Principles of turbomachinery
The text is based on a course on turbomachinery which the author has taught since year 2000 as a technical elective. Topics include; Energy Transfer in Turbomachines, Gas and Steam Turbines, and Hydraulic Turbines. New material on wind turbines, and three-dimensional effects in axial turbomachines i...
Saved in:
Main Author | |
---|---|
Format | eBook Book |
Language | English |
Published |
Hoboken, N.J
WILEY
2012
Wiley John Wiley & Sons, Incorporated Wiley-Blackwell |
Edition | 1 |
Subjects | |
Online Access | Get full text |
ISBN | 9781118162446 9780470536728 0470536721 1118162447 1118162471 9781118162477 |
DOI | 10.1002/9781118162477 |
Cover
Table of Contents:
- Principles of turbomachinery -- Contents -- Foreword -- Acknowledgments -- Chapter 1: Introduction -- Chapter 2: Principles of Thermodynamics and Fluid Flow -- Chapter 3: Compressible Flow through Nozzles -- Chapter 4: Principles of Turbomachine Analysis -- Chapter 5: Steam Turbines -- Chapter 6: Axial Turbines -- Chapter 7: Axial Compressors -- Chapter 8: Centrifugal Compressors and Pumps -- Chapter 9: Radial Inflow Turbines -- Chapter 10: Hydraulic Turbines -- Chapter 11: Hydraulic Transmission of Power -- Chapter 12: Wind turbines -- Appendix A: Streamline curvature and radial equilibrium -- Appendix B: Thermodynamic Tables -- References -- Index
- Intro -- Principles of Turbomachinery -- CONTENTS -- Foreword -- Acknowledgments -- 1 Introduction -- 1.1 Energy and fluid machines -- 1.1.1 Energy conversion of fossil fuels -- 1.1.2 Steam turbines -- 1.1.3 Gas turbines -- 1.1.4 Hydraulic turbines -- 1.1.5 Wind turbines -- 1.1.6 Compressors -- 1.1.7 Pumps and blowers -- 1.1.8 Other uses and issues -- 1.2 Historical survey -- 1.2.1 Water power -- 1.2.2 Wind turbines -- 1.2.3 Steam turbines -- 1.2.4 Jet propulsion -- 1.2.5 Industrial turbines -- 1.2.6 Note on units -- 2 Principles of Thermodynamics and Fluid Flow -- 2.1 Mass conservation principle -- 2.2 First law of thermodynamics -- 2.3 Second law of thermodynamics -- 2.3.1 Tds equations -- 2.4 Equations of state -- 2.4.1 Properties of steam -- 2.4.2 Ideal gases -- 2.4.3 Air tables and isentropic relations -- 2.4.4 Ideal gas mixtures -- 2.4.5 Incompressibility -- 2.4.6 Stagnation state -- 2.5 Efficiency -- 2.5.1 Efficiency measures -- 2.5.2 Thermodynamic losses -- 2.5.3 Incompressible fluid -- 2.5.4 Compressible flows -- 2.6 Momentum balance -- Exercises -- 3 Compressible Flow through Nozzles -- 3.1 Mach number and the speed of sound -- 3.1.1 Mach number relations -- 3.2 Isentropic flow with area change -- 3.2.1 Converging nozzle -- 3.2.2 Converging-diverging nozzle -- 3.3 Normal shocks -- 3.3.1 Rankine-Hugoniot relations -- 3.4 Influence of friction in flow through straight nozzles -- 3.4.1 Polytropic efficiency -- 3.4.2 Loss coefficients -- 3.4.3 Nozzle efficiency -- 3.4.4 Combined Fanno flow and area change -- 3.5 Supersaturation -- 3.6 Prandtl-Meyer expansion -- 3.6.1 Mach waves -- 3.6.2 Prandtl-Meyer theory -- 3.7 Flow leaving a turbine nozzle -- Exercises -- 4 Principles of Turbomachine Analysis -- 4.1 Velocity triangles -- 4.2 Moment of momentum balance -- 4.3 Energy transfer in turbomachines
- Exercises -- 12 Wind turbines -- 12.1 Horizontal-axis wind turbine -- 12.2 Momentum and blade element theory of wind turbines -- 12.2.1 Momentum Theory -- 12.2.2 Ducted wind turbine -- 12.2.3 Blade element theory and wake rotation -- 12.2.4 Irrotational wake -- 12.3 Blade Forces -- 12.3.1 Nonrotating wake -- 12.3.2 Wake with rotation -- 12.3.3 Ideal wind turbine -- 12.3.4 Prandtl's tip correction -- 12.4 Turbomachinery and future prospects for energy -- Exercises -- Appendix A: Streamline curvature and radial equilibrium -- A.1 Streamline curvature method -- A.1.1 Fundamental equations -- A.1.2 Formal solution -- Appendix B: Thermodynamic Tables -- References -- Index
- 7.4.1 Momentum thickness of a boundary layer -- 7.5 Efficiency and losses -- 7.5.1 Efficiency -- 7.5.2 Parametric calculations -- 7.6 Cascade aerodynamics -- 7.6.1 Blade shapes and terms -- 7.6.2 Blade forces -- 7.6.3 Other losses -- 7.6.4 Diffuser performance -- 7.6.5 Flow deviation and incidence -- 7.6.6 Multistage compressor -- 7.6.7 Compressibility effects -- Exercises -- 8 Centrifugal Compressors and Pumps -- 8.1 Compressor analysis -- 8.1.1 Slip factor -- 8.1.2 Pressure ratio -- 8.2 Inlet design -- 8.2.1 Choking of the inducer -- 8.3 Exit design -- 8.3.1 Performance characteristics -- 8.3.2 Diffusion ratio -- 8.3.3 Blade height -- 8.4 Vaneless diffuser -- 8.5 Centrifugal pumps -- 8.5.1 Specific speed and specific diameter -- 8.6 Fans -- 8.7 Cavitation -- 8.8 Diffuser and volute design -- 8.8.1 Vaneless diffuser -- 8.8.2 Volute design -- Exercises -- 9 Radial Inflow Turbines -- 9.1 Turbine analysis -- 9.2 Efficiency -- 9.3 Specific speed and specific diameter -- 9.4 Stator flow -- 9.4.1 Loss coefficients for stator flow -- 9.5 Design of the inlet of a radial inflow turbine -- 9.5.1 Minimum inlet Mach number -- 9.5.2 Blade stagnation Mach number -- 9.5.3 Inlet relative Mach number -- 9.6 Design of the Exit -- 9.6.1 Minimum exit Mach number -- 9.6.2 Radius ratio r3s/r2 -- 9.6.3 Blade height-to-radius ratio b2/r2 -- 9.6.4 Optimum incidence angle and the number of blades -- Exercises -- 10 Hydraulic Turbines -- 10.1 Hydroelectric Power Plants -- 10.2 Hydraulic turbines and their specific speed -- 10.3 Pelton wheel -- 10.4 Francis turbine -- 10.5 Kaplan turbine -- 10.6 Cavitation -- Exercises -- 11 Hydraulic Transmission of Power -- 11.1 Fluid couplings -- 11.1.1 Fundamental relations -- 11.1.2 Flow rate and hydrodynamic losses -- 11.1.3 Partially filled coupling -- 11.2 Torque converters -- 11.2.1 Fundamental relations -- 11.2.2 Performance
- 4.3.1 Trothalpy and specific work in terms of velocities -- 4.3.2 Degree of reaction -- 4.4 Utilization -- 4.5 Scaling and similitude -- 4.5.1 Similitude -- 4.5.2 Incompressible flow -- 4.5.3 Shape parameter or specific speed -- 4.5.4 Compressible flow analysis -- 4.6 Performance characteristics -- 4.6.1 Compressor performance map -- 4.6.2 Turbine performance map -- Exercises -- 5 Steam Turbines -- 5.1 Introduction -- 5.2 Impulse turbines -- 5.2.1 Single-stage impulse turbine -- 5.2.2 Pressure compounding -- 5.2.3 Blade shapes -- 5.2.4 Velocity compounding -- 5.3 Stage with zero reaction -- 5.4 Loss coefficients -- Exercises -- 6 Axial Turbines -- 6.1 Introduction -- 6.2 Turbine stage analysis -- 6.3 Flow and loading coefficients and reaction ratio -- 6.3.1 Fifty percent (50%) stage -- 6.3.2 Zero percent (0%) reaction stage -- 6.3.3 Off-design operation -- 6.4 Three-dimensional flow -- 6.5 Radial equilibrium -- 6.5.1 Free vortex flow -- 6.5.2 Fixed blade angle -- 6.6 Constant mass flux -- 6.7 Turbine efficiency and losses -- 6.7.1 Soderberg loss coefficients -- 6.7.2 Stage efficiency -- 6.7.3 Stagnation pressure losses -- 6.7.4 Performance charts -- 6.7.5 Zweifel correlation -- 6.7.6 Further discussion of losses -- 6.7.7 Ainley-Mathieson correlation -- 6.7.8 Secondary loss -- 6.8 Multistage turbine -- 6.8.1 Reheat factor in a multistage turbine -- 6.8.2 Polytropic or small-stage efficiency -- Exercises -- 7 Axial Compressors -- 7.1 Compressor stage analysis -- 7.1.1 Stage temperature and pressure rise -- 7.1.2 Analysis of a repeating stage -- 7.2 Design deflection -- 7.2.1 Compressor performance map -- 7.3 Radial equilibrium -- 7.3.1 Modified free vortex velocity distribution -- 7.3.2 Velocity distribution with zero-power exponent -- 7.3.3 Velocity distribution with first-power exponent -- 7.4 Diffusion factor