n4Jq2lMrZ-SSJtJSTVPXFoE8N4LJW__rmVeB85JkmNjK6m8lVQApNvI3LQo51hsY7Z90LAftGhAPraT73Uasl4T8XanoN4-ogG87bv93mAARpVuvkIab355h1RmW2iYt-k4FVwE8KxRun5NqfdVhWBxANmGOvYEiBW-2VOef68xw7MMgdz8yKhX3Nuw-uL2kn8Dg_Hp5Dg__njy-SXcI3gvgdDBZA92qh8r98obb5V-Xf-rvwH3nER_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6qikS5lJ2GFggSBw6Tkji2Yx_RwKgsrZCgUE6Rt6hVp5mIyagqvx6_bGUojCqOiRd5eZa_Z_t9H8ALzUzmhLORNiqLqMtIpKQxkZZCS6kZcRaDk_cP-N4hfX_EjtZA9LEwvhFzX9O8ucTHVV3ZomMYSF7hf9-VM1RnQS4_gXK1Nxj3ix1B0fjz5eOOXqwV7w84Zz3f0N8rwZ3JzJd3pitw8-qryY1FWamLczWd_rYlTW7D96EzzUuU091FrXfNzz94Hv-nt3dgs8Op4evWsO7Cmivvwca4l4e7D9--oqPdniSGqGJfIy_mrDox4b6qRuE_ki9GoSpt2BxEnvXSvO1nG2LxAA4nb7-M96JOpSFSLCN1pERhvBeppI1TqVRBlDDOFilLC5ZalxSKppwLJ4mRHjxwE0utY5tg9KZi0qQPYb2clW4LwkQlluKcCatpTK2vkkibSUk1T1xaBPDSD0rerbJ53lygkyTHn91I5d1IBUD6ycxNx3aOohvT1YVGQ6GqJftYnX2nt5LLNhGPPwX1OIkG8HxI9nODFzGqdLMF5vEwzDumMluRh3lsx6ngIoBHreENbUq9zyoEiwPIlkxyyICc4csp5clxwx2eZUjo5ktGg_Fep6uPrz_yz-DmpzeT_OO7gw_bcIvg8QQyCJMdWK9_LNwTj-Fq_bRZrr8AJeNHAg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQ9lAuvB-BgoLEgcNmmzh2bB-riqpCasWBhSIOkV_RrrqbjWgiVH49M3nBUrECjrHHUawZxzPj8fcR8tpwK7z0LjJWi4h5QSOtrI2MkkYpw6l3eDn57Dw7nbN3F_yir6rEuzDlpi33Xeh1hEnzqyUeNc-wRgkJoLr80qapq6Y-ZIJBLAO_372Mgx8-IXvz8_dHnwfqNNh5eAuWivGRVPEAOUSTQ21Bnwu_RpYXxASULbkBtG5vTjc8zpuFk_tNWenrb3q1-mVXOrlLvgzz6YpRLmdNbWb2-29Qj_834XvkTu-shkeddd0nt3z5gOwfDxxxD8mnjxhtd-nEEKnsawTH3FRLG57pahr-oft6GurShW02cj3w83aP3T2LR2R-8vbD8WnUUzVEmgtaR1oWFkJJrVycKq0LqqX1rkh5WvDU-aTQLM0y6RW1CjyIzMbKmNgleIVTc2XTx2RSbkr_lISJThxDDUpnWMwcvJIqJ5RiJkt8WgTkDWgq75faVd6eotMkx8ZeqXmv1IDQQZ257SHPkXljtXvQdBxUdYgfu8UPBjv5-U0UnFDJwFliAXk1doNu8DRGl37ToAz4YhCdKrFDhoODlzGZyYA86Uxv_KYUAlcpeRwQsWWUowACh2_3lMtFCyAuBKK6wchoNN-_meqzf5R_Tm5TzE4ggDA9IJP6a-NfgAtXm5f9Wv0BlexOVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vibrational+Spectroscopic+Map%2C+Vibrational+Spectroscopy%2C+and+Intermolecular+Interaction&rft.jtitle=Chemical+reviews&rft.au=Baiz%2C+Carlos+R&rft.au=B%C5%82asiak%2C+Bartosz&rft.au=Bredenbeck%2C+Jens&rft.au=Cho%2C+Minhaeng&rft.date=2020-08-12&rft.pub=American+Chemical+Society&rft.issn=0009-2665&rft.eissn=1520-6890&rft.volume=120&rft.issue=15&rft.spage=7152&rft.epage=7218&rft_id=info:doi/10.1021%2Facs.chemrev.9b00813&rft.externalDocID=e14609012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon