Art-175 Is a Highly Efficient Antibacterial against Multidrug-Resistant Strains and Persisters of Pseudomonas aeruginosa

Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-08...

Full description

Saved in:
Bibliographic Details
Published inAntimicrobial agents and chemotherapy Vol. 58; no. 7; pp. 3774 - 3784
Main Authors Briers, Yves, Walmagh, Maarten, Grymonprez, Barbara, Biebl, Manfred, Pirnay, Jean-Paul, Defraine, Valerie, Michiels, Jan, Cenens, William, Aertsen, Abram, Miller, Stefan, Lavigne, Rob
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.07.2014
Subjects
Online AccessGet full text
ISSN0066-4804
1098-6596
1098-6596
DOI10.1128/AAC.02668-14

Cover

Abstract Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and kill Pseudomonas aeruginosa , including multidrug-resistant strains, in a rapid and efficient (∼5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect against P. aeruginosa persisters (up to >4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections.
AbstractList Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and kill Pseudomonas aeruginosa, including multidrug-resistant strains, in a rapid and efficient (∼5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect against P. aeruginosa persisters (up to >4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections.
Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and kill Pseudomonas aeruginosa, including multidrug-resistant strains, in a rapid and efficient ( similar to 5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect against P. aeruginosa persisters (up to >4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections.
Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and kill Pseudomonas aeruginosa , including multidrug-resistant strains, in a rapid and efficient (∼5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect against P. aeruginosa persisters (up to >4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections.
Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and kill Pseudomonas aeruginosa, including multidrug-resistant strains, in a rapid and efficient (∼ 5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect against P. aeruginosa persisters (up to >4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections.Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and kill Pseudomonas aeruginosa, including multidrug-resistant strains, in a rapid and efficient (∼ 5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect against P. aeruginosa persisters (up to >4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections.
Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which degrades the peptidoglycan, with a targeting peptide that transports the endolysin through the outer membrane of Gram-negative bacteria. Art-085, as well as Art-175, its optimized homolog with increased thermostability, are each composed of the sheep myeloid 29-amino acid (SMAP-29) peptide fused to the KZ144 endolysin. In contrast to KZ144, Art-085 and Art-175 pass the outer membrane and kill Pseudomonas aeruginosa, including multidrug-resistant strains, in a rapid and efficient (∼ 5 log units) manner. Time-lapse microscopy confirms that Art-175 punctures the peptidoglycan layer within 1 min, inducing a bulging membrane and complete lysis. Art-175 is highly refractory to resistance development by naturally occurring mutations. In addition, the resistance mechanisms against 21 therapeutically used antibiotics do not show cross-resistance to Art-175. Since Art-175 does not require an active metabolism for its activity, it has a superior bactericidal effect against P. aeruginosa persisters (up to >4 log units compared to that of the untreated controls). In summary, Art-175 is a novel antibacterial that is well suited for a broad range of applications in hygiene and veterinary and human medicine, with a unique potential to target persister-driven chronic infections.
Author Michiels, Jan
Briers, Yves
Lavigne, Rob
Walmagh, Maarten
Pirnay, Jean-Paul
Cenens, William
Grymonprez, Barbara
Defraine, Valerie
Biebl, Manfred
Aertsen, Abram
Miller, Stefan
Author_xml – sequence: 1
  givenname: Yves
  surname: Briers
  fullname: Briers, Yves
  organization: Laboratory of Gene Technology, Department Biosystems, KU Leuven, Heverlee, Belgium
– sequence: 2
  givenname: Maarten
  surname: Walmagh
  fullname: Walmagh, Maarten
  organization: Laboratory of Gene Technology, Department Biosystems, KU Leuven, Heverlee, Belgium
– sequence: 3
  givenname: Barbara
  surname: Grymonprez
  fullname: Grymonprez, Barbara
  organization: Laboratory of Gene Technology, Department Biosystems, KU Leuven, Heverlee, Belgium
– sequence: 4
  givenname: Manfred
  surname: Biebl
  fullname: Biebl, Manfred
  organization: Lisando GmbH, Regensburg, Germany
– sequence: 5
  givenname: Jean-Paul
  surname: Pirnay
  fullname: Pirnay, Jean-Paul
  organization: Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
– sequence: 6
  givenname: Valerie
  surname: Defraine
  fullname: Defraine, Valerie
  organization: Centre of Microbial and Plant Genetics, Department Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium
– sequence: 7
  givenname: Jan
  surname: Michiels
  fullname: Michiels, Jan
  organization: Centre of Microbial and Plant Genetics, Department Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium
– sequence: 8
  givenname: William
  surname: Cenens
  fullname: Cenens, William
  organization: Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium
– sequence: 9
  givenname: Abram
  surname: Aertsen
  fullname: Aertsen, Abram
  organization: Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, Heverlee, Belgium
– sequence: 10
  givenname: Stefan
  surname: Miller
  fullname: Miller, Stefan
  organization: Lisando GmbH, Regensburg, Germany
– sequence: 11
  givenname: Rob
  surname: Lavigne
  fullname: Lavigne, Rob
  organization: Laboratory of Gene Technology, Department Biosystems, KU Leuven, Heverlee, Belgium
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28577231$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24752267$$D View this record in MEDLINE/PubMed
BookMark eNqNkdtrFDEUxoNU7Lb65rPkRVBwapLJbV6EZam2ULF4eQ5nZpJtymxSk4zY_96su_WGgi8Jyfmd7-TLd4QOQgwWoceUnFDK9MvlcnVCmJS6ofweWlDS6UaKTh6gBSFSNlwTfoiOcr4m9Sw68gAdMq4EY1It0NdlKg1VAp9nDPjMr6-mW3zqnB-8DQUvQ_E9DMUmDxOGNfiQC347T8WPaV437232uUAlP5S0LWIII760aXtdVxwdvsx2HuMmBqhVW7t8iBkeovsOpmwf7fdj9On16cfVWXPx7s35annRgOCqNOOoR-ac66xQrXKMj5Ty3vYgbNvpXttOaTuIQXZKts7JERTjAI4NohfKkvYYvdrp3sz9xo5DdZVgMjfJbyDdmgje_F4J_sqs4xfDidSCtVXg2V4gxc-zzcVsfB7sNEGwcc6GCt7JlrKO_w-qtJRUsoo-36GQN8xcxzmF-guGErMN1dRQzfdQDd3KPvnVwo-336VYgad7APIAk0sQBp9_clooxVpaObbjhhRzTtaZwRcoPm6d--lf01_80XSn-1f8GzWgy-w
CODEN AACHAX
CitedBy_id crossref_primary_10_1016_j_ijpharm_2020_119833
crossref_primary_10_1155_2017_3780697
crossref_primary_10_3390_life11121384
crossref_primary_10_1080_1040841X_2020_1809346
crossref_primary_10_3934_microbiol_2019_2_158
crossref_primary_10_1016_j_copbio_2020_08_014
crossref_primary_10_1111_1541_4337_12757
crossref_primary_10_3390_foods14061075
crossref_primary_10_3109_07388551_2014_993587
crossref_primary_10_1007_s10930_024_10195_z
crossref_primary_10_1016_j_drup_2018_03_002
crossref_primary_10_1007_s12250_014_3535_6
crossref_primary_10_3389_fmicb_2021_748718
crossref_primary_10_3390_ijms252313111
crossref_primary_10_1016_j_drudis_2018_01_026
crossref_primary_10_1038_s41392_024_01866_5
crossref_primary_10_1146_annurev_virology_092818_015644
crossref_primary_10_1007_s12223_019_00750_y
crossref_primary_10_1128_AAC_00024_19
crossref_primary_10_1128_aem_00581_23
crossref_primary_10_1007_s00253_020_10862_y
crossref_primary_10_1016_j_fm_2021_103791
crossref_primary_10_3390_v10060292
crossref_primary_10_2147_IDR_S348700
crossref_primary_10_3389_fmicb_2022_821936
crossref_primary_10_1080_1040841X_2020_1822278
crossref_primary_10_1128_AAC_00686_17
crossref_primary_10_1016_j_ijbiomac_2024_132990
crossref_primary_10_1080_17460913_2024_2393003
crossref_primary_10_1093_infdis_jiae027
crossref_primary_10_1007_s12250_014_3546_3
crossref_primary_10_1038_srep35382
crossref_primary_10_3389_fmicb_2025_1526096
crossref_primary_10_31083_FBL24478
crossref_primary_10_3390_antibiotics10121497
crossref_primary_10_3390_polysaccharides3020018
crossref_primary_10_1038_nrmicro_2017_42
crossref_primary_10_3390_ijms241210375
crossref_primary_10_3390_antibiotics9050268
crossref_primary_10_1007_s12223_023_01046_y
crossref_primary_10_1080_1040841X_2020_1825333
crossref_primary_10_1016_j_foodcont_2022_109521
crossref_primary_10_1016_j_mib_2024_102433
crossref_primary_10_3390_v16050760
crossref_primary_10_3390_cells12152016
crossref_primary_10_1128_spectrum_01813_23
crossref_primary_10_1080_21597081_2015_1062590
crossref_primary_10_3389_fmicb_2016_00825
crossref_primary_10_3390_antibiotics7020029
crossref_primary_10_1186_s12866_023_02881_2
crossref_primary_10_3389_fphar_2024_1385261
crossref_primary_10_1016_j_ijantimicag_2019_11_001
crossref_primary_10_1111_jam_12881
crossref_primary_10_1128_AEM_00900_15
crossref_primary_10_3390_v17020200
crossref_primary_10_1021_acscentsci_0c00893
crossref_primary_10_3389_fmicb_2018_00129
crossref_primary_10_3390_v15030679
crossref_primary_10_2478_s11756_020_00508_9
crossref_primary_10_3389_fmicb_2022_841905
crossref_primary_10_1111_apm_13455
crossref_primary_10_1186_s13567_018_0563_5
crossref_primary_10_3390_v10040163
crossref_primary_10_15252_embr_202357309
crossref_primary_10_1186_s12929_024_01027_4
crossref_primary_10_22207_JPAM_17_1_05
crossref_primary_10_3184_003685016X14627913637705
crossref_primary_10_1021_acssynbio_7b00058
crossref_primary_10_3389_fmicb_2017_01917
crossref_primary_10_2217_fmb_15_8
crossref_primary_10_1128_AEM_00446_16
crossref_primary_10_3390_antibiotics14020162
crossref_primary_10_1042_BST20150192
crossref_primary_10_1016_j_mehy_2024_111484
crossref_primary_10_1016_j_biotechadv_2023_108250
crossref_primary_10_3390_gels10010060
crossref_primary_10_3390_antibiotics9080466
crossref_primary_10_1016_j_molcel_2019_09_028
crossref_primary_10_1093_jac_dky208
crossref_primary_10_1080_1040841X_2021_1975643
crossref_primary_10_1016_j_biotechadv_2017_12_009
crossref_primary_10_1016_j_copbio_2015_10_005
crossref_primary_10_1128_AAC_00836_17
crossref_primary_10_1080_1040841X_2022_2125286
crossref_primary_10_36233_0372_9311_250
crossref_primary_10_3390_ijms17071141
crossref_primary_10_1128_AEM_01311_20
crossref_primary_10_3389_fmicb_2016_00208
crossref_primary_10_3389_fmicb_2021_657753
crossref_primary_10_1016_j_ijbiomac_2025_140463
crossref_primary_10_1016_j_micres_2021_126746
crossref_primary_10_1002_bit_28581
crossref_primary_10_1016_j_virusres_2024_199473
crossref_primary_10_4014_jmb_2205_05009
crossref_primary_10_3390_antibiotics11060712
crossref_primary_10_3390_antibiotics7010017
crossref_primary_10_1080_1040841X_2023_2181056
crossref_primary_10_1126_sciadv_aaz1136
crossref_primary_10_1007_s00705_020_04861_7
crossref_primary_10_1007_s00449_023_02938_6
crossref_primary_10_1016_j_pep_2018_12_002
crossref_primary_10_1007_s40121_021_00446_2
crossref_primary_10_1016_j_resmic_2023_104104
crossref_primary_10_3390_antibiotics10101143
crossref_primary_10_1016_j_lwt_2019_108372
crossref_primary_10_1080_21655979_2016_1222993
crossref_primary_10_1128_Spectrum_00546_21
crossref_primary_10_3390_jcm13010171
crossref_primary_10_1093_jacamr_dlae017
crossref_primary_10_3390_biom10030440
crossref_primary_10_1186_s13054_017_1681_6
crossref_primary_10_3389_fmicb_2016_00470
crossref_primary_10_3389_fmicb_2015_01471
crossref_primary_10_3389_fmicb_2023_1170418
crossref_primary_10_1093_femsre_fux001
crossref_primary_10_1111_1751_7915_14465
crossref_primary_10_1016_j_ijpharm_2023_123758
crossref_primary_10_1016_j_foodres_2025_116318
crossref_primary_10_3389_fmicb_2022_854908
crossref_primary_10_3390_antibiotics12061044
crossref_primary_10_1111_1541_4337_13145
crossref_primary_10_3390_microorganisms7030084
crossref_primary_10_1111_jam_13251
crossref_primary_10_1128_spectrum_05261_22
crossref_primary_10_1007_s00253_016_7858_0
crossref_primary_10_1080_1040841X_2016_1271309
crossref_primary_10_3389_fimmu_2018_02252
crossref_primary_10_1016_j_foodcont_2021_108460
crossref_primary_10_3390_antibiotics8020070
crossref_primary_10_3390_ijms21144894
crossref_primary_10_1080_07388551_2024_2399530
crossref_primary_10_1371_journal_pone_0192507
crossref_primary_10_1016_j_tibtech_2018_04_006
crossref_primary_10_1186_s13568_019_0838_x
crossref_primary_10_3390_v12050545
crossref_primary_10_3389_fmicb_2014_00542
crossref_primary_10_1007_s12033_021_00325_8
crossref_primary_10_1128_mBio_00209_20
crossref_primary_10_1021_acsinfecdis_1c00222
crossref_primary_10_1042_EBC20240019
crossref_primary_10_3389_fcimb_2016_00194
crossref_primary_10_1093_femsre_fux022
crossref_primary_10_1038_nrmicro_2017_61
crossref_primary_10_3390_v11030284
crossref_primary_10_1016_j_drup_2016_10_002
crossref_primary_10_3389_fmicb_2017_02409
crossref_primary_10_1128_AAC_00285_16
crossref_primary_10_1128_AEM_01515_21
Cites_doi 10.1046/j.0014-2956.2002.02751.x
10.1038/nrmicro1441
10.1128/AEM.02440-10
10.1093/jac/dkg293
10.1093/infdis/jit637
10.1016/j.tim.2005.08.007
10.1111/j.1365-2958.2007.05870.x
10.1371/journal.pgen.1003269
10.1103/PhysRevE.83.041922
10.1099/jmm.0.030932-0
10.1038/nature10069
10.1126/science.1066869
10.2217/fmb.12.97
10.1002/ddr.20329
10.1080/713610448
10.1038/nature01026
10.1128/CMR.00030-10
10.1111/j.1365-2672.2010.04931.x
10.1016/j.copbio.2010.10.012
10.1146/annurev.micro.112408.134306
10.1016/j.chom.2008.02.003
10.1128/AAC.00890-10
10.1038/nrd2201
10.1016/j.bbapap.2008.11.005
10.1128/AAC.48.2.673-676.2004
10.1086/521367
10.1016/j.clinthera.2011.12.003
10.1016/B978-0-12-394438-2.00007-4
10.1517/13543784.2014.848853
10.1111/j.1365-2672.2007.03498.x
10.1016/S0140-6736(97)80051-7
10.1111/j.1574-6968.2009.01657.x
10.1099/jmm.0.061028-0
10.1073/pnas.1203472109
10.1038/nrmicro2453
10.1159/000331009
10.1086/524891
10.1016/S0966-842X(00)01705-4
10.1128/AAC.02462-13
10.1111/j.1574-6968.2007.01051.x
10.1046/j.1462-2920.2002.00281.x
10.1016/j.bbrc.2009.03.161
10.1128/JB.01651-09
10.1038/nbt1267
10.1016/S0014-5793(99)01600-2
10.1046/j.1462-2920.2002.00321.x
10.1128/br.36.4.407-477.1972
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
8FD
C1K
FR3
P64
7X8
5PM
DOI 10.1128/AAC.02668-14
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Bacteriology Abstracts (Microbiology B)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database

MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1098-6596
EndPage 3784
ExternalDocumentID PMC4068523
02668-14
24752267
28577231
10_1128_AAC_02668_14
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
AAGFI
AAYXX
ACGFO
ADBBV
AENEX
AGNAY
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
HZ~
H~9
J5H
K-O
KQ8
L7B
LSO
MVM
NEJ
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UHB
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
X7N
XOL
Y6R
ZGI
ZXP
~A~
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
-
0R
55
AAPBV
ABFLS
ADACO
BXI
HZ
RHF
ZA5
7QL
7T7
8FD
C1K
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-a547t-dd8d2fff9e5737f24d114beba5e398b8e978ec5c69763ff6da724aaf2c5b57e03
ISSN 0066-4804
1098-6596
