Simulation and Analysis of Conjunctive Use with MODFLOW's Farm Process

The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all...

Full description

Saved in:
Bibliographic Details
Published inGround water Vol. 48; no. 5; pp. 674 - 689
Main Authors Hanson, R.T, Schmid, W, Faunt, C.C, Lockwood, B
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.09.2010
Blackwell Publishing Ltd
Ground Water Publishing Company
Subjects
Online AccessGet full text
ISSN0017-467X
1745-6584
1745-6584
DOI10.1111/j.1745-6584.2010.00730.x

Cover

Abstract The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within "water-balance subregions" comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori.
AbstractList The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within "water-balance subregions" comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori.
The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within "water-balance subregions" comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori.The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within "water-balance subregions" comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori.
The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within "water-balance subregions" comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori. [PUBLICATION ABSTRACT]
Author Schmid, W.
Hanson, R. T.
Faunt, C. C.
Lockwood, B.
Author_xml – sequence: 1
  fullname: Hanson, R.T
– sequence: 2
  fullname: Schmid, W
– sequence: 3
  fullname: Faunt, C.C
– sequence: 4
  fullname: Lockwood, B
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20572873$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v0zAchy00xLrBV4CIy7ik_B3bsXMAqepoAZV10lqVm-WmNjjkZdgJa789zrLtsAMsF0f283v88jtBR3VTa4QiDGMcvvfFGHPK4pQJOk4gzAJwAuP9MzR6WDhCIwDMY5ry78foxPsCAEgG2Qt0nADjieBkhGZXtupK1dqmjlS9iya1Kg_e-qgx0bSpi67OW_tHR2uvoxvb_oy-Lc9ni-XmzEcz5aro0jW59v4lem5U6fWru_EUrWefVtPP8WI5_zKdLGLFKIM4z_hWsFSLXQY54FRjygwBYThVmaHAc5xsGdE7CsakimKGidbMCBZumRtKTtHZ4L12ze9O-1ZW1ue6LFWtm85LnkISnDz7P0lFxrFISCDf_ZPElKYJJwxwQN8-Qoumc-HJel_QUcb6M76-g7ptpXfy2tlKuYO8f_QAfByA3DXeO21kbtvbClqnbCkxyL5lWci-TNmXKfuW5W3Lch8E4pHgfo8nRD8M0Rtb6sOTc3K-mazCX8jHQ976Vu8f8sr9kiknnMnNxVxerC6_ntMNlyLwbwbeqEaqH856ub4KZgJY8IyljPwFUq7Szg
CODEN GRWAAP
CitedBy_id crossref_primary_10_1016_j_jhydrol_2019_03_098
crossref_primary_10_5194_hess_18_3121_2014
crossref_primary_10_1007_s12665_012_1577_3
crossref_primary_10_1016_j_agwat_2021_106947
crossref_primary_10_1016_j_jhydrol_2014_07_005
crossref_primary_10_1016_j_jhydrol_2024_132402
crossref_primary_10_1016_j_envsoft_2019_104617
crossref_primary_10_1007_s10040_016_1470_3
crossref_primary_10_1111_j_1745_6584_2010_00786_x
crossref_primary_10_1111_gwat_12995
crossref_primary_10_1016_j_jhydrol_2021_126963
crossref_primary_10_1002_ird_2459
crossref_primary_10_1002_2013WR014282
crossref_primary_10_1016_j_jhydrol_2018_08_003
crossref_primary_10_1016_j_scitotenv_2022_156439
crossref_primary_10_1061__ASCE_IR_1943_4774_0000393
crossref_primary_10_1016_j_envsoft_2014_11_031
crossref_primary_10_2139_ssrn_3986140
crossref_primary_10_1007_s10040_019_01957_6
crossref_primary_10_1111_j_1745_6584_2011_00852_x
crossref_primary_10_1111_gwat_12213
crossref_primary_10_1111_j_1745_6584_2012_01000_x
crossref_primary_10_1016_j_jhydrol_2025_133006
crossref_primary_10_1016_j_ejrh_2016_01_002
crossref_primary_10_1016_j_advwatres_2013_07_012
crossref_primary_10_1016_j_jhydrol_2014_05_043
crossref_primary_10_5194_hess_21_923_2017
crossref_primary_10_2166_hydro_2018_002
crossref_primary_10_4236_jwarp_2017_97052
crossref_primary_10_1007_s11269_017_1720_8
crossref_primary_10_1016_j_agwat_2020_106033
crossref_primary_10_3389_fenvs_2015_00059
Cites_doi 10.3133/ofr20041042
10.3133/tm6A19
10.3133/tm6A17
10.2136/vzj2007.0082
10.3133/tm6A21
10.3133/fs20093057
10.3133/ofr03233
10.2136/vzj2009.0020
10.1029/2007WR006004
10.1016/j.advwatres.2004.06.004
10.1061/(ASCE)1084-0699(2004)9:6(450)
10.3133/tm6A13
10.3133/ofr02293
10.1061/(ASCE)0733-9496(2007)133:2(166)
10.3133/fs04403
10.3133/tm6A30
10.1016/0169-7722(95)00088-7
10.1016/S0022-1694(98)00289-3
10.3133/tm6D1
10.1175/JHM422.1
10.1016/S0022-1694(00)00293-6
10.2136/vzj2007.0052
10.3133/tm6A16
10.1504/IJW.2009.028724
ContentType Journal Article
Copyright Journal compilation © 2010 National Ground Water Association. No claim to original US government works
Copyright Ground Water Publishing Company Sep/Oct 2010
Copyright_xml – notice: Journal compilation © 2010 National Ground Water Association. No claim to original US government works
– notice: Copyright Ground Water Publishing Company Sep/Oct 2010
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7UA
C1K
F1W
H96
H97
K9.
L.G
SOI
7S9
L.6
7X8
8FD
FR3
KR7
DOI 10.1111/j.1745-6584.2010.00730.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Health & Medical Complete (Alumni)
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList AGRICOLA

CrossRef
MEDLINE
MEDLINE - Academic
Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Agriculture
EISSN 1745-6584
EndPage 689
ExternalDocumentID 2131854791
20572873
10_1111_j_1745_6584_2010_00730_x
GWAT730
ark_67375_WNG_NTPJD4W7_8
US201301879565
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Pajaro California
Central Valley
United States--US
GeographicLocations_xml – name: United States--US
– name: Pajaro California
– name: Central Valley
GroupedDBID ---
-DZ
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
186
1OB
1OC
29I
31~
33P
3SF
3V.
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X2
7X7
7XC
8-0
8-1
8-3
8-4
8-5
88E
88I
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJCF
ABJNI
ABPPZ
ABPTK
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AI.
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BCR
BCU
BDRZF
BEC
BENPR
BES
BFHJK
BGLVJ
BHBCM
BHPHI
BKOMP
BKSAR
BLC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
D1J
D1K
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
F5P
FBQ
FEDTE
FYUFA
FZ0
G-S
G.N
GNUQQ
GODZA
GUQSH
H.T
H.X
HCIFZ
HF~
HMCUK
HVGLF
HZI
HZ~
IAG
IAO
IEA
IEP
IOF
ITC
IX1
J0M
K48
K6-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK5
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M1P
M2O
M2P
M7R
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PEA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
R.K
R05
RIWAO
RJQFR
ROL
RWL
RX1
S0X
SAMSI
SJFOW
SUPJJ
TAE
TN5
UB1
UKHRP
V8K
VH1
VJK
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
Y6R
YCJ
ZCA
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
ADXHL
AEFGJ
AEUYN
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
BSCLL
HGLYW
OIG
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
ALIPV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7UA
C1K
F1W
H96
H97
K9.
L.G
SOI
7S9
L.6
7X8
8FD
FR3
KR7
ID FETCH-LOGICAL-a5450-c97b856e8d90c016e145f308f74a9f407c12b53ed40ff6a41513ee5f85201cf43
IEDL.DBID DR2
ISSN 0017-467X
1745-6584
IngestDate Fri Sep 05 14:30:40 EDT 2025
Fri Sep 05 11:53:16 EDT 2025
Thu Oct 02 12:04:48 EDT 2025
Tue Oct 07 05:46:08 EDT 2025
Mon Jul 21 05:55:53 EDT 2025
Thu Apr 24 23:02:28 EDT 2025
Wed Oct 01 04:35:35 EDT 2025
Wed Jan 22 16:59:05 EST 2025
Sun Sep 21 06:23:30 EDT 2025
Wed Dec 27 19:17:18 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5450-c97b856e8d90c016e145f308f74a9f407c12b53ed40ff6a41513ee5f85201cf43
Notes http://dx.doi.org/10.1111/j.1745-6584.2010.00730.x
ark:/67375/WNG-NTPJD4W7-8
istex:3422C884A107D969F97EC879A135067635B85F9C
ArticleID:GWAT730
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 20572873
PQID 749714554
PQPubID 48478
PageCount 16
ParticipantIDs proquest_miscellaneous_760214579
proquest_miscellaneous_748971823
proquest_miscellaneous_1446273501
proquest_journals_749714554
pubmed_primary_20572873
crossref_citationtrail_10_1111_j_1745_6584_2010_00730_x
crossref_primary_10_1111_j_1745_6584_2010_00730_x
wiley_primary_10_1111_j_1745_6584_2010_00730_x_GWAT730
istex_primary_ark_67375_WNG_NTPJD4W7_8
fao_agris_US201301879565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September/October 2010
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: September/October 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: United States
– name: Dublin
PublicationTitle Ground water
PublicationTitleAlternate Ground Water
PublicationYear 2010
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Ground Water Publishing Company
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Ground Water Publishing Company
References Monninkhoff, B.L., and Z. Li. 2009. Coupling FEFLOW and MIKE11 to optimise the flooding system of the Lower Havel polders in Germany. International Journal of Water 5, no. 2: 163-180
California Department of Finance. 2007. E-4 population estimates for cities, counties and the State 2001-2007, with 2000 Benchmark, Sacramento, California. http://www.dof.ca.gov/HTML/DEMOGRAP/ReportsPapers/Estimates/E4/E4-01-06/HistE-4.asp.
Sophocleous, M.A., J.K. Koelliker, R.S. Govindaraju, T. Birdie, S.R. Ramireddygari, and S.P. Perkins. 1999. Integrated numerical modeling for basin-wide water management-The case of the Rattlesnake Creek Basin in South-central Kansas. Journal of Hydrology 214, no. 1-4: 179-196.
Refsgaard, J.C., and B. Storm. 1995. MIKE SHE. In: Computer Models of Watershed Hydrology, ed. Singh, 809-846. Highlands Ranch, Colorado: Water Resources Publications.
Sophocleous, M.A., and S.P. Perkins. 2000. Methodology and application of combined watershed and ground-water models in Kansas. Journal of Hydrology 236, no. 3-4: 185-201.
Mehl, S.M., and M.C. Hill. 2004. Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: Advances in Water Resources 27, 899-912.
Kollet, S.J., and R.M. Maxwell. 2008. Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resources Research 44, W02402.
Panday, S., and P.S. Huyakorn. 2008. MODFLOW SURFACT: A state-of-the-art use of vadose zone flow and transport equations and numerical techniques for environmental evaluations. Vadose Zone Journal 7, no. 2: 610-631.
Schmid, W., and R.T. Hanson. 2009b. The Farm Process Version 2 (FMP2) for MODFLOW-2005 - Modifications and Upgrades to FMP1. U.S. Geological Survey Techniques in Water Resources Investigations, Book 6, Ch. A32.
Schmid, W., and R.T. Hanson. 2007. Simulation of Intra- or Trans-Boundary Water-Rights Hierarchies using the Farm Process for MODFLOW-2000. ASCE Journal of Water Resources Planning and Management 133, no. 2: 166-178.
Panday, S., N. Brown, T. Foreman, V. Bedekar, J. Kaur, and P.S. Huyakorn. 2009. Simulating dynamic water supply systems in a fully integrated surface-subsurface flow and transport model. Vadose Zone Journal 8, no. 4: 858-872.
Twarakavi, N.K.C., J. Šimünek, and H.S. Seo. 2008. Evaluating interactions between groundwater and vadose zone using HY-DRUS-based flow package for MODFLOW. Vadose Zone Journal 7, no.2: 757-768.
Liua, H.-L., X. Chena, A.-M. Baoa, and L. Wang. 2007. Investigation of groundwater response to overland flow and topography using a coupled MIKE SHE/MIKE 11 modeling system for an arid watershed. Journal of Hydrology 347, no. 3-4: 448-459.
Maxwell, R.M., and N.L. Miller. 2005. Development of a coupled land surface and groundwater model. Journal of Hydrometeorology 6, no. 3: 233-247.
Kavvas, ML, Z.Q. Chen, C. Dogrul, J.Y. Yoon, N. Ohara, L. Liang, H. Aksoy, M.L. Anderson, J. Yoshitani, K. Fukami, and T. Matsuura. 2004. Watershed Environmental Hydrology (WEHY) model based on upscaled conservation equations: hydrologic module. Jouranl of Hydrologic Engineering 9, no. 6: 450-464.
Therrien, R., and E.A. Sudicky. 1996. Three-dimensional analysis of variably saturated flow and solute transport in discretely-fractured porous media. Journal of Contaminant Hydrology 23, no. 6: 1-44.
2007; 347
2009a; 1766
2006b
2010
2004; 27
2006a
2000; 236
2004; 9
1998
2009
2008
2007
2008; 7
2006
1995
2005
2004
2003b
2003
2002
2003a
1993; 4
1999
2005b
2005a
2009b; 6
2009d
2009c
2009b
2009a
2007; 133
2005; 6
2009; 8
2008; 44
2009; 5
1999; 214
1996; 23
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Graham D.N. (e_1_2_9_14_1) 2005
Allen R.G. (e_1_2_9_2_1) 1998
e_1_2_9_39_1
Schmid W. (e_1_2_9_42_1) 2009
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Faunt C.C. (e_1_2_9_10_1) 2009
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
Liua H.‐L. (e_1_2_9_27_1) 2007; 347
Refsgaard J.C. (e_1_2_9_40_1) 1995
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Faunt C.C. (e_1_2_9_9_1) 2009
Schmid W. (e_1_2_9_43_1) 2009; 6
Schmid W. (e_1_2_9_45_1) 2008
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
Faunt C.C. (e_1_2_9_11_1) 2009
California Department of Finance (e_1_2_9_3_1) 2007
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
Sophocleous M.A. (e_1_2_9_51_1) 2000; 236
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – reference: Mehl, S.M., and M.C. Hill. 2004. Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: Advances in Water Resources 27, 899-912.
– reference: Twarakavi, N.K.C., J. Šimünek, and H.S. Seo. 2008. Evaluating interactions between groundwater and vadose zone using HY-DRUS-based flow package for MODFLOW. Vadose Zone Journal 7, no.2: 757-768.
– reference: Kavvas, ML, Z.Q. Chen, C. Dogrul, J.Y. Yoon, N. Ohara, L. Liang, H. Aksoy, M.L. Anderson, J. Yoshitani, K. Fukami, and T. Matsuura. 2004. Watershed Environmental Hydrology (WEHY) model based on upscaled conservation equations: hydrologic module. Jouranl of Hydrologic Engineering 9, no. 6: 450-464.
– reference: Monninkhoff, B.L., and Z. Li. 2009. Coupling FEFLOW and MIKE11 to optimise the flooding system of the Lower Havel polders in Germany. International Journal of Water 5, no. 2: 163-180
– reference: Therrien, R., and E.A. Sudicky. 1996. Three-dimensional analysis of variably saturated flow and solute transport in discretely-fractured porous media. Journal of Contaminant Hydrology 23, no. 6: 1-44.
– reference: Kollet, S.J., and R.M. Maxwell. 2008. Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resources Research 44, W02402.
– reference: Schmid, W., and R.T. Hanson. 2009b. The Farm Process Version 2 (FMP2) for MODFLOW-2005 - Modifications and Upgrades to FMP1. U.S. Geological Survey Techniques in Water Resources Investigations, Book 6, Ch. A32.
– reference: Liua, H.-L., X. Chena, A.-M. Baoa, and L. Wang. 2007. Investigation of groundwater response to overland flow and topography using a coupled MIKE SHE/MIKE 11 modeling system for an arid watershed. Journal of Hydrology 347, no. 3-4: 448-459.
– reference: Panday, S., N. Brown, T. Foreman, V. Bedekar, J. Kaur, and P.S. Huyakorn. 2009. Simulating dynamic water supply systems in a fully integrated surface-subsurface flow and transport model. Vadose Zone Journal 8, no. 4: 858-872.
– reference: Maxwell, R.M., and N.L. Miller. 2005. Development of a coupled land surface and groundwater model. Journal of Hydrometeorology 6, no. 3: 233-247.
– reference: Panday, S., and P.S. Huyakorn. 2008. MODFLOW SURFACT: A state-of-the-art use of vadose zone flow and transport equations and numerical techniques for environmental evaluations. Vadose Zone Journal 7, no. 2: 610-631.
– reference: California Department of Finance. 2007. E-4 population estimates for cities, counties and the State 2001-2007, with 2000 Benchmark, Sacramento, California. http://www.dof.ca.gov/HTML/DEMOGRAP/ReportsPapers/Estimates/E4/E4-01-06/HistE-4.asp.
– reference: Refsgaard, J.C., and B. Storm. 1995. MIKE SHE. In: Computer Models of Watershed Hydrology, ed. Singh, 809-846. Highlands Ranch, Colorado: Water Resources Publications.
– reference: Schmid, W., and R.T. Hanson. 2007. Simulation of Intra- or Trans-Boundary Water-Rights Hierarchies using the Farm Process for MODFLOW-2000. ASCE Journal of Water Resources Planning and Management 133, no. 2: 166-178.
– reference: Sophocleous, M.A., and S.P. Perkins. 2000. Methodology and application of combined watershed and ground-water models in Kansas. Journal of Hydrology 236, no. 3-4: 185-201.
– reference: Sophocleous, M.A., J.K. Koelliker, R.S. Govindaraju, T. Birdie, S.R. Ramireddygari, and S.P. Perkins. 1999. Integrated numerical modeling for basin-wide water management-The case of the Rattlesnake Creek Basin in South-central Kansas. Journal of Hydrology 214, no. 1-4: 179-196.
– year: 2005a
– year: 2009
– start-page: 1
  year: 2009a
  end-page: 56
– volume: 6
  start-page: 233
  issue: 3
  year: 2005
  end-page: 247
  article-title: Development of a coupled land surface and groundwater model.
  publication-title: Journal of Hydrometeorology
– start-page: 809
  year: 1995
  end-page: 846
– start-page: 496
  year: 2008
  end-page: 500
– year: 2005
– volume: 23
  start-page: 1
  issue: 6
  year: 1996
  end-page: 44
  article-title: Three‐dimensional analysis of variably saturated flow and solute transport in discretely‐fractured porous media
  publication-title: Journal of Contaminant Hydrology
– year: 2003b
– year: 2007
– year: 2003
– start-page: 58
  year: 2009b
  end-page: 120
– volume: 347
  start-page: 3
  year: 2007
  end-page: 4
  article-title: Investigation of groundwater response to overland flow and topography using a coupled MIKE SHE/MIKE 11 modeling system for an arid watershed
  publication-title: Journal of Hydrology
– volume: 8
  start-page: 858
  issue: 4
  year: 2009
  end-page: 872
  article-title: Simulating dynamic water supply systems in a fully integrated surface–subsurface flow and transport model
  publication-title: Vadose Zone Journal
– year: 2006a
– volume: 133
  start-page: 166
  issue: 2
  year: 2007
  end-page: 178
  article-title: Simulation of Intra‐ or Trans‐Boundary Water‐Rights Hierarchies using the Farm Process for MODFLOW‐2000.
  publication-title: ASCE Journal of Water Resources Planning and Management
– volume: 4
  start-page: 187
  year: 1993
  end-page: 208
– volume: 6
  year: 2009b
  article-title: The Farm Process Version 2 (FMP2) for MODFLOW‐2005 ‐ Modifications and Upgrades to FMP1. U.S. Geological Survey Techniques in Water Resources Investigations
  publication-title: Book
– start-page: 245
  year: 2005
  end-page: 272
– year: 1998
– year: 2010
– volume: 44
  start-page: W02402
  year: 2008
  article-title: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model
  publication-title: Water Resources Research
– volume: 236
  start-page: 3
  year: 2000
  end-page: 4
  article-title: Methodology and application of combined watershed and ground‐water models in Kansas
  publication-title: Journal of Hydrology
– year: 2005b
– volume: 27
  start-page: 899
  year: 2004
  end-page: 912
  article-title: Three‐dimensional local grid refinement for block‐centered finite‐difference groundwater models using iteratively coupled shared nodes
  publication-title: Advances in Water Resources
– start-page: 311
  year: 2008
  end-page: 314
– start-page: 121
  year: 2009c
  end-page: 212
– year: 2003a
– volume: 5
  start-page: 163
  issue: 2
  year: 2009
  end-page: 180
  article-title: Coupling FEFLOW and MIKE11 to optimise the flooding system of the Lower Havel polders in Germany
  publication-title: International Journal of Water
– start-page: 19
  year: 2009
  end-page: 22
– start-page: 2009
  year: 2009d
  end-page: 3057
– year: 2002
– year: 2008
– year: 2006
– volume: 9
  start-page: 450
  issue: 6
  year: 2004
  end-page: 464
  article-title: Watershed Environmental Hydrology (WEHY) model based on upscaled conservation equations: hydrologic module.
  publication-title: Jouranl of Hydrologic Engineering
– year: 2004
– start-page: 501
  year: 2008
  end-page: 505
– volume: 7
  start-page: 610
  issue: 2
  year: 2008
  end-page: 631
  article-title: MODFLOW SURFACT: A state‐of‐the‐art use of vadose zone flow and transport equations and numerical techniques for environmental evaluations
  publication-title: Vadose Zone Journal
– year: 2009c
– volume: 214
  start-page: 1
  year: 1999
  end-page: 4
  article-title: Integrated numerical modeling for basin‐wide water management—The case of the Rattlesnake Creek Basin in South‐central Kansas
  publication-title: Journal of Hydrology
– volume: 1766
  start-page: 213
  year: 2009a
  end-page: 225
– start-page: 23
  year: 2006b
  end-page: 27
– volume: 7
  start-page: 757
  issue: 2
  year: 2008
  end-page: 768
  article-title: Evaluating interactions between groundwater and vadose zone using HY‐DRUS‐based flow package for MODFLOW.
  publication-title: Vadose Zone Journal
– year: 1999
– ident: e_1_2_9_48_1
– ident: e_1_2_9_25_1
– ident: e_1_2_9_17_1
– ident: e_1_2_9_20_1
– ident: e_1_2_9_39_1
  doi: 10.3133/ofr20041042
– ident: e_1_2_9_33_1
  doi: 10.3133/tm6A19
– ident: e_1_2_9_47_1
  doi: 10.3133/tm6A17
– ident: e_1_2_9_56_1
  doi: 10.2136/vzj2007.0082
– volume-title: Food and Agriculture Organization of the United Nations
  year: 1998
  ident: e_1_2_9_2_1
– ident: e_1_2_9_4_1
– start-page: 213
  volume-title: Ground‐Water Availability of California's Central Valley.
  year: 2009
  ident: e_1_2_9_42_1
– ident: e_1_2_9_38_1
– volume: 6
  year: 2009
  ident: e_1_2_9_43_1
  article-title: The Farm Process Version 2 (FMP2) for MODFLOW‐2005 ‐ Modifications and Upgrades to FMP1. U.S. Geological Survey Techniques in Water Resources Investigations
  publication-title: Book
– volume-title: E‐4 population estimates for cities, counties and the State 2001–2007, with 2000 Benchmark, Sacramento, California.
  year: 2007
  ident: e_1_2_9_3_1
– ident: e_1_2_9_5_1
– ident: e_1_2_9_30_1
  doi: 10.3133/tm6A21
– ident: e_1_2_9_12_1
  doi: 10.3133/fs20093057
– ident: e_1_2_9_44_1
– ident: e_1_2_9_8_1
– ident: e_1_2_9_41_1
– ident: e_1_2_9_49_1
– ident: e_1_2_9_22_1
  doi: 10.3133/ofr03233
– start-page: 121
  volume-title: U.S. Geological Survey Professional Paper 1766
  year: 2009
  ident: e_1_2_9_11_1
– ident: e_1_2_9_35_1
  doi: 10.2136/vzj2009.0020
– start-page: 1
  volume-title: U.S. Geological Survey Professional Paper 1766
  year: 2009
  ident: e_1_2_9_9_1
– ident: e_1_2_9_24_1
  doi: 10.1029/2007WR006004
– ident: e_1_2_9_31_1
  doi: 10.1016/j.advwatres.2004.06.004
– ident: e_1_2_9_23_1
  doi: 10.1061/(ASCE)1084-0699(2004)9:6(450)
– ident: e_1_2_9_34_1
  doi: 10.3133/tm6A13
– ident: e_1_2_9_16_1
  doi: 10.3133/ofr02293
– ident: e_1_2_9_46_1
  doi: 10.1061/(ASCE)0733-9496(2007)133:2(166)
– ident: e_1_2_9_6_1
– ident: e_1_2_9_19_1
  doi: 10.3133/fs04403
– ident: e_1_2_9_26_1
  doi: 10.3133/tm6A30
– ident: e_1_2_9_55_1
  doi: 10.1016/0169-7722(95)00088-7
– start-page: 58
  volume-title: U.S. Geological Survey Professional Paper 1766
  year: 2009
  ident: e_1_2_9_10_1
– ident: e_1_2_9_7_1
– ident: e_1_2_9_54_1
– ident: e_1_2_9_52_1
  doi: 10.1016/S0022-1694(98)00289-3
– ident: e_1_2_9_28_1
  doi: 10.3133/tm6D1
– ident: e_1_2_9_13_1
– ident: e_1_2_9_29_1
  doi: 10.1175/JHM422.1
– start-page: 245
  volume-title: Watershed Models
  year: 2005
  ident: e_1_2_9_14_1
– start-page: 809
  volume-title: Computer Models of Watershed Hydrology
  year: 1995
  ident: e_1_2_9_40_1
– start-page: 311
  volume-title: Hydropredict
  year: 2008
  ident: e_1_2_9_45_1
– volume: 236
  start-page: 3
  year: 2000
  ident: e_1_2_9_51_1
  article-title: Methodology and application of combined watershed and ground‐water models in Kansas
  publication-title: Journal of Hydrology
  doi: 10.1016/S0022-1694(00)00293-6
– volume: 347
  start-page: 3
  year: 2007
  ident: e_1_2_9_27_1
  article-title: Investigation of groundwater response to overland flow and topography using a coupled MIKE SHE/MIKE 11 modeling system for an arid watershed
  publication-title: Journal of Hydrology
– ident: e_1_2_9_36_1
  doi: 10.2136/vzj2007.0052
– ident: e_1_2_9_15_1
– ident: e_1_2_9_21_1
  doi: 10.3133/tm6A16
– ident: e_1_2_9_37_1
– ident: e_1_2_9_32_1
  doi: 10.1504/IJW.2009.028724
– ident: e_1_2_9_18_1
  doi: 10.3133/fs04403
– ident: e_1_2_9_50_1
– ident: e_1_2_9_53_1
SSID ssj0003909
Score 2.1108634
Snippet The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from...
The extension of MODFLOW onto the landscape with the Farm Process (MF‐FMP) facilitates fully coupled simulation of the use and movement of water from...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 674
SubjectTerms Agriculture
Anthropogenic factors
Aquifers
climate
coastal water
Coastal waters
Computer simulation
Farms
Groundwater
Groundwater flow
Groundwater runoff
Hydrologic cycle
Hydrologic modeling
Hydrology
Landscape
Landscapes
Precipitation
Pumpage
Runoff
Simulation
Stream discharge
Stream flow
supply balance
Surface water
Surface-groundwater relations
Valleys
Vegetation
Water distribution
Water distribution systems
Water Movements
Title Simulation and Analysis of Conjunctive Use with MODFLOW's Farm Process
URI https://api.istex.fr/ark:/67375/WNG-NTPJD4W7-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1745-6584.2010.00730.x
https://www.ncbi.nlm.nih.gov/pubmed/20572873
https://www.proquest.com/docview/749714554
https://www.proquest.com/docview/1446273501
https://www.proquest.com/docview/748971823
https://www.proquest.com/docview/760214579
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0017-467X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1745-6584
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003909
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagF-BQoDwaCshICE5ZJbEdO8eqJa0qukV0V7s3y0nsAtsmaB9S4dczkxfdqqAKcYuU2LIn8_jGmXxDyNtQWYgCyvqucNbnwnHfqMj5QWZYkYF3zOsz3eNhfDjmR1Mxbeuf8F-Yhh-iP3BDy6j9NRq4yRbrRi658DGCdhVaoK0DxJMhi-vs6vNvJilI7ZPOKYNvmF4v6rlhorVIddeZCvAriv7yJjC6jm3r4JQ-JLNuW01NymywWmaD_Oc1xsf_s-9HZLPFsHS3UbrH5I4tt8iDK8yGW-Re21z9y48nJD39etE2CaOmLGjHg0IrR_eq8htEVvS5dLywFI-F6fHJfvrxZPJ-QVMzv6DtvwxPyTj9MNo79Nv2Db4BWBb4eSIzJWKriiTIAVnaEFSBBcpJbhIHiWQeRplgtuCBc7EBJBEya4VTAraVO86ekY2yKu02oSY0kQ1YxKQreCHiJCyMY4xlubJOJcIjsntVOm-5zbHFxrm-kuOA1DRKTaPUdC01femRsB_5veH3uMWYbdAGbc7ADevxaYQff-um7TEs5F2tIv1cZj7D0jkp9GR4oIejT0f7fCK18shOp0O69RoLLXkikTiee-RNfxfMHb_hmNJWq4XG9B0QpwhCj9A_PIOEQgA5IvaXR2LkyhMy8cjzRoH7FUeA4CGNhsFxrYa3Fos-mOyO4OrFvw7cIfeb2gys4HtJNpbzlX0FkG-Zva6N-RdP_kCJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB5BeSg8cJSjoRxGQvCUVRLbifNYtaRL2d0iuqvdN8tJbI62CdpDKvx6xrnoVgVViLdIiaN4Msc39vgbgNe-0BgFhHZNbrTLuGGuEoFxvVTRPEXvmFVrusNR2J-wwxmfNe2A7FmYmh-iW3CzllH5a2vgdkF63cojxl0bQtsSLVTXHgLKWyzEtMUipE-_uaQwuY9bt4zeYXa5rOeKN63FqptGlYhgrfDPr4Kj6-i2Ck_JPThtJ1ZXpZz0Vsu0l_28xPn4n2Z-H-42MJbs1nr3AG7oYgvuXCA33ILNpr_6lx8PITn-etb0CSOqyElLhUJKQ_bK4hsGV-t2yWShiV0ZJsOj_WRwNH27IIman5HmOMMjmCTvxnt9t-ng4CpEZp6bxVEqeKhFHnsZgkvtozZQT5iIqdhgLpn5QcqpzplnTKgQTPhUa24Ex2llhtHHsFGUhd4GonwVaI8GNDI5y3kY-7kylNI0E9qImDsQtf9KZg29ue2ycSovpDkoNWmlJq3UZCU1ee6A3438XlN8XGPMNqqDVJ_RE8vJcWD3f6u-7SF-yJtKR7p3qfmJrZ6LuJyODuRo_PFwn00jKRzYaZVINo5jISMWR5Y7njnwqruLFm-3cVShy9VC2gweQSf3fAfIH56xnEKIOgL6l0dCS5fHo9iBJ7UGd18cIIjHTBoHh5UeXlss8mC6O8arp_868CVs9sfDgRy8H33Ygdt1qYYt6HsGG8v5Sj9HBLhMX1SW_Qt7y0Sq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB5BkTgeOMrRUA4jIXjKKontxHmsuqSltNuK7mr3zXISm5a2SbWHVPj1jHPRrQqqEG-RElv2ZI5vnMk3AO99oTEKCO2a3GiXccNcJQLjeqmieYreMavOdPcG4faI7Uz4pGkHZP-FqfkhugM3axmVv7YGrs9zs2zlEeOuDaFtiRaqaw8B5R3GY2Hr-_pff3NJYXIft24ZvcPkalnPNTMtxarbRpWIYK3wL66Do8votgpPySM4bTdWV6Wc9BbztJf9vML5-J92_hgeNjCWbNR69wRu6WIVHlwiN1yFe01_9aMfTyE5PD5r-oQRVeSkpUIhpSGbZfEdg6t1u2Q008SeDJO9_X6yuz_-OCOJmp6R5neGZzBKPg03t92mg4OrEJl5bhZHqeChFnnsZQgutY_aQD1hIqZig7lk5gcppzpnnjGhQjDhU625ERy3lRlGn8NKURZ6DYjyVaA9GtDI5CznYeznylBK00xoI2LuQNS-K5k19Oa2y8apvJTmoNSklZq0UpOV1OSFA3438rym-LjBmDVUB6m-oSeWo8PAfv-t-raHuJAPlY50c6npia2ei7gcD7bkYHiw02fjSAoH1lslko3jmMmIxZHljmcOvOvuosXbzziq0OViJm0Gj6CTe74D5A_PWE4hRB0B_csjoaXL41HswItag7sVBwjiMZPGwWGlhzcWi9wabwzx6uW_DnwLdw_6idz9PPiyDvfrSg1bz_cKVubThX6NAHCevqkM-xfCNUQu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+and+analysis+of+conjunctive+use+with+MODFLOW%27s+farm+process&rft.jtitle=Ground+water&rft.au=Hanson%2C+R+T&rft.au=Schmid%2C+W&rft.au=Faunt%2C+C+C&rft.au=Lockwood%2C+B&rft.date=2010-09-01&rft.eissn=1745-6584&rft.volume=48&rft.issue=5&rft.spage=674&rft_id=info:doi/10.1111%2Fj.1745-6584.2010.00730.x&rft_id=info%3Apmid%2F20572873&rft.externalDocID=20572873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-467X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-467X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-467X&client=summon