Simulation and Analysis of Conjunctive Use with MODFLOW's Farm Process
The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all...
Saved in:
| Published in | Ground water Vol. 48; no. 5; pp. 674 - 689 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.09.2010
Blackwell Publishing Ltd Ground Water Publishing Company |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0017-467X 1745-6584 1745-6584 |
| DOI | 10.1111/j.1745-6584.2010.00730.x |
Cover
| Abstract | The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within "water-balance subregions" comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori. |
|---|---|
| AbstractList | The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within "water-balance subregions" comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori. The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within "water-balance subregions" comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori.The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within "water-balance subregions" comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori. The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within "water-balance subregions" comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori. [PUBLICATION ABSTRACT] |
| Author | Schmid, W. Hanson, R. T. Faunt, C. C. Lockwood, B. |
| Author_xml | – sequence: 1 fullname: Hanson, R.T – sequence: 2 fullname: Schmid, W – sequence: 3 fullname: Faunt, C.C – sequence: 4 fullname: Lockwood, B |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20572873$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1v0zAchy00xLrBV4CIy7ik_B3bsXMAqepoAZV10lqVm-WmNjjkZdgJa789zrLtsAMsF0f283v88jtBR3VTa4QiDGMcvvfFGHPK4pQJOk4gzAJwAuP9MzR6WDhCIwDMY5ry78foxPsCAEgG2Qt0nADjieBkhGZXtupK1dqmjlS9iya1Kg_e-qgx0bSpi67OW_tHR2uvoxvb_oy-Lc9ni-XmzEcz5aro0jW59v4lem5U6fWru_EUrWefVtPP8WI5_zKdLGLFKIM4z_hWsFSLXQY54FRjygwBYThVmaHAc5xsGdE7CsakimKGidbMCBZumRtKTtHZ4L12ze9O-1ZW1ue6LFWtm85LnkISnDz7P0lFxrFISCDf_ZPElKYJJwxwQN8-Qoumc-HJel_QUcb6M76-g7ptpXfy2tlKuYO8f_QAfByA3DXeO21kbtvbClqnbCkxyL5lWci-TNmXKfuW5W3Lch8E4pHgfo8nRD8M0Rtb6sOTc3K-mazCX8jHQ976Vu8f8sr9kiknnMnNxVxerC6_ntMNlyLwbwbeqEaqH856ub4KZgJY8IyljPwFUq7Szg |
| CODEN | GRWAAP |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2019_03_098 crossref_primary_10_5194_hess_18_3121_2014 crossref_primary_10_1007_s12665_012_1577_3 crossref_primary_10_1016_j_agwat_2021_106947 crossref_primary_10_1016_j_jhydrol_2014_07_005 crossref_primary_10_1016_j_jhydrol_2024_132402 crossref_primary_10_1016_j_envsoft_2019_104617 crossref_primary_10_1007_s10040_016_1470_3 crossref_primary_10_1111_j_1745_6584_2010_00786_x crossref_primary_10_1111_gwat_12995 crossref_primary_10_1016_j_jhydrol_2021_126963 crossref_primary_10_1002_ird_2459 crossref_primary_10_1002_2013WR014282 crossref_primary_10_1016_j_jhydrol_2018_08_003 crossref_primary_10_1016_j_scitotenv_2022_156439 crossref_primary_10_1061__ASCE_IR_1943_4774_0000393 crossref_primary_10_1016_j_envsoft_2014_11_031 crossref_primary_10_2139_ssrn_3986140 crossref_primary_10_1007_s10040_019_01957_6 crossref_primary_10_1111_j_1745_6584_2011_00852_x crossref_primary_10_1111_gwat_12213 crossref_primary_10_1111_j_1745_6584_2012_01000_x crossref_primary_10_1016_j_jhydrol_2025_133006 crossref_primary_10_1016_j_ejrh_2016_01_002 crossref_primary_10_1016_j_advwatres_2013_07_012 crossref_primary_10_1016_j_jhydrol_2014_05_043 crossref_primary_10_5194_hess_21_923_2017 crossref_primary_10_2166_hydro_2018_002 crossref_primary_10_4236_jwarp_2017_97052 crossref_primary_10_1007_s11269_017_1720_8 crossref_primary_10_1016_j_agwat_2020_106033 crossref_primary_10_3389_fenvs_2015_00059 |