IngestDate Thu Aug 21 13:55:13 EDT 2025
Fri Sep 05 10:39:44 EDT 2025
Fri Sep 05 02:46:33 EDT 2025
Tue Dec 28 13:59:13 EST 2021
Thu Apr 03 07:07:35 EDT 2025
Wed Apr 02 07:37:54 EDT 2025
Tue Jul 01 04:32:22 EDT 2025
Thu Apr 24 22:56:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Pseudomonadales
Persistent infection
Multiple resistance
Bacteria
Pseudomonadaceae
Pseudomonas aeruginosa
Antibacterial agent
Mechanism of action
Strain
Language English
License CC BY 4.0
Copyright © 2014, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a547t-dd8d2fff9e5737f24d114beba5e398b8e978ec5c69763ff6da724aaf2c5b57e03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://doi.org/10.1128/AAC.02668-14
PMID 24752267
PQID 1547866162
PQPubID 23462
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4068523
proquest_miscellaneous_1549631294
proquest_miscellaneous_1547866162
asm2_journals_10_1128_AAC_02668_14
pubmed_primary_24752267
pascalfrancis_primary_28577231
crossref_citationtrail_10_1128_AAC_02668_14
crossref_primary_10_1128_AAC_02668_14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Antimicrobial agents and chemotherapy
PublicationTitleAbbrev Antimicrob Agents Chemother
PublicationTitleAlternate Antimicrob Agents Chemother
PublicationYear 2014
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
CLSI (e_1_3_3_32_2) 2012
Centers for Disease Control and Prevention (CDC) (e_1_3_3_6_2) 2013
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
European Parliament (e_1_3_3_7_2) 2011
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
10601638 - FEBS Lett. 1999 Dec 10;463(1-2):58-62
9033483 - Lancet. 1997 Feb 8;349(9049):418-22
12534469 - Environ Microbiol. 2002 Dec;4(12):872-82
22284993 - Clin Ther. 2012 Jan;34(1):1-13
10707065 - Trends Microbiol. 2000 Mar;8(3):120-8
21562562 - Nature. 2011 May 12;473(7346):216-20
22679291 - Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9857-62
18171378 - J Appl Microbiol. 2008 Jan;104(1):1-13
20528688 - Annu Rev Microbiol. 2010;64:357-72
11739958 - Science. 2001 Dec 7;294(5549):2170-2
17159923 - Nat Rev Drug Discov. 2007 Jan;6(1):29-40
19100346 - Biochim Biophys Acta. 2009 May;1794(5):808-16
23483857 - PLoS Genet. 2013;9(2):e1003269
21459912 - J Med Microbiol. 2011 Jun;60(Pt 6):699-709
12192412 - Nature. 2002 Aug 22;418(6900):884-9
23030422 - Future Microbiol. 2012 Oct;7(10):1147-71
17763333 - J Infect Dis. 2007 Oct 1;196(7):1088-92
24215473 - Expert Opin Investig Drugs. 2014 Feb;23(2):163-82
16125935 - Trends Microbiol. 2005 Oct;13(10):491-6
14742236 - Antimicrob Agents Chemother. 2004 Feb;48(2):673-6
4568761 - Bacteriol Rev. 1972 Dec;36(4):407-77
21093250 - Curr Opin Biotechnol. 2011 Apr;22(2):164-71
21894027 - J Mol Microbiol Biotechnol. 2011;20(4):228-35
11856344 - Eur J Biochem. 2002 Feb;269(4):1181-9
18248421 - FEMS Microbiol Lett. 2008 Mar;280(1):113-9
17160061 - Nat Biotechnol. 2006 Dec;24(12):1551-7
21098252 - Antimicrob Agents Chemother. 2011 Feb;55(2):738-44
16778838 - Nat Rev Microbiol. 2006 Jul;4(7):529-36
21233508 - Clin Microbiol Rev. 2011 Jan;24(1):71-109
12805262 - J Antimicrob Chemother. 2003 Jul;52(1):5-7
19348786 - Biochem Biophys Res Commun. 2009 May 29;383(2):187-91
24637685 - Antimicrob Agents Chemother. 2014 Jun;58(6):3091-9
14582617 - Crit Rev Microbiol. 2003;29(3):191-214
18329613 - Cell Host Microbe. 2008 Mar 13;3(3):137-45
17697255 - Mol Microbiol. 2007 Sep;65(5):1334-44
21241420 - J Appl Microbiol. 2011 Mar;110(3):778-85
21599215 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 1):041922
18171244 - Clin Infect Dis. 2008 Jan 15;46(2):155-64
21622798 - Appl Environ Microbiol. 2011 Jul;77(14):4878-85
19508279 - FEMS Microbiol Lett. 2009 Aug;297(1):73-9
20972452 - Nat Rev Microbiol. 2010 Dec;8(12):890-6
12534471 - Environ Microbiol. 2002 Dec;4(12):898-911
22748813 - Adv Virus Res. 2012;83:299-365
23813275 - J Med Microbiol. 2013 Oct;62(Pt 10):1506-16
20935098 - J Bacteriol. 2010 Dec;192(23):6191-9
24286983 - J Infect Dis. 2014 May 1;209(9):1469-78
Lancaster, JW, Matthews, SJ (B4) 2012; 34
Tack, BF, Sawai, MV, Kearney, WR, Robertson, AD, Sherman, MA, Wang, W, Hong, T, Boo, LM, Wu, H, Waring, AJ, Lehrer, RI (B26) 2002; 269
Chen, X, Zhang, M, Zhou, C, Kallenbach, NR, Ren, D (B32) 2011; 77
Lukacik, P, Barnard, TJ, Keller, PW, Chaturvedi, KS, Seddiki, N, Fairman, JW, Noinaj, N, Kirby, TL, Henderson, JP, Steven, AC, Hinnebusch, BJ, Buchanan, SK (B39) 2012; 109
Cabot, G, Bruchmann, S, Mulet, X, Zamorano, L, Moyà, B, Juan, C, Haussler, S, Oliver, A (B42) 2014
Spellberg, B, Guidos, R, Gilbert, D, Bradley, J, Boucher, HW, Scheld, WM, Bartlett, JG, Edwards, J (B1) 2008; 46
Ernst, RK, Moskowitz, SM, Emerson, JC, Kraig, GM, Adams, KN, Harvey, MD, Ramsey, B, Speert, DP, Burns, JL, Miller, SI (B43) 2007; 196
Masschalck, B, Michiels, CW (B50) 2003; 29
Schuch, R, Lee, HM, Schneider, BC, Sauve, KL, Law, C, Khan, BK, Rotolo, JA, Horiuchi, Y, Couto, DE, Raz, A, Fischetti, VA, Huang, DB, Nowinski, RC, Wittekind, M (B34) 2013
Allison, KR, Brynildsen, MP, Collins, J (B46) 2011; 473
Dawson, RM, Liu, CQ (B15) 2009; 70
Anderson, RC, Hancock, REW, Yu, PL (B35) 2004; 48
Kümmerer, K (B44) 2003; 52
Payne, DJ, Gwynn, MN, Holmes, DJ, Pompliano, DL (B9) 2007; 6
Fauvart, M, De Groote, VN, Michiels, J (B45) 2011; 60
Mulcahy, LR, Burns, JL, Lory, S, Lewis, K (B49) 2010; 192
Pastagia, M, Schuch, R, Fischetti, VA, Huang, DB (B19) 2013; 62
Schuch, R, Nelson, D, Fischetti, VA (B21) 2002; 418
Pirnay, JP, De Vos, D, Cochez, C, Bilocq, F, Vanderkelen, A, Zizi, M, Ghysels, B, Cornelis, P (B28) 2002; 4
Lewis, K (B8) 2010; 64
Briers, Y, Cornelissen, A, Aertsen, A, Hertveldt, K, Michiels, CW, Volckaert, G, Lavigne, R (B38) 2008; 280
(B5) 2013
Dworkin, J, Shah, IM (B48) 2010; 8
Xu, ZQ, Flavin, MT, Flavin, J (B2) 2014; 23
Schmelcher, M, Donovan, DM, Loessner, MJ (B18) 2012; 7
Peschel, A, Sahl, H-G (B41) 2006; 4
Parisien, A, Allain, B, Zhang, J, Mandeville, R, Lan, CQ (B11) 2008; 104
Baltzer, SA, Brown, MH (B13) 2011; 20
Skerlavaj, B, Benincasa, M, Risso, A, Zanetti, M, Gennaro, R (B24) 1999; 46
Cenens, W, Mebrhatu, MT, Makumi, A, Ceyssens, PJ, Lavigne, R, Van Houdt, R, Taddei, F, Aertsen, A (B30) 2013; 9
(B31) 2012
Silver, LL (B3) 2011; 24
Briers, Y, Volckaert, G, Cornelissen, A, Lagaert, S, Michiels, CW, Hertveldt, K, Lavigne, R (B25) 2007; 65
Daly, KE, Huang, KC, Wingreen, NS, Mukhopadhyay, R (B37) 2011; 83
Callewaert, L, Walmagh, M, Michiels, CW, Lavigne, R (B17) 2011; 22
Young, R, Wang, I, Roof, WD (B16) 2000; 8
Pirnay, JP, De Vos, D, Mossialos, D, Vanderkelen, A, Cornelis, P, Zizi, M (B29) 2002; 4
Nelson, DC, Schmelcher, M, Rodriguez-Rubio, L, Klumpp, J, Pritchard, DG, Dong, S, Donovan, DM (B12) 2012; 83
Delcour, AH (B7) 2009; 1794
Hancock, RE, Sahl, HG (B10) 2006; 24
Hancock, RE (B14) 1997; 349
Fischetti, VA (B40) 2005; 13
Loeffler, JM, Nelson, D, Fischetti, VA (B20) 2001; 294
Bryk, R, Gold, B, Venugopal, A, Singh, J, Samy, R, Pupek, K, Cao, H, Popescu, C, Gurney, M, Hotha, S, Cherian, J, Rhee, K, Ly, L, Converse, PJ, Ehrt, S, Vandal, O, Jiang, X, Schneider, J, Lin, G, Nathan, C (B47) 2008; 3
Schleifer, H, Kandler, O (B36) 1972; 36
Pastagia, M, Euler, C, Chahales, P, Fuentes-Duculan, J, Krueger, JG, Fischetti, VA (B22) 2011; 55
Briers, Y, Schmelcher, M, Loessner, MJ, Hendrix, J, Engelborghs, Y, Volckaert, G, Lavigne, R (B27) 2009; 383
(B6) 2011
Briers, Y, Walmagh, M, Lavigne, R (B23) 2011; 110
De Groote, VN, Verstraeten, N, Fauvart, M, Kint, CI, Verbeeck, AM, Beullens, S, Cornelis, P, Michiels, J (B33) 2009; 297
References_xml – ident: e_1_3_3_27_2
  doi: 10.1046/j.0014-2956.2002.02751.x
– ident: e_1_3_3_42_2
  doi: 10.1038/nrmicro1441
– ident: e_1_3_3_33_2
  doi: 10.1128/AEM.02440-10
– ident: e_1_3_3_45_2
  doi: 10.1093/jac/dkg293
– ident: e_1_3_3_35_2
  doi: 10.1093/infdis/jit637
– ident: e_1_3_3_41_2
  doi: 10.1016/j.tim.2005.08.007
– ident: e_1_3_3_26_2
  doi: 10.1111/j.1365-2958.2007.05870.x
– ident: e_1_3_3_31_2
  doi: 10.1371/journal.pgen.1003269
– ident: e_1_3_3_38_2
  doi: 10.1103/PhysRevE.83.041922
– ident: e_1_3_3_46_2
  doi: 10.1099/jmm.0.030932-0
– ident: e_1_3_3_47_2
  doi: 10.1038/nature10069
– ident: e_1_3_3_21_2
  doi: 10.1126/science.1066869
– ident: e_1_3_3_19_2
  doi: 10.2217/fmb.12.97
– volume-title: Antibiotic resistance threats in the United States, 2013
  year: 2013
  ident: e_1_3_3_6_2
– ident: e_1_3_3_16_2
  doi: 10.1002/ddr.20329
– ident: e_1_3_3_51_2
  doi: 10.1080/713610448
– ident: e_1_3_3_22_2
  doi: 10.1038/nature01026
– ident: e_1_3_3_4_2
  doi: 10.1128/CMR.00030-10
– ident: e_1_3_3_24_2
  doi: 10.1111/j.1365-2672.2010.04931.x
– ident: e_1_3_3_18_2
  doi: 10.1016/j.copbio.2010.10.012
– ident: e_1_3_3_9_2
  doi: 10.1146/annurev.micro.112408.134306
– ident: e_1_3_3_48_2
  doi: 10.1016/j.chom.2008.02.003
– ident: e_1_3_3_23_2
  doi: 10.1128/AAC.00890-10
– ident: e_1_3_3_10_2
  doi: 10.1038/nrd2201
– ident: e_1_3_3_8_2
  doi: 10.1016/j.bbapap.2008.11.005
– ident: e_1_3_3_36_2
  doi: 10.1128/AAC.48.2.673-676.2004
– ident: e_1_3_3_44_2
  doi: 10.1086/521367
– ident: e_1_3_3_5_2
  doi: 10.1016/j.clinthera.2011.12.003
– ident: e_1_3_3_13_2
  doi: 10.1016/B978-0-12-394438-2.00007-4
– ident: e_1_3_3_3_2
  doi: 10.1517/13543784.2014.848853
– ident: e_1_3_3_12_2
  doi: 10.1111/j.1365-2672.2007.03498.x
– ident: e_1_3_3_15_2
  doi: 10.1016/S0140-6736(97)80051-7
– ident: e_1_3_3_34_2
  doi: 10.1111/j.1574-6968.2009.01657.x
– ident: e_1_3_3_20_2
  doi: 10.1099/jmm.0.061028-0
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.1203472109
– ident: e_1_3_3_49_2
  doi: 10.1038/nrmicro2453
– ident: e_1_3_3_14_2
  doi: 10.1159/000331009
– ident: e_1_3_3_2_2
  doi: 10.1086/524891
– ident: e_1_3_3_17_2
  doi: 10.1016/S0966-842X(00)01705-4
– ident: e_1_3_3_43_2
  doi: 10.1128/AAC.02462-13
– ident: e_1_3_3_39_2
  doi: 10.1111/j.1574-6968.2007.01051.x
– ident: e_1_3_3_30_2
  doi: 10.1046/j.1462-2920.2002.00281.x
– volume-title: CLSI M07–A9
  year: 2012
  ident: e_1_3_3_32_2
– ident: e_1_3_3_28_2
  doi: 10.1016/j.bbrc.2009.03.161
– ident: e_1_3_3_50_2
  doi: 10.1128/JB.01651-09
– volume-title: Resolution of 27 October 2011 on the public health threat of antimicrobial resistance
  year: 2011
  ident: e_1_3_3_7_2
– ident: e_1_3_3_11_2
  doi: 10.1038/nbt1267
– ident: e_1_3_3_25_2
  doi: 10.1016/S0014-5793(99)01600-2
– ident: e_1_3_3_29_2
  doi: 10.1046/j.1462-2920.2002.00321.x
– ident: e_1_3_3_37_2
  doi: 10.1128/br.36.4.407-477.1972
– reference: 21093250 - Curr Opin Biotechnol. 2011 Apr;22(2):164-71
– reference: 16778838 - Nat Rev Microbiol. 2006 Jul;4(7):529-36
– reference: 10707065 - Trends Microbiol. 2000 Mar;8(3):120-8
– reference: 23030422 - Future Microbiol. 2012 Oct;7(10):1147-71
– reference: 12534471 - Environ Microbiol. 2002 Dec;4(12):898-911
– reference: 18248421 - FEMS Microbiol Lett. 2008 Mar;280(1):113-9
– reference: 20972452 - Nat Rev Microbiol. 2010 Dec;8(12):890-6
– reference: 21599215 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 1):041922
– reference: 17697255 - Mol Microbiol. 2007 Sep;65(5):1334-44
– reference: 10601638 - FEBS Lett. 1999 Dec 10;463(1-2):58-62
– reference: 20528688 - Annu Rev Microbiol. 2010;64:357-72
– reference: 9033483 - Lancet. 1997 Feb 8;349(9049):418-22
– reference: 21622798 - Appl Environ Microbiol. 2011 Jul;77(14):4878-85
– reference: 4568761 - Bacteriol Rev. 1972 Dec;36(4):407-77
– reference: 21894027 - J Mol Microbiol Biotechnol. 2011;20(4):228-35
– reference: 22748813 - Adv Virus Res. 2012;83:299-365
– reference: 23813275 - J Med Microbiol. 2013 Oct;62(Pt 10):1506-16
– reference: 14582617 - Crit Rev Microbiol. 2003;29(3):191-214
– reference: 14742236 - Antimicrob Agents Chemother. 2004 Feb;48(2):673-6
– reference: 12805262 - J Antimicrob Chemother. 2003 Jul;52(1):5-7
– reference: 19100346 - Biochim Biophys Acta. 2009 May;1794(5):808-16
– reference: 22679291 - Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9857-62
– reference: 18329613 - Cell Host Microbe. 2008 Mar 13;3(3):137-45
– reference: 20935098 - J Bacteriol. 2010 Dec;192(23):6191-9
– reference: 17763333 - J Infect Dis. 2007 Oct 1;196(7):1088-92
– reference: 11856344 - Eur J Biochem. 2002 Feb;269(4):1181-9
– reference: 21098252 - Antimicrob Agents Chemother. 2011 Feb;55(2):738-44
– reference: 21459912 - J Med Microbiol. 2011 Jun;60(Pt 6):699-709
– reference: 21241420 - J Appl Microbiol. 2011 Mar;110(3):778-85
– reference: 21233508 - Clin Microbiol Rev. 2011 Jan;24(1):71-109
– reference: 16125935 - Trends Microbiol. 2005 Oct;13(10):491-6
– reference: 19508279 - FEMS Microbiol Lett. 2009 Aug;297(1):73-9
– reference: 24215473 - Expert Opin Investig Drugs. 2014 Feb;23(2):163-82
– reference: 12534469 - Environ Microbiol. 2002 Dec;4(12):872-82
– reference: 23483857 - PLoS Genet. 2013;9(2):e1003269
– reference: 19348786 - Biochem Biophys Res Commun. 2009 May 29;383(2):187-91
– reference: 21562562 - Nature. 2011 May 12;473(7346):216-20
– reference: 12192412 - Nature. 2002 Aug 22;418(6900):884-9
– reference: 18171378 - J Appl Microbiol. 2008 Jan;104(1):1-13
– reference: 11739958 - Science. 2001 Dec 7;294(5549):2170-2
– reference: 24286983 - J Infect Dis. 2014 May 1;209(9):1469-78
– reference: 18171244 - Clin Infect Dis. 2008 Jan 15;46(2):155-64
– reference: 22284993 - Clin Ther. 2012 Jan;34(1):1-13
– reference: 17160061 - Nat Biotechnol. 2006 Dec;24(12):1551-7
– reference: 24637685 - Antimicrob Agents Chemother. 2014 Jun;58(6):3091-9
– reference: 17159923 - Nat Rev Drug Discov. 2007 Jan;6(1):29-40
– volume: 110
  start-page: 778
  year: 2011
  end-page: 785
  ident: B23
  article-title: Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2010.04931.x
– volume: 46
  start-page: 58
  year: 1999
  end-page: 62
  ident: B24
  article-title: SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes
  publication-title: FEBS Lett.
– volume: 77
  start-page: 4878
  year: 2011
  end-page: 4885
  ident: B32
  article-title: Control of bacterial persister cells by Trp/Arg-containing antimicrobial peptides
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02440-10
– year: 2013
  ident: B5
  publication-title: Antibiotic resistance threats in the United States, 2013 ;http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf ;Centers for Disease Control and Prevention ;Atlanta, GA
– volume: 297
  start-page: 73
  year: 2009
  end-page: 79
  ident: B33
  article-title: Novel persistence genes in Pseudomonas aeruginosa identified by high-throughput screening
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2009.01657.x
– volume: 64
  start-page: 357
  year: 2010
  end-page: 372
  ident: B8
  article-title: Persister cells
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.112408.134306
– year: 2012
  ident: B31
  article-title: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—9th ed
  publication-title: CLSI M07–A9 ;Clinical and Laboratory Standards Institute ;Wayne, PA
– volume: 70
  start-page: 481
  year: 2009
  end-page: 498
  ident: B15
  article-title: Cathelicidin peptide SMAP-29: comprehensive review of its properties and potential as a novel class of antibiotics
  publication-title: Drug Dev. Res.
  doi: 10.1002/ddr.20329
– volume: 83
  start-page: 299
  year: 2012
  end-page: 365
  ident: B12
  article-title: Endolysins as antimicrobials
  publication-title: Adv. Virus Res.
  doi: 10.1016/B978-0-12-394438-2.00007-4
– volume: 109
  start-page: 9857
  year: 2012
  end-page: 9862
  ident: B39
  article-title: Structural engineering of a phage lysin that targets Gram-negative pathogens
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1203472109
– volume: 4
  start-page: 898
  year: 2002
  end-page: 911
  ident: B28
  article-title: Pseudomonas aeruginosa displays an epidemic population structure
  publication-title: Environ. Microbiol.
  doi: 10.1046/j.1462-2920.2002.00321.x
– volume: 22
  start-page: 164
  year: 2011
  end-page: 171
  ident: B17
  article-title: Food applications of bacterial cell wall hydrolases
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2010.10.012
– volume: 62
  start-page: 1506
  issue: Pt 10
  year: 2013
  end-page: 1516
  ident: B19
  article-title: Lysins: the arrival of pathogen-directed anti-infectives
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.061028-0
– volume: 8
  start-page: 890
  year: 2010
  end-page: 896
  ident: B48
  article-title: Exit from dormancy in microbial organisms
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2453
– volume: 36
  start-page: 407
  year: 1972
  end-page: 477
  ident: B36
  article-title: Peptidoglycan types of bacterial cell walls and their taxonomic implications
  publication-title: Bacteriol. Rev.
– volume: 48
  start-page: 673
  year: 2004
  end-page: 676
  ident: B35
  article-title: Antimicrobial activity and bacterial-membrane interaction of ovine-derived cathelicidins
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.48.2.673-676.2004
– volume: 24
  start-page: 1551
  year: 2006
  end-page: 1557
  ident: B10
  article-title: Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1267
– volume: 83
  start-page: 041922
  year: 2011
  ident: B37
  article-title: Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
  doi: 10.1103/PhysRevE.83.041922
– volume: 196
  start-page: 1088
  year: 2007
  end-page: 1092
  ident: B43
  article-title: Unique lipid A modifications in Pseudomonas aeruginosa isolated from the airways of patients with cystic fibrosis
  publication-title: J. Infect. Dis.
  doi: 10.1086/521367
– year: 2011
  ident: B6
  publication-title: Resolution of 27 October 2011 on the public health threat of antimicrobial resistance ;http://www.europarl.europa.eu/sides/getDoc.do?pubRef=−//EP//TEXT+TA+P7-TA-2011-0473+0+DOC+XML+V0//EN ;European Union ;Strasbourg, France
– volume: 20
  start-page: 228
  year: 2011
  end-page: 235
  ident: B13
  article-title: Antimicrobial peptides: promising alternatives to conventional antibiotics
  publication-title: J. Mol. Microbiol. Biotechnol.
  doi: 10.1159/000331009
– volume: 8
  start-page: 120
  year: 2000
  end-page: 128
  ident: B16
  article-title: Phages will out: strategies of host cell lysis
  publication-title: Trends Microbiol.
  doi: 10.1016/S0966-842X(00)01705-4
– volume: 473
  start-page: 216
  year: 2011
  end-page: 220
  ident: B46
  article-title: Metabolite-enabled eradication of bacterial persisters by aminoglycosides
  publication-title: Nature
  doi: 10.1038/nature10069
– volume: 55
  start-page: 738
  year: 2011
  end-page: 744
  ident: B22
  article-title: A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00890-10
– volume: 6
  start-page: 29
  year: 2007
  end-page: 40
  ident: B9
  article-title: Drugs for bad bugs: confronting the challenges of antibacterial discovery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2201
– volume: 4
  start-page: 529
  year: 2006
  end-page: 536
  ident: B41
  article-title: The co-evolution of host cationic antimicrobial peptides and microbial resistance
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1441
– volume: 46
  start-page: 155
  year: 2008
  end-page: 164
  ident: B1
  article-title: The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America
  publication-title: Clin. Infect. Dis.
  doi: 10.1086/524891
– volume: 1794
  start-page: 808
  year: 2009
  end-page: 816
  ident: B7
  article-title: Outer membrane permeability and antibiotic resistance
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2008.11.005
– volume: 7
  start-page: 1147
  year: 2012
  end-page: 1171
  ident: B18
  article-title: Bacteriophage endolysins as novel antimicrobials
  publication-title: Future Microbiol.
  doi: 10.2217/fmb.12.97
– volume: 65
  start-page: 1334
  year: 2007
  end-page: 1344
  ident: B25
  article-title: Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages phiKZ and EL
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05870.x
– volume: 23
  start-page: 163
  year: 2014
  end-page: 182
  ident: B2
  article-title: Combating multidrug-resistant Gram-negative bacterial infections
  publication-title: Expert Opin. Invest. Drugs
  doi: 10.1517/13543784.2014.848853
– year: 2014
  ident: B42
  article-title: Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC
  publication-title: Antimicrob. Agents Chemother
  doi: 10.1128/AAC.02462-13
– volume: 34
  start-page: 1
  year: 2012
  end-page: 13
  ident: B4
  article-title: Fidaxomicin: the newest addition to the armamentarium against Clostridium difficile infections
  publication-title: Clin. Ther.
  doi: 10.1016/j.clinthera.2011.12.003
– volume: 280
  start-page: 113
  year: 2008
  end-page: 119
  ident: B38
  article-title: Analysis of outer membrane permeability of Pseudomonas aeruginosa and bactericidal activity of endolysins KZ144 and EL188 under high hydrostatic pressure
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2007.01051.x
– volume: 104
  start-page: 1
  year: 2008
  end-page: 13
  ident: B11
  article-title: Novel alternatives to antibiotics: bacteriophages, cell wall hydrolases and antimicrobial peptides
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2007.03498.x
– year: 2013
  ident: B34
  article-title: Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia
  publication-title: J. Infect. Dis
  doi: 10.1093/infdis/jit637
– volume: 192
  start-page: 6191
  year: 2010
  end-page: 6196
  ident: B49
  article-title: Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01651-09
– volume: 29
  start-page: 191
  year: 2003
  end-page: 214
  ident: B50
  article-title: Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria
  publication-title: Crit. Rev. Microbiol.
  doi: 10.1080/713610448
– volume: 3
  start-page: 137
  year: 2008
  end-page: 145
  ident: B47
  article-title: Selective killing of nonreplicating mycobacteria
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.02.003
– volume: 269
  start-page: 1181
  year: 2002
  end-page: 1189
  ident: B26
  article-title: SMAP-29 has two LPS-binding sites and a central hinge
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.0014-2956.2002.02751.x
– volume: 9
  start-page: e1003269
  year: 2013
  ident: B30
  article-title: Expression of a novel P22 ORFan gene reveals the phage carrier state in Salmonella Typhimurium
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003269
– volume: 4
  start-page: 872
  year: 2002
  end-page: 882
  ident: B29
  article-title: Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates
  publication-title: Environ. Microbiol.
  doi: 10.1046/j.1462-2920.2002.00281.x
– volume: 52
  start-page: 5
  year: 2003
  end-page: 7
  ident: B44
  article-title: Significance of antibiotics in the environment
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkg293
– volume: 60
  start-page: 699
  year: 2011
  end-page: 709
  ident: B45
  article-title: Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.030932-0
– volume: 349
  start-page: 418
  year: 1997
  end-page: 422
  ident: B14
  article-title: Peptide antibiotics
  publication-title: Lancet
  doi: 10.1016/S0140-6736(97)80051-7
– volume: 294
  start-page: 2170
  year: 2001
  end-page: 2172
  ident: B20
  article-title: Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase
  publication-title: Science
  doi: 10.1126/science.1066869
– volume: 383
  start-page: 187
  year: 2009
  end-page: 191
  ident: B27
  article-title: The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2009.03.161
– volume: 13
  start-page: 491
  year: 2005
  end-page: 496
  ident: B40
  article-title: Bacteriophage lytic enzymes: novel anti-infectives
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2005.08.007
– volume: 418
  start-page: 884
  year: 2002
  end-page: 889
  ident: B21
  article-title: A bacteriolytic agent that detects and kills Bacillus anthracis
  publication-title: Nature
  doi: 10.1038/nature01026
– volume: 24
  start-page: 71
  year: 2011
  end-page: 109
  ident: B3
  article-title: Challenges of antibacterial discovery
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00030-10
SSID ssj0006590
Score 2.5265312
Snippet Artilysins constitute a novel class of efficient enzyme-based antibacterials. Specifically, they covalently combine a bacteriophage-encoded endolysin, which...
SourceID pubmedcentral
proquest
asm2
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3774
SubjectTerms Animals
Anti-Bacterial Agents
Anti-Bacterial Agents - pharmacology
Antibacterial agents
Antibiotics. Antiinfectious agents. Antiparasitic agents
Biological and medical sciences
Cathelicidins
Cathelicidins - pharmacology
Cell Survival - drug effects
Cloning, Molecular
Drug Resistance, Multiple, Bacterial
Drug Resistance, Multiple, Bacterial - drug effects
Drug Resistance, Multiple, Bacterial - genetics
Endopeptidases
Endopeptidases - pharmacology
Experimental Therapeutics
Humans
Medical sciences
Mice
Microbial Sensitivity Tests
Peptidoglycan - metabolism
Pharmacology. Drug treatments
Pseudomonas aeruginosa
Pseudomonas aeruginosa - drug effects
Pseudomonas aeruginosa - genetics
Pseudomonas Infections - microbiology
Recombinant Fusion Proteins
Recombinant Fusion Proteins - pharmacology
Recombinant Proteins - chemistry
Title Art-175 Is a Highly Efficient Antibacterial against Multidrug-Resistant Strains and Persisters of Pseudomonas aeruginosa
URI https://www.ncbi.nlm.nih.gov/pubmed/24752267
https://journals.asm.org/doi/10.1128/AAC.02668-14
https://www.proquest.com/docview/1547866162
https://www.proquest.com/docview/1549631294
https://pubmed.ncbi.nlm.nih.gov/PMC4068523
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbKEAgJIShv5WUyCPalS2njOHY_VtPGhtYxoNPKp8hJ7C1Sm1ZJiyj_g__LOc5boUODL1GUXGJH99i-i--eQ-iNcA2LuNUNHGI5vggszmVocb-raOBTh1GdnDw8cQ_PnA9jOm40ftailpYLvxP82JhX8j9ahWugV50l-w-aLV8KF-Ac9AtH0DAcr6XjQbKwYGFuH6VtkUVsTFa6VHKUJTlqXoDIN2TMmhDgQkRgCrazjNswWV5Yn2WqjUeQ_JIVijBszTokXqs-MeFxqVyGM_ggAXclPBXFs1TULVrdyjTK6JyyVrKMuSxZ7lJO8_SuKmkiKSpvf_1WBS-ei8lUmL2eodAxpiVg3ycraHuemN_c-d5I9V9f-hPzUKyKiqP5D4yeUwa7lpOy61oON1WIO9LMw5rm1KWm2G0xUVNeAySrzbqEMae2ghNmqs79uTrYOuNhMNjrgOfpgvfsVKtgsfN_8tE7ODs-9kb749ENdNNmYJLpvf5PFQk99MtkNuX9LvIpbP6u_m5Y5EU6tdcMnrtzkcLYU6Zoyiav5vfg3Jq1M7qP7uVuCh4YzD1ADRk30S1TuHTVRLeHeUhGE-2cGvLz1S4eVbl86S7ewacVLfrqIfqeoxUfpVhgg1ZcohWvoRXnaMUb0IpztGIAGa7QimcK19CKK7Q-QmcH-6O9Qyuv-2EJmBsWVhjy0FZK9SVlhCnbCcFp96UvqCR97nPZZ1wGNHDBlCZKuaFgtiOEsgPqUya75DHaimexfIowCTh45ILAVeo4YddnSgY9nTXc7QVEkhZ6rXXk5YM69TKf2OYeKNLLFAm-cQu1Cw16Qc6cr790coX021J6bhhjrpDbXgNDKQy9A5eX9FroVYEOD-Z8vZEnYjlbQic1CR8Y1q79VxlYW8Gah4aeGERVLcAMDG4XayG2hrVSQHPOr9-Jo8uMex7sf05t8uwafXuO7lTD_QXaWiRL-RIs-IW_nY2nX9R99U0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Art-175+Is+a+Highly+Efficient+Antibacterial+against+Multidrug-Resistant+Strains+and+Persisters+of+Pseudomonas+aeruginosa&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Briers%2C+Yves&rft.au=Walmagh%2C+Maarten&rft.au=Grymonprez%2C+Barbara&rft.au=Biebl%2C+Manfred&rft.date=2014-07-01&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=58&rft.issue=7&rft.spage=3774&rft.epage=3784&rft_id=info:doi/10.1128%2FAAC.02668-14&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon