Determination of Exosome Concentration in Solution Using Surface Plasmon Resonance Spectroscopy
Exosomes are cell-secreted nanometer-sized extracellular vesicles that have been reported to play an important role in intercellular communication. They are also considered potential diagnostic markers for various health disorders, and intense investigations are presently directed toward their use a...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 86; no. 12; pp. 5929 - 5936 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2700 1520-6882 1520-6882 |
DOI | 10.1021/ac500931f |
Cover
Abstract | Exosomes are cell-secreted nanometer-sized extracellular vesicles that have been reported to play an important role in intercellular communication. They are also considered potential diagnostic markers for various health disorders, and intense investigations are presently directed toward their use as carriers in drug-delivery and gene-therapy applications. This has generated a growing need for sensitive methods capable of accurately and specifically determining the concentration of exosomes in complex biological fluids. Here, we explore the use of label-free surface-based sensing with surface plasmon resonance (SPR) read-out to determine the concentration of exosomes in solution. Human mast cell secreted exosomes carrying the tetraspanin membrane protein CD63 were analyzed by measuring their diffusion-limited binding rate to an SPR sensor surface functionalized with anti-CD63 antibodies. The concentration of suspended exosomes was determined by first converting the SPR response into the surface-bound mass. The increase in mass uptake over time was then related to the exosome concentration in solution using a formalism describing diffusion-limited binding under controlled flow conditions. The proposed quantification method is based on a calibration and control measurements performed with proteins and synthetic lipid vesicles and takes into account (i) the influence of the broad size distribution of the exosomes on the surface coverage, (ii) the fact that their size is comparable to the ∼150 nm probing depth of SPR, and (iii) possible deformation of exosomes upon adsorption. Under those considerations, the accuracy of the concentration determination was estimated to be better than ±50% and significantly improve if the exosome deformation is negligible. |
---|---|
AbstractList | Exosomes are cell-secreted nanometer-sized extracellular vesicles that have been reported to play an important role in intercellular communication. They are also considered potential diagnostic markers for various health disorders, and intense investigations are presently directed toward their use as carriers in drug-delivery and gene-therapy applications. This has generated a growing need for sensitive methods capable of accurately and specifically determining the concentration of exosomes in complex biological fluids. Here, we explore the use of label-free surface-based sensing with surface plasmon resonance (SPR) read-out to determine the concentration of exosomes in solution. Human mast cell secreted exosomes carrying the tetraspanin membrane protein CD63 were analyzed by measuring their diffusion-limited binding rate to an SPR sensor surface functionalized with anti-CD63 antibodies. The concentration of suspended exosomes was determined by first converting the SPR response into the surface-bound mass. The increase in mass uptake over time was then related to the exosome concentration in solution using a formalism describing diffusion-limited binding under controlled flow conditions. The proposed quantification method is based on a calibration and control measurements performed with proteins and synthetic lipid vesicles and takes into account (i) the influence of the broad size distribution of the exosomes on the surface coverage, (ii) the fact that their size is comparable to the ∼150 nm probing depth of SPR, and (iii) possible deformation of exosomes upon adsorption. Under those considerations, the accuracy of the concentration determination was estimated to be better than ±50% and significantly improve if the exosome deformation is negligible. Exosomes are cell-secreted nanometer-sized extracellular vesicles that have been reported to play an important role in intercellular communication. They are also considered potential diagnostic markers for various health disorders, and intense investigations are presently