| Cites_doi | 10.3133/ofr20041042 10.3133/tm6A19 10.3133/tm6A17 10.2136/vzj2007.0082 10.3133/tm6A21 10.3133/fs20093057 10.3133/ofr03233 10.2136/vzj2009.0020 10.1029/2007WR006004 10.1016/j.advwatres.2004.06.004 10.1061/(ASCE)1084-0699(2004)9:6(450) 10.3133/tm6A13 10.3133/ofr02293 10.1061/(ASCE)0733-9496(2007)133:2(166) 10.3133/fs04403 10.3133/tm6A30 10.1016/0169-7722(95)00088-7 10.1016/S0022-1694(98)00289-3 10.3133/tm6D1 10.1175/JHM422.1 10.1016/S0022-1694(00)00293-6 10.2136/vzj2007.0052 10.3133/tm6A16 10.1504/IJW.2009.028724 |
| ContentType | Journal Article |
| Copyright | Journal compilation © 2010 National Ground Water Association. No claim to original US government works Copyright Ground Water Publishing Company Sep/Oct 2010 |
| Copyright_xml | – notice: Journal compilation © 2010 National Ground Water Association. No claim to original US government works – notice: Copyright Ground Water Publishing Company Sep/Oct 2010 |
| DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7ST 7UA C1K F1W H96 H97 K9. L.G SOI 7S9 L.6 7X8 8FD FR3 KR7 |
| DOI | 10.1111/j.1745-6584.2010.00730.x |
| DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Health & Medical Complete (Alumni) Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic Technology Research Database Civil Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | AGRICOLA CrossRef MEDLINE MEDLINE - Academic Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering Agriculture |
| EISSN | 1745-6584 |
| EndPage | 689 |
| ExternalDocumentID | 2131854791 20572873 10_1111_j_1745_6584_2010_00730_x GWAT730 ark_67375_WNG_NTPJD4W7_8 US201301879565 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
| GeographicLocations | Pajaro California Central Valley United States--US |
| GeographicLocations_xml | – name: United States--US – name: Pajaro California – name: Central Valley |
| GroupedDBID | --- -DZ -~X .3N .DC .GA .Y3 05W 0R~ 10A 186 1OB 1OC 29I 31~ 33P 3SF 3V. 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 7X2 7X7 7XC 8-0 8-1 8-3 8-4 8-5 88E 88I 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJCF ABJNI ABPPZ ABPTK ABPVW ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACSCC ACSMX ACXBN ACXME ACXQS ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFVGU AFZJQ AGJLS AI. AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BCR BCU BDRZF BEC BENPR BES BFHJK BGLVJ BHBCM BHPHI BKOMP BKSAR BLC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F D1J D1K DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 F5P FBQ FEDTE FYUFA FZ0 G-S G.N GNUQQ GODZA GUQSH H.T H.X HCIFZ HF~ HMCUK HVGLF HZI HZ~ IAG IAO IEA IEP IOF ITC IX1 J0M K48 K6- L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK5 LOXES LP6 LP7 LUTES LW6 LYRES M0K M1P M2O M2P M7R M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2P P2W P2X P4D PALCI PATMY PCBAR PEA PQQKQ PRG PROAC PSQYO PTHSS PYCSY Q.N Q11 Q2X QB0 R.K R05 RIWAO RJQFR ROL RWL RX1 S0X SAMSI SJFOW SUPJJ TAE TN5 UB1 UKHRP V8K VH1 VJK W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 Y6R YCJ ZCA ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO ADXHL AEFGJ AEUYN AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIDQK AIDYY AIQQE AITYG ALVPJ BSCLL HGLYW OIG PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO ALIPV AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7ST 7UA C1K F1W H96 H97 K9. L.G SOI 7S9 L.6 7X8 8FD FR3 KR7 |
| ID | FETCH-LOGICAL-a5450-c97b856e8d90c016e145f308f74a9f407c12b53ed40ff6a41513ee5f85201cf43 |
| IEDL.DBID | DR2 |
| ISSN | 0017-467X 1745-6584 |
| IngestDate | Fri Sep 05 14:30:40 EDT 2025 Fri Sep 05 11:53:16 EDT 2025 Thu Oct 02 12:04:48 EDT 2025 Tue Oct 07 05:46:08 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Thu Apr 24 23:02:28 EDT 2025 Wed Oct 01 04:35:35 EDT 2025 Wed Jan 22 16:59:05 EST 2025 Sun Sep 21 06:23:30 EDT 2025 Wed Dec 27 19:17:18 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a5450-c97b856e8d90c016e145f308f74a9f407c12b53ed40ff6a41513ee5f85201cf43 |
| Notes | http://dx.doi.org/10.1111/j.1745-6584.2010.00730.x ark:/67375/WNG-NTPJD4W7-8 istex:3422C884A107D969F97EC879A135067635B85F9C ArticleID:GWAT730 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 20572873 |
| PQID | 749714554 |
| PQPubID | 48478 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_760214579 proquest_miscellaneous_748971823 proquest_miscellaneous_1446273501 proquest_journals_749714554 pubmed_primary_20572873 crossref_citationtrail_10_1111_j_1745_6584_2010_00730_x crossref_primary_10_1111_j_1745_6584_2010_00730_x wiley_primary_10_1111_j_1745_6584_2010_00730_x_GWAT730 istex_primary_ark_67375_WNG_NTPJD4W7_8 fao_agris_US201301879565 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September/October 2010 |
| PublicationDateYYYYMMDD | 2010-09-01 |
| PublicationDate_xml | – month: 09 year: 2010 text: September/October 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: United States – name: Dublin |
| PublicationTitle | Ground water |
| PublicationTitleAlternate | Ground Water |
| PublicationYear | 2010 |
| Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Ground Water Publishing Company |
| Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Ground Water Publishing Company |
| References | Monninkhoff, B.L., and Z. Li. 2009. Coupling FEFLOW and MIKE11 to optimise the flooding system of the Lower Havel polders in Germany. International Journal of Water 5, no. 2: 163-180 California Department of Finance. 2007. E-4 population estimates for cities, counties and the State 2001-2007, with 2000 Benchmark, Sacramento, California. http://www.dof.ca.gov/HTML/DEMOGRAP/ReportsPapers/Estimates/E4/E4-01-06/HistE-4.asp. Sophocleous, M.A., J.K. Koelliker, R.S. Govindaraju, T. Birdie, S.R. Ramireddygari, and S.P. Perkins. 1999. Integrated numerical modeling for basin-wide water management-The case of the Rattlesnake Creek Basin in South-central Kansas. Journal of Hydrology 214, no. 1-4: 179-196. Refsgaard, J.C., and B. Storm. 1995. MIKE SHE. In: Computer Models of Watershed Hydrology, ed. Singh, 809-846. Highlands Ranch, Colorado: Water Resources Publications. Sophocleous, M.A., and S.P. Perkins. 2000. Methodology and application of combined watershed and ground-water models in Kansas. Journal of Hydrology 236, no. 3-4: 185-201. Mehl, S.M., and M.C. Hill. 2004. Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: Advances in Water Resources 27, 899-912. Kollet, S.J., and R.M. Maxwell. 2008. Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resources Research 44, W02402. Panday, S., and P.S. Huyakorn. 2008. MODFLOW SURFACT: A state-of-the-art use of vadose zone flow and transport equations and numerical techniques for environmental evaluations. Vadose Zone Journal 7, no. 2: 610-631. Schmid, W., and R.T. Hanson. 2009b. The Farm Process Version 2 (FMP2) for MODFLOW-2005 - Modifications and Upgrades to FMP1. U.S. Geological Survey Techniques in Water Resources Investigations, Book 6, Ch. A32. Schmid, W., and R.T. Hanson. 2007. Simulation of Intra- or Trans-Boundary Water-Rights Hierarchies using the Farm Process for MODFLOW-2000. ASCE Journal of Water Resources Planning and Management 133, no. 2: 166-178. Panday, S., N. Brown, T. Foreman, V. Bedekar, J. Kaur, and P.S. Huyakorn. 2009. Simulating dynamic water supply systems in a fully integrated surface-subsurface flow and transport model. Vadose Zone Journal 8, no. 4: 858-872. Twarakavi, N.K.C., J. Šimünek, and H.S. Seo. 2008. Evaluating interactions between groundwater and vadose zone using HY-DRUS-based flow package for MODFLOW. Vadose Zone Journal 7, no.2: 757-768. Liua, H.-L., X. Chena, A.-M. Baoa, and L. Wang. 2007. Investigation of groundwater response to overland flow and topography using a coupled MIKE SHE/MIKE 11 modeling system for an arid watershed. Journal of Hydrology 347, no. 3-4: 448-459. Maxwell, R.M., and N.L. Miller. 2005. Development of a coupled land surface and groundwater model. Journal of Hydrometeorology 6, no. 3: 233-247. Kavvas, ML, Z.Q. Chen, C. Dogrul, J.Y. Yoon, N. Ohara, L. Liang, H. Aksoy, M.L. Anderson, J. Yoshitani, K. Fukami, and T. Matsuura. 2004. Watershed Environmental Hydrology (WEHY) model based on upscaled conservation equations: hydrologic module. Jouranl of Hydrologic Engineering 9, no. 6: 450-464. Therrien, R., and E.A. Sudicky. 1996. Three-dimensional analysis of variably saturated flow and solute transport in discretely-fractured porous media. Journal of Contaminant Hydrology 23, no. 6: 1-44. 2007; 347 2009a; 1766 2006b 2010 2004; 27 2006a 2000; 236 2004; 9 1998 2009 2008 2007 2008; 7 2006 1995 2005 2004 2003b 2003 2002 2003a 1993; 4 1999 2005b 2005a 2009b; 6 2009d 2009c 2009b 2009a 2007; 133 2005; 6 2009; 8 2008; 44 2009; 5 1999; 214 1996; 23 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Graham D.N. (e_1_2_9_14_1) 2005 Allen R.G. (e_1_2_9_2_1) 1998 e_1_2_9_39_1 Schmid W. (e_1_2_9_42_1) 2009 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Faunt C.C. (e_1_2_9_10_1) 2009 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 Liua H.‐L. (e_1_2_9_27_1) 2007; 347 Refsgaard J.C. (e_1_2_9_40_1) 1995 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Faunt C.C. (e_1_2_9_9_1) 2009 Schmid W. (e_1_2_9_43_1) 2009; 6 Schmid W. (e_1_2_9_45_1) 2008 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 Faunt C.C. (e_1_2_9_11_1) 2009 California Department of Finance (e_1_2_9_3_1) 2007 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 Sophocleous M.A. (e_1_2_9_51_1) 2000; 236 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – reference: Mehl, S.M., and M.C. Hill. 2004. Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: Advances in Water Resources 27, 899-912. – reference: Twarakavi, N.K.C., J. Šimünek, and H.S. Seo. 2008. Evaluating interactions between groundwater and vadose zone using HY-DRUS-based flow package for MODFLOW. Vadose Zone Journal 7, no.2: 757-768. – reference: Kavvas, ML, Z.Q. Chen, C. Dogrul, J.Y. Yoon, N. Ohara, L. Liang, H. Aksoy, M.L. Anderson, J. Yoshitani, K. Fukami, and T. Matsuura. 2004. Watershed Environmental Hydrology (WEHY) model based on upscaled conservation equations: hydrologic module. Jouranl of Hydrologic Engineering 9, no. 6: 450-464. – reference: Monninkhoff, B.L., and Z. Li. 2009. Coupling FEFLOW and MIKE11 to optimise the flooding system of the Lower Havel polders in Germany. International Journal of Water 5, no. 2: 163-180 – reference: Therrien, R., and E.A. Sudicky. 1996. Three-dimensional analysis of variably saturated flow and solute transport in discretely-fractured porous media. Journal of Contaminant Hydrology 23, no. 6: 1-44. – reference: Kollet, S.J., and R.M. Maxwell. 2008. Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resources Research 44, W02402. – reference: Schmid, W., and R.T. Hanson. 2009b. The Farm Process Version 2 (FMP2) for MODFLOW-2005 - Modifications and Upgrades to FMP1. U.S. Geological Survey Techniques in Water Resources Investigations, Book 6, Ch. A32. – reference: Liua, H.-L., X. Chena, A.-M. Baoa, and L. Wang. 2007. Investigation of groundwater response to overland flow and topography using a coupled MIKE SHE/MIKE 11 modeling system for an arid watershed. Journal of Hydrology 347, no. 3-4: 448-459. – reference: Panday, S., N. Brown, T. Foreman, V. Bedekar, J. Kaur, and P.S. Huyakorn. 2009. Simulating dynamic water supply systems in a fully integrated surface-subsurface flow and transport model. Vadose Zone Journal 8, no. 4: 858-872. – reference: Maxwell, R.M., and N.L. Miller. 2005. Development of a coupled land surface and groundwater model. Journal of Hydrometeorology 6, no. 3: 233-247. – reference: Panday, S., and P.S. Huyakorn. 2008. MODFLOW SURFACT: A state-of-the-art use of vadose zone flow and transport equations and numerical techniques for environmental evaluations. Vadose Zone Journal 7, no. 2: 610-631. – reference: California Department of Finance. 2007. E-4 population estimates for cities, counties and the State 2001-2007, with 2000 Benchmark, Sacramento, California. http://www.dof.ca.gov/HTML/DEMOGRAP/ReportsPapers/Estimates/E4/E4-01-06/HistE-4.asp. – reference: Refsgaard, J.C., and B. Storm. 1995. MIKE SHE. In: Computer Models of Watershed Hydrology, ed. Singh, 809-846. Highlands Ranch, Colorado: Water Resources Publications. – reference: Schmid, W., and R.T. Hanson. 2007. Simulation of Intra- or Trans-Boundary Water-Rights Hierarchies using the Farm Process for MODFLOW-2000. ASCE Journal of Water Resources Planning and Management 133, no. 2: 166-178. – reference: Sophocleous, M.A., and S.P. Perkins. 2000. Methodology and application of combined watershed and ground-water models in Kansas. Journal of Hydrology 236, no. 3-4: 185-201. – reference: Sophocleous, M.A., J.K. Koelliker, R.S. Govindaraju, T. Birdie, S.R. Ramireddygari, and S.P. Perkins. 1999. Integrated numerical modeling for basin-wide water management-The case of the Rattlesnake Creek Basin in South-central Kansas. Journal of Hydrology 214, no. 1-4: 179-196. – year: 2005a – year: 2009 – start-page: 1 year: 2009a end-page: 56 – volume: 6 start-page: 233 issue: 3 year: 2005 end-page: 247 article-title: Development of a coupled land surface and groundwater model. publication-title: Journal of Hydrometeorology – start-page: 809 year: 1995 end-page: 846 – start-page: 496 year: 2008 end-page: 500 – year: 2005 – volume: 23 start-page: 1 issue: 6 year: 1996 end-page: 44 article-title: Three‐dimensional analysis of variably saturated flow and solute transport in discretely‐fractured porous media publication-title: Journal of Contaminant Hydrology – year: 2003b – year: 2007 – year: 2003 – start-page: 58 year: 2009b end-page: 120 – volume: 347 start-page: 3 year: 2007 end-page: 4 article-title: Investigation of groundwater response to overland flow and topography using a coupled MIKE SHE/MIKE 11 modeling system for an arid watershed publication-title: Journal of Hydrology – volume: 8 start-page: 858 issue: 4 year: 2009 end-page: 872 article-title: Simulating dynamic water supply systems in a fully integrated surface–subsurface flow and transport model publication-title: Vadose Zone Journal – year: 2006a – volume: 133 start-page: 166 issue: 2 year: 2007 end-page: 178 article-title: Simulation of Intra‐ or Trans‐Boundary Water‐Rights Hierarchies using the Farm Process for MODFLOW‐2000. publication-title: ASCE Journal of Water Resources Planning and Management – volume: 4 start-page: 187 year: 1993 end-page: 208 – volume: 6 year: 2009b article-title: The Farm Process Version 2 (FMP2) for MODFLOW‐2005 ‐ Modifications and Upgrades to FMP1. U.S. Geological Survey Techniques in Water Resources Investigations publication-title: Book – start-page: 245 year: 2005 end-page: 272 – year: 1998 – year: 2010 – volume: 44 start-page: W02402 year: 2008 article-title: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model publication-title: Water Resources Research – volume: 236 start-page: 3 year: 2000 end-page: 4 article-title: Methodology and application of combined watershed and ground‐water models in Kansas publication-title: Journal of Hydrology – year: 2005b – volume: 27 start-page: 899 year: 2004 end-page: 912 article-title: Three‐dimensional local grid refinement for block‐centered finite‐difference groundwater models using iteratively coupled shared nodes publication-title: Advances in Water Resources – start-page: 311 year: 2008 end-page: 314 – start-page: 121 year: 2009c end-page: 212 – year: 2003a – volume: 5 start-page: 163 issue: 2 year: 2009 end-page: 180 article-title: Coupling FEFLOW and MIKE11 to optimise the flooding system of the Lower Havel polders in Germany publication-title: International Journal of Water – start-page: 19 year: 2009 end-page: 22 – start-page: 2009 year: 2009d end-page: 3057 – year: 2002 – year: 2008 – year: 2006 – volume: 9 start-page: 450 issue: 6 year: 2004 end-page: 464 article-title: Watershed Environmental Hydrology (WEHY) model based on upscaled conservation equations: hydrologic module. publication-title: Jouranl of Hydrologic Engineering – year: 2004 – start-page: 501 year: 2008 end-page: 505 – volume: 7 start-page: 610 issue: 2 year: 2008 end-page: 631 article-title: MODFLOW SURFACT: A state‐of‐the‐art use of vadose zone flow and transport equations and numerical techniques for environmental evaluations publication-title: Vadose Zone Journal – year: 2009c – volume: 214 start-page: 1 year: 1999 end-page: 4 article-title: Integrated numerical modeling for basin‐wide water management—The case of the Rattlesnake Creek Basin in South‐central Kansas publication-title: Journal of Hydrology – volume: 1766 start-page: 213 year: 2009a end-page: 225 – start-page: 23 year: 2006b end-page: 27 – volume: 7 start-page: 757 issue: 2 year: 2008 end-page: 768 article-title: Evaluating interactions between groundwater and vadose zone using HY‐DRUS‐based flow package for MODFLOW. publication-title: Vadose Zone Journal – year: 1999 – ident: e_1_2_9_48_1 – ident: e_1_2_9_25_1 – ident: e_1_2_9_17_1 – ident: e_1_2_9_20_1 – ident: e_1_2_9_39_1 doi: 10.3133/ofr20041042 – ident: e_1_2_9_33_1 doi: 10.3133/tm6A19 – ident: e_1_2_9_47_1 doi: 10.3133/tm6A17 – ident: e_1_2_9_56_1 doi: 10.2136/vzj2007.0082 – volume-title: Food and Agriculture Organization of the United Nations year: 1998 ident: e_1_2_9_2_1 – ident: e_1_2_9_4_1 – start-page: 213 volume-title: Ground‐Water Availability of California's Central Valley. year: 2009 ident: e_1_2_9_42_1 – ident: e_1_2_9_38_1 – volume: 6 year: 2009 ident: e_1_2_9_43_1 article-title: The Farm Process Version 2 (FMP2) for MODFLOW‐2005 ‐ Modifications and Upgrades to FMP1. U.S. Geological Survey Techniques in Water Resources Investigations publication-title: Book – volume-title: E‐4 population estimates for cities, counties and the State 2001–2007, with 2000 Benchmark, Sacramento, California. year: 2007 ident: e_1_2_9_3_1 – ident: e_1_2_9_5_1 – ident: e_1_2_9_30_1 doi: 10.3133/tm6A21 – ident: e_1_2_9_12_1 doi: 10.3133/fs20093057 – ident: e_1_2_9_44_1 – ident: e_1_2_9_8_1 – ident: e_1_2_9_41_1 – ident: e_1_2_9_49_1 – ident: e_1_2_9_22_1 doi: 10.3133/ofr03233 – start-page: 121 volume-title: U.S. Geological Survey Professional Paper 1766 year: 2009 ident: e_1_2_9_11_1 – ident: e_1_2_9_35_1 doi: 10.2136/vzj2009.0020 – start-page: 1 volume-title: U.S. Geological Survey Professional Paper 1766 year: 2009 ident: e_1_2_9_9_1 – ident: e_1_2_9_24_1 doi: 10.1029/2007WR006004 – ident: e_1_2_9_31_1 doi: 10.1016/j.advwatres.2004.06.004 – ident: e_1_2_9_23_1 doi: 10.1061/(ASCE)1084-0699(2004)9:6(450) – ident: e_1_2_9_34_1 doi: 10.3133/tm6A13 – ident: e_1_2_9_16_1 doi: 10.3133/ofr02293 – ident: e_1_2_9_46_1 doi: 10.1061/(ASCE)0733-9496(2007)133:2(166) – ident: e_1_2_9_6_1 – ident: e_1_2_9_19_1 doi: 10.3133/fs04403 – ident: e_1_2_9_26_1 doi: 10.3133/tm6A30 – ident: e_1_2_9_55_1 doi: 10.1016/0169-7722(95)00088-7 – start-page: 58 volume-title: U.S. Geological Survey Professional Paper 1766 year: 2009 ident: e_1_2_9_10_1 – ident: e_1_2_9_7_1 – ident: e_1_2_9_54_1 – ident: e_1_2_9_52_1 doi: 10.1016/S0022-1694(98)00289-3 – ident: e_1_2_9_28_1 doi: 10.3133/tm6D1 – ident: e_1_2_9_13_1 – ident: e_1_2_9_29_1 doi: 10.1175/JHM422.1 – start-page: 245 volume-title: Watershed Models year: 2005 ident: e_1_2_9_14_1 – start-page: 809 volume-title: Computer Models of Watershed Hydrology year: 1995 ident: e_1_2_9_40_1 – start-page: 311 volume-title: Hydropredict year: 2008 ident: e_1_2_9_45_1 – volume: 236 start-page: 3 year: 2000 ident: e_1_2_9_51_1 article-title: Methodology and application of combined watershed and ground‐water models in Kansas publication-title: Journal of Hydrology doi: 10.1016/S0022-1694(00)00293-6 – volume: 347 start-page: 3 year: 2007 ident: e_1_2_9_27_1 article-title: Investigation of groundwater response to overland flow and topography using a coupled MIKE SHE/MIKE 11 modeling system for an arid watershed publication-title: Journal of Hydrology – ident: e_1_2_9_36_1 doi: 10.2136/vzj2007.0052 – ident: e_1_2_9_15_1 – ident: e_1_2_9_21_1 doi: 10.3133/tm6A16 – ident: e_1_2_9_37_1 – ident: e_1_2_9_32_1 doi: 10.1504/IJW.2009.028724 – ident: e_1_2_9_18_1 doi: 10.3133/fs04403 – ident: e_1_2_9_50_1 – ident: e_1_2_9_53_1 |
| SSID | ssj0003909 |
| Score | 2.1108634 |
| Snippet | The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from... The extension of MODFLOW onto the landscape with the Farm Process (MF‐FMP) facilitates fully coupled simulation of the use and movement of water from... |
| SourceID | proquest pubmed crossref wiley istex fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 674 |
| SubjectTerms | Agriculture Anthropogenic factors Aquifers climate coastal water Coastal waters Computer simulation Farms Groundwater Groundwater flow Groundwater runoff Hydrologic cycle Hydrologic modeling Hydrology Landscape Landscapes Precipitation Pumpage Runoff Simulation Stream discharge Stream flow supply balance Surface water Surface-groundwater relations Valleys Vegetation Water distribution Water distribution systems Water Movements |
| Title | Simulation and Analysis of Conjunctive Use with MODFLOW's Farm Process |
| URI | https://api.istex.fr/ark:/67375/WNG-NTPJD4W7-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1745-6584.2010.00730.x https://www.ncbi.nlm.nih.gov/pubmed/20572873 https://www.proquest.com/docview/749714554 https://www.proquest.com/docview/1446273501 https://www.proquest.com/docview/748971823 https://www.proquest.com/docview/760214579 |
| Volume | 48 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0017-467X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1745-6584 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003909 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagF-BQoDwaCshICE5ZJbEdO8eqJa0qukV0V7s3y0nsAtsmaB9S4dczkxfdqqAKcYuU2LIn8_jGmXxDyNtQWYgCyvqucNbnwnHfqMj5QWZYkYF3zOsz3eNhfDjmR1Mxbeuf8F-Yhh-iP3BDy6j9NRq4yRbrRi658DGCdhVaoK0DxJMhi-vs6vNvJilI7ZPOKYNvmF4v6rlhorVIddeZCvAriv7yJjC6jm3r4JQ-JLNuW01NymywWmaD_Oc1xsf_s-9HZLPFsHS3UbrH5I4tt8iDK8yGW-Re21z9y48nJD39etE2CaOmLGjHg0IrR_eq8htEVvS5dLywFI-F6fHJfvrxZPJ-QVMzv6DtvwxPyTj9MNo79Nv2Db4BWBb4eSIzJWKriiTIAVnaEFSBBcpJbhIHiWQeRplgtuCBc7EBJBEya4VTAraVO86ekY2yKu02oSY0kQ1YxKQreCHiJCyMY4xlubJOJcIjsntVOm-5zbHFxrm-kuOA1DRKTaPUdC01femRsB_5veH3uMWYbdAGbc7ADevxaYQff-um7TEs5F2tIv1cZj7D0jkp9GR4oIejT0f7fCK18shOp0O69RoLLXkikTiee-RNfxfMHb_hmNJWq4XG9B0QpwhCj9A_PIOEQgA5IvaXR2LkyhMy8cjzRoH7FUeA4CGNhsFxrYa3Fos-mOyO4OrFvw7cIfeb2gys4HtJNpbzlX0FkG-Zva6N-RdP_kCJ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB5BeSg8cJSjoRxGQvCUVRLbifNYtaRL2d0iuqvdN8tJbI62CdpDKvx6xrnoVgVViLdIiaN4Msc39vgbgNe-0BgFhHZNbrTLuGGuEoFxvVTRPEXvmFVrusNR2J-wwxmfNe2A7FmYmh-iW3CzllH5a2vgdkF63cojxl0bQtsSLVTXHgLKWyzEtMUipE-_uaQwuY9bt4zeYXa5rOeKN63FqptGlYhgrfDPr4Kj6-i2Ck_JPThtJ1ZXpZz0Vsu0l_28xPn4n2Z-H-42MJbs1nr3AG7oYgvuXCA33ILNpr_6lx8PITn-etb0CSOqyElLhUJKQ_bK4hsGV-t2yWShiV0ZJsOj_WRwNH27IIman5HmOMMjmCTvxnt9t-ng4CpEZp6bxVEqeKhFHnsZgkvtozZQT5iIqdhgLpn5QcqpzplnTKgQTPhUa24Ex2llhtHHsFGUhd4GonwVaI8GNDI5y3kY-7kylNI0E9qImDsQtf9KZg29ue2ycSovpDkoNWmlJq3UZCU1ee6A3438XlN8XGPMNqqDVJ_RE8vJcWD3f6u-7SF-yJtKR7p3qfmJrZ6LuJyODuRo_PFwn00jKRzYaZVINo5jISMWR5Y7njnwqruLFm-3cVShy9VC2gweQSf3fAfIH56xnEKIOgL6l0dCS5fHo9iBJ7UGd18cIIjHTBoHh5UeXlss8mC6O8arp_868CVs9sfDgRy8H33Ygdt1qYYt6HsGG8v5Sj9HBLhMX1SW_Qt7y0Sq |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB5BkTgeOMrRUA4jIXjKKontxHmsuqSltNuK7mr3zXISm5a2SbWHVPj1jHPRrQqqEG-RElv2ZI5vnMk3AO99oTEKCO2a3GiXccNcJQLjeqmieYreMavOdPcG4faI7Uz4pGkHZP-FqfkhugM3axmVv7YGrs9zs2zlEeOuDaFtiRaqaw8B5R3GY2Hr-_pff3NJYXIft24ZvcPkalnPNTMtxarbRpWIYK3wL66Do8votgpPySM4bTdWV6Wc9BbztJf9vML5-J92_hgeNjCWbNR69wRu6WIVHlwiN1yFe01_9aMfTyE5PD5r-oQRVeSkpUIhpSGbZfEdg6t1u2Q008SeDJO9_X6yuz_-OCOJmp6R5neGZzBKPg03t92mg4OrEJl5bhZHqeChFnnsZQgutY_aQD1hIqZig7lk5gcppzpnnjGhQjDhU625ERy3lRlGn8NKURZ6DYjyVaA9GtDI5CznYeznylBK00xoI2LuQNS-K5k19Oa2y8apvJTmoNSklZq0UpOV1OSFA3438rym-LjBmDVUB6m-oSeWo8PAfv-t-raHuJAPlY50c6npia2ei7gcD7bkYHiw02fjSAoH1lslko3jmMmIxZHljmcOvOvuosXbzziq0OViJm0Gj6CTe74D5A_PWE4hRB0B_csjoaXL41HswItag7sVBwjiMZPGwWGlhzcWi9wabwzx6uW_DnwLdw_6idz9PPiyDvfrSg1bz_cKVubThX6NAHCevqkM-xfCNUQu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+and+analysis+of+conjunctive+use+with+MODFLOW%27s+farm+process&rft.jtitle=Ground+water&rft.au=Hanson%2C+R+T&rft.au=Schmid%2C+W&rft.au=Faunt%2C+C+C&rft.au=Lockwood%2C+B&rft.date=2010-09-01&rft.eissn=1745-6584&rft.volume=48&rft.issue=5&rft.spage=674&rft_id=info:doi/10.1111%2Fj.1745-6584.2010.00730.x&rft_id=info%3Apmid%2F20572873&rft.externalDocID=20572873 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-467X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-467X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-467X&client=summon |