directed towards their use as carriers in drug-delivery and gene-therapy applications. This has generated a growing need for sensitive methods capable of accurately and specifically determining the concentration of exosomes in complex biological fluids. Here, we explore the use of label-free surface-based sensing with surface plasmon resonance (SPR) read-out to determine the concentration of exosomes in solution. Human mast cell secreted exosomes carrying the tetraspanin membrane protein CD63 were analyzed by measuring their diffusion-limited binding rate to an SPR sensor surface functionalized with anti-CD63 antibodies. The concentration of suspended exosomes was determined by first converting the SPR response into surface-bound mass. The increase in mass uptake over time was then related to the exosome concentration in solution using a formalism describing diffusion-limited binding under controlled flow conditions. The proposed quantification method is based on a calibration and control measurements performed with proteins and synthetic lipid vesicles and takes into account i) the influence of the broad size distribution of the exosomes on the surface coverage, ii) the fact that their size is comparable to the ~150 nm probing depth of SPR, and iii) possible deformation of exosomes upon adsorption. Under those considerations, the accuracy of the concentration determination was estimated to be better than ±50% and significantly better if exosome deformation is negligible. Exosomes are cell-secreted nanometer-sized extracellular vesicles that have been reported to play an important role in intercellular communication. They are also considered potential diagnostic markers for various health disorders, and intense investigations are presently directed toward their use as carriers in drug-delivery and gene-therapy applications. This has generated a growing need for sensitive methods capable of accurately and specifically determining the concentration of exosomes in complex biological fluids. Here, we explore the use of label-free surface-based sensing with surface plasmon resonance (SPR) read-out to determine the concentration of exosomes in solution. Human mast cell secreted exosomes carrying the tetraspanin membrane protein CD63 were analyzed by measuring their diffusion-limited binding rate to an SPR sensor surface functionalized with anti-CD63 antibodies. The concentration of suspended exosomes was determined by first converting the SPR response into the surface-bound mass. The increase in mass uptake over time was then related to the exosome concentration in solution using a formalism describing diffusion-limited binding under controlled flow conditions. The proposed quantification method is based on a calibration and control measurements performed with proteins and synthetic lipid vesicles and takes into account (i) the influence of the broad size distribution of the exosomes on the surface coverage, (ii) the fact that their size is comparable to the ∼150 nm probing depth of SPR, and (iii) possible deformation of exosomes upon adsorption. Under those considerations, the accuracy of the concentration determination was estimated to be better than ±50% and significantly improve if the exosome deformation is negligible.Exosomes are cell-secreted nanometer-sized extracellular vesicles that have been reported to play an important role in intercellular communication. They are also considered potential diagnostic markers for various health disorders, and intense investigations are presently directed toward their use as carriers in drug-delivery and gene-therapy applications. This has generated a growing need for sensitive methods capable of accurately and specifically determining the concentration of exosomes in complex biological fluids. Here, we explore the use of label-free surface-based sensing with surface plasmon resonance (SPR) read-out to determine the concentration of exosomes in solution. Human mast cell secreted exosomes carrying the tetraspanin membrane protein CD63 were analyzed by measuring their diffusion-limited binding rate to an SPR sensor surface functionalized with anti-CD63 antibodies. The concentration of suspended exosomes was determined by first converting the SPR response into the surface-bound mass. The increase in mass uptake over time was then related to the exosome concentration in solution using a formalism describing diffusion-limited binding under controlled flow conditions. The proposed quantification method is based on a calibration and control measurements performed with proteins and synthetic lipid vesicles and takes into account (i) the influence of the broad size distribution of the exosomes on the surface coverage, (ii) the fact that their size is comparable to the ∼150 nm probing depth of SPR, and (iii) possible deformation of exosomes upon adsorption. Under those considerations, the accuracy of the concentration determination was estimated to be better than ±50% and significantly improve if the exosome deformation is negligible. Exosomes are cell-secreted nanometer-sized extracellular vesicles that have been reported to play an important role in intercellular communication. They are also considered potential diagnostic markers for various health disorders, and intense investigations are presently directed toward their use as carriers in drug-delivery and gene-therapy applications. This has generated a growing need for sensitive methods capable of accurately and specifically determining the concentration of exosomes in complex biological fluids. Here, we explore the use of label-free surface-based sensing with surface plasmon resonance (SPR) read-out to determine the concentration of exosomes in solution. Human mast cell secreted exosomes carrying the tetraspanin membrane protein CD63 were analyzed by measuring their diffusion-limited binding rate to an SPR sensor surface functionalized with anti-CD63 antibodies. The concentration of suspended exosomes was determined by first converting the SPR response into the surface-bound mass. The increase in mass uptake over time was then related to the exosome concentration in solution using a formalism describing diffusion-limited binding under controlled flow conditions. The proposed quantification method is based on a calibration and control measurements performed with proteins and synthetic lipid vesicles and takes into account (i) the influence of the broad size distribution of the exosomes on the surface coverage, (ii) the fact that their size is comparable to the ...150 nm probing depth of SPR, and (iii) possible deformation of exosomes upon adsorption. Under those considerations, the accuracy of the concentration determination was estimated to be better than ±50% and significantly improve if the exosome deformation is negligible. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Höök, Fredrik Rupert, Déborah L. M Lässer, Cecilia Lotvall, Jan O Bally, Marta Eldh, Maria Block, Stephan Zhdanov, Vladimir P |
AuthorAffiliation | Russian Academy of Sciences Institut Curie University of Gothenburg Department of Applied Physics Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition Chalmers University of Technology Boreskov Institute of Catalysis |
AuthorAffiliation_xml | – name: University of Gothenburg – name: Chalmers University of Technology – name: Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition – name: Department of Applied Physics – name: Russian Academy of Sciences – name: Institut Curie – name: Boreskov Institute of Catalysis |
Author_xml | – sequence: 1 givenname: Déborah L. M surname: Rupert fullname: Rupert, Déborah L. M organization: Chalmers University of Technology – sequence: 2 givenname: Cecilia surname: Lässer fullname: Lässer, Cecilia organization: University of Gothenburg – sequence: 3 givenname: Maria surname: Eldh fullname: Eldh, Maria organization: University of Gothenburg – sequence: 4 givenname: Stephan surname: Block fullname: Block, Stephan organization: Chalmers University of Technology – sequence: 5 givenname: Vladimir P surname: Zhdanov fullname: Zhdanov, Vladimir P organization: Russian Academy of Sciences – sequence: 6 givenname: Jan O surname: Lotvall fullname: Lotvall, Jan O organization: University of Gothenburg – sequence: 7 givenname: Marta surname: Bally fullname: Bally, Marta organization: Institut Curie – sequence: 8 givenname: Fredrik surname: Höök fullname: Höök, Fredrik email: Fredrik.hook@chalmers.se organization: Chalmers University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24848946$$D View this record in MEDLINE/PubMed https://gup.ub.gu.se/publication/198546$$DView record from Swedish Publication Index https://research.chalmers.se/publication/198546$$DView record from Swedish Publication Index |
BookMark | eNqFksFu1DAQhi1URLcLB14ARUJI5RA6tuOsfURLC0iVQCw9W15nvE2V2MFOBH17vE1ZoQLi5NH4m9_jmf-EHPngkZDnFN5QYPTMWAGgOHWPyIIKBmUtJTsiCwDgJVsBHJOTlG4AKAVaPyHHrJKVVFW9IPodjhj71puxDb4Irjj_EVLosVgHb9GPcb5ofbEJ3XQXX6XW74rNFJ2xWHzuTOpz9gum4E2uKTYD2jGGZMNw-5Q8dqZL-Oz-XJKri_Ov6w_l5af3H9dvL0sjRD2WzRYqLmQNUtrGiZrzbaOgEdJKC0KJHFMqkdumsg02gguKaCtXCXCYy_iSbGbd9B2HaauH2PYm3upgWh0xoYn2Wttr0_UYk06oWZ6NaUyjKa2VroxR2jghtbNqxZHlpFhl1fKfqrtp0Dm1m_ZqVElR1Zk_nfkhhm8TplH3bbLYdcZjmNL-UeBMcsb-i1LBV1RypfZ_e_kAvQlT9Hmcmaogj03k6S3Ji3tq2vbYHHr9tesMvJ4Bm3eTIroDQkHvfaQPPsrs2QPWtuOdE7Ih2u6vFa_mCmPTb_39wf0EP_jVIg |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1002_jev2_12059 crossref_primary_10_1208_s12248_018_0201_1 crossref_primary_10_2174_1568026623666221124110016 crossref_primary_10_1021_acsbiomaterials_3c00745 crossref_primary_10_1021_acssensors_4c00558 crossref_primary_10_1021_acssensors_8b00230 crossref_primary_10_1039_C6LC01302C crossref_primary_10_1039_C7AN00469A crossref_primary_10_1021_acs_analchem_9b05736 crossref_primary_10_3389_fchem_2019_00279 crossref_primary_10_1007_s40820_021_00753_w crossref_primary_10_3389_fchem_2020_605307 crossref_primary_10_1016_j_snb_2021_130034 crossref_primary_10_2147_IJN_S333969 crossref_primary_10_1016_j_bios_2024_117047 crossref_primary_10_1021_acs_analchem_7b03919 crossref_primary_10_1002_elps_201800417 crossref_primary_10_3390_biom10060824 crossref_primary_10_1021_acsnano_2c11298 crossref_primary_10_1016_j_jconrel_2018_06_015 crossref_primary_10_1016_j_cca_2025_120148 crossref_primary_10_1016_j_nano_2017_03_010 crossref_primary_10_1002_adfm_202214294 crossref_primary_10_1080_17425247_2019_1581762 crossref_primary_10_1002_lpor_202300999 crossref_primary_10_1038_s41598_018_27203_9 crossref_primary_10_1373_clinchem_2016_271049 crossref_primary_10_1016_j_snb_2023_134886 crossref_primary_10_3389_fendo_2023_1035029 crossref_primary_10_1007_s00432_023_04701_6 crossref_primary_10_1039_C8AN01041B crossref_primary_10_1016_j_addr_2017_12_004 crossref_primary_10_1080_09537104_2016_1265926 crossref_primary_10_1016_j_ccr_2021_214111 crossref_primary_10_1021_acs_analchem_6b05037 crossref_primary_10_1039_D0AN01385D crossref_primary_10_1080_20013078_2018_1535750 crossref_primary_10_1002_wnan_1839 crossref_primary_10_1016_j_snb_2021_130336 crossref_primary_10_1002_adhm_202202437 crossref_primary_10_1116_1_5037582 crossref_primary_10_1186_s13578_019_0282_2 crossref_primary_10_3390_ijms20225527 crossref_primary_10_1016_j_matpr_2018_11_111 crossref_primary_10_1021_acs_chemrev_7b00729 crossref_primary_10_1002_smll_202007971 crossref_primary_10_1113_JP271336 crossref_primary_10_1002_elps_201900323 crossref_primary_10_1016_j_addr_2021_04_014 crossref_primary_10_1016_j_talanta_2020_120851 crossref_primary_10_1039_C7AN01965C crossref_primary_10_1007_s00216_015_8711_5 crossref_primary_10_3390_molecules26061544 crossref_primary_10_1016_j_nantod_2021_101334 crossref_primary_10_1021_acs_analchem_7b04863 crossref_primary_10_1016_j_ejpb_2021_12_003 crossref_primary_10_1021_ac504861d crossref_primary_10_1016_j_ccr_2022_214538 crossref_primary_10_1021_acs_jpclett_1c01510 crossref_primary_10_1039_C5AN01610J crossref_primary_10_1007_s12033_021_00300_3 crossref_primary_10_1021_acs_langmuir_9b01237 crossref_primary_10_1021_la504267g crossref_primary_10_1016_j_bios_2021_113176 crossref_primary_10_1039_C6AN02651F crossref_primary_10_1016_j_jconrel_2016_09_016 crossref_primary_10_1039_C7NR04557C crossref_primary_10_2147_IJN_S310896 crossref_primary_10_3390_separations8080110 crossref_primary_10_1021_la502431x crossref_primary_10_1039_C9CC07253E crossref_primary_10_1021_acssensors_4c00590 crossref_primary_10_1515_nanoph_2022_0057 crossref_primary_10_1016_j_colsurfa_2020_125829 crossref_primary_10_3389_fonc_2023_1256585 crossref_primary_10_3389_fimmu_2014_00416 crossref_primary_10_1021_acs_analchem_3c00772 crossref_primary_10_1039_C7LC00247E crossref_primary_10_1021_acs_analchem_8b04509 crossref_primary_10_3390_ijms25084430 crossref_primary_10_1111_prd_12520 crossref_primary_10_1021_acsanm_8b00267 crossref_primary_10_3389_fonc_2022_828434 crossref_primary_10_1016_j_bbagen_2016_07_028 crossref_primary_10_1063_5_0221219 crossref_primary_10_1016_j_chroma_2016_01_017 crossref_primary_10_3390_bios11050164 crossref_primary_10_3390_nano10050971 crossref_primary_10_1016_j_bios_2019_111944 crossref_primary_10_1021_acsnano_0c07581 crossref_primary_10_1016_j_trac_2016_10_012 crossref_primary_10_1186_s12951_023_02219_0 crossref_primary_10_1021_acs_analchem_6b01860 crossref_primary_10_1021_acsnano_9b01875 crossref_primary_10_1080_10408363_2018_1425976 crossref_primary_10_1039_C9RA03765A crossref_primary_10_1016_j_bios_2020_112482 crossref_primary_10_1039_C6CS00494F crossref_primary_10_3390_bios10110173 crossref_primary_10_1016_j_aca_2020_04_052 crossref_primary_10_1016_j_aca_2022_339633 crossref_primary_10_3389_fimmu_2023_1151322 crossref_primary_10_1007_s00604_020_04573_4 crossref_primary_10_1021_acs_analchem_9b04622 crossref_primary_10_1667_RADE_24_00078_1 crossref_primary_10_1177_2211068216651035 crossref_primary_10_1002_adbi_201600038 crossref_primary_10_1186_s43556_020_00002_3 crossref_primary_10_3923_ijp_2017_846_863 crossref_primary_10_3390_s18103308 crossref_primary_10_1016_j_bios_2015_09_061 crossref_primary_10_1063_1_4928083 crossref_primary_10_1016_j_colsurfa_2022_130015 crossref_primary_10_1016_j_addr_2015_10_002 crossref_primary_10_1016_j_snb_2017_10_148 crossref_primary_10_3390_bios7030034 crossref_primary_10_1021_acs_analchem_6b02532 crossref_primary_10_1039_C5AN01775K crossref_primary_10_1021_acs_biomac_9b00641 crossref_primary_10_1021_acs_langmuir_7b04214 crossref_primary_10_1039_D0AY00722F crossref_primary_10_2217_bmm_2017_0458 crossref_primary_10_1002_adhm_201800484 crossref_primary_10_1016_j_snb_2019_126900 crossref_primary_10_1038_srep30460 crossref_primary_10_1021_acs_analchem_8b05749 crossref_primary_10_1007_s12032_025_02669_6 crossref_primary_10_1002_lpor_202000255 crossref_primary_10_1016_j_addr_2021_113961 crossref_primary_10_1039_C7LC00592J crossref_primary_10_1002_biot_201800430 |
Cites_doi | 10.1002/bip.1978.360170711 10.2144/00295rv01 10.1007/s10555-013-9441-9 10.1039/c3cp50281c 10.1080/02726340801921650 10.1111/j.1365-2141.1967.tb08741.x 10.1111/j.1398-9995.2007.01600.x 10.1006/meth.1994.1013 10.1016/j.bios.2011.07.060 10.1371/journal.pone.0008577 10.1371/journal.pone.0005219 10.1021/la0519554 10.3390/ijms14035338 10.1021/ac800027s 10.1038/nrrheum.2009.229 10.1136/jcp.31.6.507 10.1021/ac200195n 10.1016/j.jchromb.2005.10.002 10.1016/0250-6874(83)85036-7 10.1038/ncb1596 10.1016/j.bbagen.2012.03.017 10.1021/la0155707 10.1016/S0006-3495(00)76611-2 10.1021/ac00020a025 10.1093/intimm/dxh267 10.1007/s00441-012-1428-2 10.1016/S0009-8981(03)00241-9 10.1084/jem.183.3.1161 10.1016/S0378-5173(01)00721-9 10.1016/j.nano.2011.04.003 10.1021/ja4046313 10.1021/la971228b 10.1186/1479-5876-9-9 10.3402/jev.v2i0.20677 10.3402/jev.v2i0.19671 10.1073/pnas.0403453101 10.1016/j.nano.2011.09.006 10.1063/1.480617 10.1021/la8002959 10.1016/S0927-7765(96)01309-4 10.1042/bj1970689 10.1007/BF00775182 10.1586/epr.09.17 10.4049/jimmunol.179.3.1969 10.1016/S1359-6446(00)01910-2 10.1016/S1872-2040(09)60059-1 10.1038/emboj.2011.286 10.1002/pmic.200800109 10.1016/S0006-3495(92)81715-0 10.1110/ps.04688204 10.1016/0021-9797(91)90198-H 10.1007/s00018-011-0689-3 10.1126/science.175.4023.720 10.1038/nbt.2886 10.1021/ac991450g |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Jun 17, 2014 |
Copyright_xml | – notice: Copyright American Chemical Society Jun 17, 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 ADTPV AOWAS F1U F1S |
DOI | 10.1021/ac500931f |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Göteborgs universitet SWEPUB Chalmers tekniska högskola |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 5936 |
ExternalDocumentID | oai_research_chalmers_se_2003adad_1169_4aa9_af58_fc973e216957 oai_gup_ub_gu_se_198546 3350189361 24848946 10_1021_ac500931f b83804809 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 02 1AW 23M 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 .GJ .HR 186 1WB 2KS 3EH 3O- 6TJ AAUTI ABDPE ACKIV ACPVT ACQAM ACRPL ADNMO ADTPV ADXHL AETEA AEYZD AFFDN AFFNX AGQPQ AIDAL ANPPW ANTXH AOWAS F1U MVM NHB OHT OMK RNS UBC UBX VOH XOL YQI YQJ YR5 YXE YYP ZCG ZE2 ZGI F1S |
ID | FETCH-LOGICAL-a556t-db043586088cdf5633bd90d58c8c059590d118e3cd4cded5351eec4f450fe8603 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Thu Aug 21 06:49:17 EDT 2025 Thu Aug 21 06:32:49 EDT 2025 Fri Jul 11 04:16:33 EDT 2025 Fri Jul 11 09:58:36 EDT 2025 Mon Jun 30 10:36:40 EDT 2025 Mon Jul 21 05:53:40 EDT 2025 Tue Jul 01 02:49:02 EDT 2025 Thu Apr 24 23:08:17 EDT 2025 Thu Aug 27 13:42:25 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a556t-db043586088cdf5633bd90d58c8c059590d118e3cd4cded5351eec4f450fe8603 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24848946 |
PQID | 1540586504 |
PQPubID | 45400 |
PageCount | 8 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_2003adad_1169_4aa9_af58_fc973e216957 swepub_primary_oai_gup_ub_gu_se_198546 proquest_miscellaneous_2000328322 proquest_miscellaneous_1537183990 proquest_journals_1540586504 pubmed_primary_24848946 crossref_primary_10_1021_ac500931f crossref_citationtrail_10_1021_ac500931f acs_journals_10_1021_ac500931f |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-17 |
PublicationDateYYYYMMDD | 2014-06-17 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Sohan M. P. (ref55/cit55) 1978; 4 Zanten J. H. Van (ref51/cit51) 1991; 146 Pisitkun T. (ref2/cit2) 2004; 101 Nieuwenhuysen P. (ref52/cit52) 1981; 197 Admyre C. (ref4/cit4) 2007; 179 Singer S. J. (ref53/cit53) 1972; 175 Zhdanov V. P. (ref32/cit32) 2000; 112 Xu X. (ref37/cit37) 2010; 38 Lässer C. (ref39/cit39) 2011; 9 Berger N. (ref48/cit48) 2001; 223 Liedberg B. O. (ref26/cit26) 1983; 4 D’Orazio P. (ref36/cit36) 2003; 334 ref34/cit34 Sjölander S. (ref31/cit31) 1991; 63 Zacher T. (ref58/cit58) 2002; 18 Freeman W. M. (ref23/cit23) 2000; 29 Tabaei S. R. (ref42/cit42) 2013; 135 Corrado C. (ref6/cit6) 2013; 14 ref35/cit35 Reimhult E. (ref49/cit49) 2006; 22 Abdulhalim I. (ref25/cit25) 2008; 28 De Feijter J. A. (ref29/cit29) 1978; 17 Palanisamy V. (ref3/cit3) 2010; 5 Pignataro B. (ref46/cit46) 2000; 78 Vlassov A. V. (ref56/cit56) 2012; 1820 Nolte-’t Hoen E. N. M. (ref21/cit21) 2012; 8 Azmi A. S. (ref14/cit14) 2013; 32 Templin M. F. (ref22/cit22) 2002; 20 Jung L. S. (ref30/cit30) 1998; 14 Jönsson U. (ref27/cit27) 1991; 11 Mashaghi A. (ref45/cit45) 2008; 80 Nilebäck E. (ref40/cit40) 2011; 28 Wolf P. (ref5/cit5) 1967; 13 Tjärnhage T. (ref50/cit50) 1996; 8 Karlsson R. (ref33/cit33) 1994; 6 Tarasova A. (ref47/cit47) 2008; 24 Dragovic R. A. (ref18/cit18) 2011; 7 Beyer C. (ref15/cit15) 2010; 6 Schneider A. (ref13/cit13) 2013; 352 Dong Y. (ref44/cit44) 2000; 72 Couture M. (ref28/cit28) 2013; 15 Caby M.-P. (ref1/cit1) 2005; 17 Im H. (ref60/cit60) 2014; 32 Hao S. (ref17/cit17) 2007; 22 Raposo G. (ref7/cit7) 1996; 183 Voller A. (ref59/cit59) 1978; 31 Logozzi M. (ref24/cit24) 2009; 4 Schmidt A. (ref43/cit43) 1992; 63 Admyre C. (ref12/cit12) 2008; 63 Gardiner C. (ref20/cit20) 2013; 1 Fischer H. (ref54/cit54) 2004; 13 De Jong L. A. A. (ref38/cit38) 2005; 829 György B. (ref11/cit11) 2011 Vogel R. (ref19/cit19) 2011; 83 Simpson R. J. (ref16/cit16) 2009; 6 Simpson R. J. (ref9/cit9) 2008; 8 ref41/cit41 Crescitelli R. (ref57/cit57) 2013; 2 Huotari J. (ref8/cit8) 2011; 30 Valadi H. (ref10/cit10) 2007; 9 |
References_xml | – volume: 17 start-page: 1759 year: 1978 ident: ref29/cit29 publication-title: Biopolymers doi: 10.1002/bip.1978.360170711 – volume: 29 start-page: 1042 year: 2000 ident: ref23/cit23 publication-title: Biotechniques doi: 10.2144/00295rv01 – volume: 32 start-page: 623 year: 2013 ident: ref14/cit14 publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-013-9441-9 – volume: 15 start-page: 11190 year: 2013 ident: ref28/cit28 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp50281c – volume: 28 start-page: 214 year: 2008 ident: ref25/cit25 publication-title: Electromagnetics doi: 10.1080/02726340801921650 – volume: 13 start-page: 269 year: 1967 ident: ref5/cit5 publication-title: Br. J. Haematol. doi: 10.1111/j.1365-2141.1967.tb08741.x – volume: 63 start-page: 404 year: 2008 ident: ref12/cit12 publication-title: Allergy doi: 10.1111/j.1398-9995.2007.01600.x – volume: 6 start-page: 99 year: 1994 ident: ref33/cit33 publication-title: Methods doi: 10.1006/meth.1994.1013 – volume: 28 start-page: 407 year: 2011 ident: ref40/cit40 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.07.060 – volume: 5 start-page: e8577 year: 2010 ident: ref3/cit3 publication-title: PLoS One doi: 10.1371/journal.pone.0008577 – volume: 4 start-page: e5219 year: 2009 ident: ref24/cit24 publication-title: PLoS One doi: 10.1371/journal.pone.0005219 – volume: 22 start-page: 3313 year: 2006 ident: ref49/cit49 publication-title: Langmuir doi: 10.1021/la0519554 – volume: 14 start-page: 5338 year: 2013 ident: ref6/cit6 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms14035338 – volume: 80 start-page: 3666 year: 2008 ident: ref45/cit45 publication-title: Anal. Chem. doi: 10.1021/ac800027s – volume: 6 start-page: 21 year: 2010 ident: ref15/cit15 publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2009.229 – volume: 31 start-page: 507 year: 1978 ident: ref59/cit59 publication-title: J. Clin. Pathol. doi: 10.1136/jcp.31.6.507 – volume: 83 start-page: 3499 year: 2011 ident: ref19/cit19 publication-title: Anal. Chem. doi: 10.1021/ac200195n – volume: 829 start-page: 1 year: 2005 ident: ref38/cit38 publication-title: J. Chromatogr. B doi: 10.1016/j.jchromb.2005.10.002 – volume: 4 start-page: 299 year: 1983 ident: ref26/cit26 publication-title: Sens. Actuators, A doi: 10.1016/0250-6874(83)85036-7 – volume: 9 start-page: 654 year: 2007 ident: ref10/cit10 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1596 – volume: 1820 start-page: 940 year: 2012 ident: ref56/cit56 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2012.03.017 – volume: 18 start-page: 1748 year: 2002 ident: ref58/cit58 publication-title: Langmuir doi: 10.1021/la0155707 – volume: 78 start-page: 487 year: 2000 ident: ref46/cit46 publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76611-2 – volume: 63 start-page: 2338 year: 1991 ident: ref31/cit31 publication-title: Anal. Chem. doi: 10.1021/ac00020a025 – volume: 11 start-page: 620 year: 1991 ident: ref27/cit27 publication-title: Biotechniques – volume: 17 start-page: 879 year: 2005 ident: ref1/cit1 publication-title: Int. Immunol. doi: 10.1093/intimm/dxh267 – volume: 352 start-page: 33 year: 2013 ident: ref13/cit13 publication-title: Cell Tissue Res. doi: 10.1007/s00441-012-1428-2 – volume: 334 start-page: 41 year: 2003 ident: ref36/cit36 publication-title: Clin. Chim. Acta doi: 10.1016/S0009-8981(03)00241-9 – volume: 183 start-page: 1161 year: 1996 ident: ref7/cit7 publication-title: J. Exp. Med. doi: 10.1084/jem.183.3.1161 – volume: 223 start-page: 55 year: 2001 ident: ref48/cit48 publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(01)00721-9 – volume: 7 start-page: 780 year: 2011 ident: ref18/cit18 publication-title: Nanomedicine doi: 10.1016/j.nano.2011.04.003 – volume: 135 start-page: 14151 year: 2013 ident: ref42/cit42 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4046313 – volume: 14 start-page: 5636 year: 1998 ident: ref30/cit30 publication-title: Langmuir doi: 10.1021/la971228b – volume: 9 start-page: 9 year: 2011 ident: ref39/cit39 publication-title: J. Transl. Med. doi: 10.1186/1479-5876-9-9 – volume: 2 start-page: 20677 year: 2013 ident: ref57/cit57 publication-title: J. Extracell. Vesicles doi: 10.3402/jev.v2i0.20677 – volume: 1 start-page: 19671 year: 2013 ident: ref20/cit20 publication-title: J. Extracell. Vesicles doi: 10.3402/jev.v2i0.19671 – volume: 22 start-page: 692 year: 2007 ident: ref17/cit17 publication-title: Cancer Biother. Radiopharm. – volume: 101 start-page: 13368 year: 2004 ident: ref2/cit2 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0403453101 – ident: ref35/cit35 – volume: 8 start-page: 712 year: 2012 ident: ref21/cit21 publication-title: Nanomedicine doi: 10.1016/j.nano.2011.09.006 – volume: 112 start-page: 900 year: 2000 ident: ref32/cit32 publication-title: J. Chem. Phys. doi: 10.1063/1.480617 – ident: ref34/cit34 – volume: 24 start-page: 7371 year: 2008 ident: ref47/cit47 publication-title: Langmuir doi: 10.1021/la8002959 – volume: 8 start-page: 39 year: 1996 ident: ref50/cit50 publication-title: Colloids Surf., B doi: 10.1016/S0927-7765(96)01309-4 – volume: 197 start-page: 689 year: 1981 ident: ref52/cit52 publication-title: Biochem. J. doi: 10.1042/bj1970689 – volume: 4 start-page: 55 year: 1978 ident: ref55/cit55 publication-title: Mol. Biol. Rep. doi: 10.1007/BF00775182 – volume: 6 start-page: 267 year: 2009 ident: ref16/cit16 publication-title: Expert Rev. Proteomics doi: 10.1586/epr.09.17 – volume: 179 start-page: 1969 year: 2007 ident: ref4/cit4 publication-title: J. Immunol. doi: 10.4049/jimmunol.179.3.1969 – volume: 20 start-page: 815 year: 2002 ident: ref22/cit22 publication-title: Drug Discovery Today doi: 10.1016/S1359-6446(00)01910-2 – volume: 38 start-page: 1052 year: 2010 ident: ref37/cit37 publication-title: Chin. J. Anal. Chem. doi: 10.1016/S1872-2040(09)60059-1 – volume: 30 start-page: 3481 year: 2011 ident: ref8/cit8 publication-title: EMBO J. doi: 10.1038/emboj.2011.286 – volume: 8 start-page: 4083 year: 2008 ident: ref9/cit9 publication-title: Proteomics doi: 10.1002/pmic.200800109 – volume: 63 start-page: 1385 year: 1992 ident: ref43/cit43 publication-title: Biophys. J. doi: 10.1016/S0006-3495(92)81715-0 – volume: 13 start-page: 2825 year: 2004 ident: ref54/cit54 publication-title: Protein Sci. doi: 10.1110/ps.04688204 – volume: 146 start-page: 330 year: 1991 ident: ref51/cit51 publication-title: J. Colloid doi: 10.1016/0021-9797(91)90198-H – start-page: 2667 year: 2011 ident: ref11/cit11 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-011-0689-3 – ident: ref41/cit41 – volume: 175 start-page: 720 year: 1972 ident: ref53/cit53 publication-title: Science doi: 10.1126/science.175.4023.720 – volume: 32 start-page: 490 year: 2014 ident: ref60/cit60 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2886 – volume: 72 start-page: 2371 year: 2000 ident: ref44/cit44 publication-title: Anal. Chem. doi: 10.1021/ac991450g |
SSID | ssj0011016 |
Score | 2.5080795 |
Snippet | Exosomes are cell-secreted nanometer-sized extracellular vesicles that have been reported to play an important role in intercellular communication. They are... |
SourceID | swepub proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5929 |
SubjectTerms | adsorption antibodies Binding sites Biochemistry Biomarkers Cell Biology cell communication Cellbiologi Condensed Matter Physics deformation Den kondenserade materiens fysik exosomes Exosomes - metabolism Free surfaces gene therapy humans Limit of Detection lipids mast cells membrane proteins Morphology Proteins Resonance Signal transduction Solutions spectroscopy Spectrum analysis surface plasmon resonance Surface Plasmon Resonance - methods |
Title | Determination of Exosome Concentration in Solution Using Surface Plasmon Resonance Spectroscopy |
URI | http://dx.doi.org/10.1021/ac500931f https://www.ncbi.nlm.nih.gov/pubmed/24848946 https://www.proquest.com/docview/1540586504 https://www.proquest.com/docview/1537183990 https://www.proquest.com/docview/2000328322 https://gup.ub.gu.se/publication/198546 https://research.chalmers.se/publication/198546 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Jb9UwEB6VcgAOLIVCoFRmEeKSksVOnCN6bVUhQEilUm-W46VFQPLUJBLw65nJpgd9hVtkj5XIY3u-yYy_AXgpPJ6K3JWhTrQJuRRRqOO8DNFyejwOHUJsuij84WN2dMLfnYrTDXhxRQQ_id9oI8jtjv01uJ5kaF8I_yyO51ABuZ9TWTyKok70QatDyfSY5k_TcwlP_kUW2huYwzuwP13TGfJKvu51bblnfl1mbfzXt9-F2yPAZG-HFXEPNly1BTcWU123Lbi1QkF4H9T-lA9DGmK1Zwc_6qb-7tiCLjRWI6su-1Kx6Q8a69MM2HF34bVx7BPib1zLjAIBxN7hGNW0b4kls17-fAAnhwefF0fhWHQh1EJkbWjLCBGUzPD0MdaLLE1LW0RWSCMNQjGBz-iTuNRYbqyzIhWxc4Z7LiLvcFi6DZtVXblHwHJZplzoMs-JFRAHOxFZNI6lxEMV3c4AdlEratw0jerj4Ums5lkL4PWkMGVGynKqnPFtnejzWXQ58HSsE9qZtL7yVsKsEoEqD-DZ3I06ociJrlzdkUyaE5Qsoqtl6M5TSoWfkgAeDitq_pKESy4LngXwalhicw-xe591S4VNZ51qnIoLKUjw_RrBkf_pXJnzvrhOQwMou1BbbdGXywrFtS6U9kIqb4o8dQk2ivzx_2b6CdxEJMgpBy7Od2CzvejcU0Rbbbnb77bfPNwjBQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHEoPBQotKaUYhBCXlDzsxDlWS6sFthVSW6k3y_GjRUCyahKp5dczkxdLWQS3VTLe9dqO55vM-PsIec0d7IrM5r6KlPaZ4IGvwjT3wXM62A4tQGw8KHx0nEzP2Mdzft7T5OBZGOhEBd9UtUn8X-wC4TulOUbfobtL7vGEJSjTsD85GTMGGIUO6niYTB1YhBabogfS1e8e6A9YeYsztPUzhw86waK2h215yde9ps739I9b5I3_9xcekvUebtL9bn08IndssUFWJ4PK2wZZWyAkfEzk-6E6BueLlo4eXJdV-d3SCR5vLHqOXfqloMP7NNoWHdCT5sopbelnQOOwsimmBZDLw1JUuK-RM7Oc3zwhZ4cHp5Op30sw-IrzpPZNHgCeEgnsRdo4nsRxbrLAcKGFBmDG4TNEKDbWhmljDY95aK1mjvHAWWgWb5KVoizsU0JTkceMqzxNkSMQGlseGHCVuYAtFoJQj-zCoMn-Eapkmx2PQjmOmkfeDvMmdU9gjjoa35aZvhpN5x1rxzKjnWHyF34VEawA2Mo88nK8DXOCeRRV2LJBmzhFYJkFf7fBE1AxykBFHtnqFtbYk4gJJjKWeORNt9LGO8j1fdHMJVy6aGRlZZgJjoazJYY9G9Sl1Jet1E6FDbDWUBllILJLMsmUyqRyXEinszS2EVzk6fa_RvoFWZ2eHs3k7MPxp2fkPmBEhtVxYbpDVuqrxj4HHFbnu-0D-BMyZytn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB5BkTgeOMoVKMUghPqSksNOnMdq21WBUiqVSn2zHB8tApJVs5GAX89MNomWsgjeVsk469hjzzeZ8TcAr4THXZG7MtSJNiGXIgp1nJchWk6P26FDiE0HhT8cZvsn_N2pOO0dRToLg51o8ElNF8SnVT2zvmcYiN9oI8gDj_1VuIZAJKZSDTuT4zFqQJ7oUCGPAqoDk9ByU7JCpvndCv0BLS_xhna2ZnoHPo697FJMvmy383Lb_LxE4Pj_r3EXbvewk-0s9OQeXHHVOtyYDNXe1uHWEjHhfVC7Q5YMzRurPdv7Xjf1N8cmdMyx6rl22eeKDd_VWJd8wI7bC6-NY0eIylHDGYUHiNPDMap0PyfuzHr24wGcTPc-TfbDvhRDqIXI5qEtI8RVMsM9yVgvsjQtbRFZIY00CNAE_kZPxaXGcmOdFamInTPccxF5h83Sh7BW1ZV7DCyXZcqFLvOcuAKxsRORRZNZStxq0RkNYBMHTvVLqVFdlDyJ1ThqAWwNc6dMT2RO9TS-rhJ9OYrOFuwdq4Q2BgVY-ldCshLhKw_gxXgb54TiKbpydUsyaU4As4j-LkMnoVIqB5UE8GihXGNPEi65LHgWwOuFto13iPP7rJ0pvHTWqsapuJCCBA9WCPasUOfKnHcldxpqQDmH2mqLHl5WKK51obQXUnlT5KlL8KLIn_xrpJ_D9aPdqTp4e_j-KdxEqMgpSS7ON2BtftG6ZwjH5uVmtwZ_AbSVLeE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+exosome+concentration+in+solution+using+surface+plasmon+resonance+spectroscopy&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Rupert%2C+D%C3%A9borah+L+M&rft.au=L%C3%A4sser%2C+Cecilia&rft.au=Eldh%2C+Maria&rft.au=Block%2C+Stephan&rft.date=2014-06-17&rft.eissn=1520-6882&rft.volume=86&rft.issue=12&rft.spage=5929&rft_id=info:doi/10.1021%2Fac500931f&rft_id=info%3Apmid%2F24848946&rft.externalDocID=24848946 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |