Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water
The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large‐scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present‐day NAD...
Saved in:
Published in | Geochemistry, geophysics, geosystems : G3 Vol. 6; no. 12; pp. np - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.12.2005
AGU and the Geochemical Society |
Subjects | |
Online Access | Get full text |
ISSN | 1525-2027 1525-2027 |
DOI | 10.1029/2005GC000956 |
Cover
Abstract | The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large‐scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present‐day NADW Nd IC is well characterized at ɛNd = −13.5, the acquisition of this isotopic signature (in other words, the causes of this value) has so far been very sparsely documented. Such an understanding is, however, fundamental to the interpretation of paleo records. Nd IC and rare earth element concentrations were measured at 9 stations within the North Atlantic Subpolar Gyre (SIGNATURE cruise, summer 1999). The comparison of this data set with our understanding of water mass circulation provides a description of how the three layers constituting the NADW, the Labrador Sea Water (LSW, ɛNd = −13.9 ± 0.4), North East Atlantic Deep Water (NEADW, ɛNd −13.2 ± 0.4), and North West Atlantic Bottom Water (NWABW, ɛNd −14.5 ± 0.4), acquire their Nd IC through distinct water mass mixings and lithogenic inputs. These different mechanisms, acting upon water masses from very diverse sources, seem to bring the Nd IC of the three NADW layers to values close together and similar to that of the NADW. It is suggested that sediment/seawater interactions significantly lower the NEADW and NWABW Nd IC along the South East Greenland margin. Since these interactions do not significantly modify the Nd content of these water masses, sediment remobilizations leading to the Nd IC variations are probably associated with Nd removal fluxes from the water mass toward the sediment, a process called boundary exchange. On the other hand, LSW seems to acquire its Nd IC from the Subpolar Mode Waters from which it is formed by deep convection, and no other mechanism needs to be invoked. Its unradiogenic signature could ultimately be linked to fresh water runoff from the Canadian Shield. These conclusions should allow more precise interpretations of paleoceanographic Nd IC records, taking into account the distinct histories of the three NADW layers, including distinct water mass mixings and distinct lithogenic inputs. |
---|---|
AbstractList | The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large-scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present-day NADW Nd IC is well characterized at sub(Nd) = -13.5, the acquisition of this isotopic signature (in other words, the causes of this value) has so far been very sparsely documented. Such an understanding is, however, fundamental to the interpretation of paleo records. Nd IC and rare earth element concentrations were measured at 9 stations within the North Atlantic Subpolar Gyre (SIGNATURE cruise, summer 1999). The comparison of this data set with our understanding of water mass circulation provides a description of how the three layers constituting the NADW, the Labrador Sea Water (LSW, sub(Nd) = -13.9 plus or minus 0.4), North East Atlantic Deep Water (NEADW, sub(Nd) -13.2 plus or minus 0.4), and North West Atlantic Bottom Water (NWABW, sub(Nd) -14.5 plus or minus 0.4), acquire their Nd IC through distinct water mass mixings and lithogenic inputs. These different mechanisms, acting upon water masses from very diverse sources, seem to bring the Nd IC of the three NADW layers to values close together and similar to that of the NADW. It is suggested that sediment/seawater interactions significantly lower the NEADW and NWABW Nd IC along the South East Greenland margin. Since these interactions do not significantly modify the Nd content of these water masses, sediment remobilizations leading to the Nd IC variations are probably associated with Nd removal fluxes from the water mass toward the sediment, a process called boundary exchange. On the other hand, LSW seems to acquire its Nd IC from the Subpolar Mode Waters from which it is formed by deep convection, and no other mechanism needs to be invoked. Its unradiogenic signature could ultimately be linked to fresh water runoff from the Canadian Shield. These conclusions should allow more precise interpretations of paleoceanographic Nd IC records, taking into account the distinct histories of the three NADW layers, including distinct water mass mixings and distinct lithogenic inputs. The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large‐scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present‐day NADW Nd IC is well characterized at ɛ Nd = −13.5, the acquisition of this isotopic signature (in other words, the causes of this value) has so far been very sparsely documented. Such an understanding is, however, fundamental to the interpretation of paleo records. Nd IC and rare earth element concentrations were measured at 9 stations within the North Atlantic Subpolar Gyre (SIGNATURE cruise, summer 1999). The comparison of this data set with our understanding of water mass circulation provides a description of how the three layers constituting the NADW, the Labrador Sea Water (LSW, ɛ Nd = −13.9 ± 0.4), North East Atlantic Deep Water (NEADW, ɛ Nd −13.2 ± 0.4), and North West Atlantic Bottom Water (NWABW, ɛ Nd −14.5 ± 0.4), acquire their Nd IC through distinct water mass mixings and lithogenic inputs. These different mechanisms, acting upon water masses from very diverse sources, seem to bring the Nd IC of the three NADW layers to values close together and similar to that of the NADW. It is suggested that sediment/seawater interactions significantly lower the NEADW and NWABW Nd IC along the South East Greenland margin. Since these interactions do not significantly modify the Nd content of these water masses, sediment remobilizations leading to the Nd IC variations are probably associated with Nd removal fluxes from the water mass toward the sediment, a process called boundary exchange. On the other hand, LSW seems to acquire its Nd IC from the Subpolar Mode Waters from which it is formed by deep convection, and no other mechanism needs to be invoked. Its unradiogenic signature could ultimately be linked to fresh water runoff from the Canadian Shield. These conclusions should allow more precise interpretations of paleoceanographic Nd IC records, taking into account the distinct histories of the three NADW layers, including distinct water mass mixings and distinct lithogenic inputs. The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large‐scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present‐day NADW Nd IC is well characterized at ɛNd = −13.5, the acquisition of this isotopic signature (in other words, the causes of this value) has so far been very sparsely documented. Such an understanding is, however, fundamental to the interpretation of paleo records. Nd IC and rare earth element concentrations were measured at 9 stations within the North Atlantic Subpolar Gyre (SIGNATURE cruise, summer 1999). The comparison of this data set with our understanding of water mass circulation provides a description of how the three layers constituting the NADW, the Labrador Sea Water (LSW, ɛNd = −13.9 ± 0.4), North East Atlantic Deep Water (NEADW, ɛNd −13.2 ± 0.4), and North West Atlantic Bottom Water (NWABW, ɛNd −14.5 ± 0.4), acquire their Nd IC through distinct water mass mixings and lithogenic inputs. These different mechanisms, acting upon water masses from very diverse sources, seem to bring the Nd IC of the three NADW layers to values close together and similar to that of the NADW. It is suggested that sediment/seawater interactions significantly lower the NEADW and NWABW Nd IC along the South East Greenland margin. Since these interactions do not significantly modify the Nd content of these water masses, sediment remobilizations leading to the Nd IC variations are probably associated with Nd removal fluxes from the water mass toward the sediment, a process called boundary exchange. On the other hand, LSW seems to acquire its Nd IC from the Subpolar Mode Waters from which it is formed by deep convection, and no other mechanism needs to be invoked. Its unradiogenic signature could ultimately be linked to fresh water runoff from the Canadian Shield. These conclusions should allow more precise interpretations of paleoceanographic Nd IC records, taking into account the distinct histories of the three NADW layers, including distinct water mass mixings and distinct lithogenic inputs. The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large-scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present-day NADW Nd IC is well characterized at e Nd = À13.5, the acquisition of this isotopic signature (in other words, the causes of this value) has so far been very sparsely documented. Such an understanding is, however, fundamental to the interpretation of paleo records. Nd IC and rare earth element concentrations were measured at 9 stations within the North Atlantic Subpolar Gyre (SIGNATURE cruise, summer 1999). The comparison of this data set with our understanding of water mass circulation provides a description of how the three layers constituting the NADW, the Labrador Sea Water (LSW, e Nd = À13.9 ± 0.4), North East Atlantic Deep Water (NEADW, e Nd À13.2 ± 0.4), and North West Atlantic Bottom Water (NWABW, e Nd À14.5 ± 0.4), acquire their Nd IC through distinct water mass mixings and lithogenic inputs. These different mechanisms, acting upon water masses from very diverse sources, seem to bring the Nd IC of the three NADW layers to values close together and similar to that of the NADW. It is suggested that sediment/seawater interactions significantly lower the NEADW and NWABW Nd IC along the South East Greenland margin. Since these interactions do not significantly modify the Nd content of these water masses, sediment remobilizations leading to the Nd IC variations are probably associated with Nd removal fluxes from the water mass toward the sediment, a process called boundary exchange. On the other hand, LSW seems to acquire its Nd IC from the Subpolar Mode Waters from which it is formed by deep convection, and no other mechanism needs to be invoked. Its unradiogenic signature could ultimately be linked to fresh water runoff from the Canadian Shield. These conclusions should allow more precise interpretations of paleoceanographic Nd IC records, taking into account the distinct histories of the three NADW layers, including distinct water mass mixings and distinct lithogenic inputs. Components: 12,506 words, 6 figures, 4 tables. |
Author | Jeandel, Catherine Lacan, Francois |
Author_xml | – sequence: 1 givenname: Francois surname: Lacan fullname: Lacan, Francois email: francois.lacan@cnes.fr organization: CNRS, LEGOS, UMR5566, CNRS-CNES-IRD-UPS, Observatoire Midi-Pyrénées, 18, Avenue E. Belin,, F-31400, Toulouse, France – sequence: 2 givenname: Catherine surname: Jeandel fullname: Jeandel, Catherine organization: CNRS, LEGOS, UMR5566, CNRS-CNES-IRD-UPS, Observatoire Midi-Pyrénées, 18, Avenue E. Belin,, F-31400, Toulouse, France |
BackLink | https://hal.science/hal-00280188$$DView record in HAL |
BookMark | eNqFkV1r2zAUhsXoYP3Y3X6ALzdo2qMvW74MWeaUhg5GSy6FIktErW25ktI1_74OHqEbdL064vA80oveE3TU-c4g9AXDBQZSXhIAXs0AoOT5B3SMOeETAqQ4enX-hE5ivAfAjHNxjH5N9ePWRZec7zJvs7QxWWd8vWvdts1c9Mn3Tmfat73_m7rxIW2yaWpUlwbiuzF9tlLJhDP00aomms9_5im6-zG_nS0my5_V1Wy6nCjOhjC4rmteYiasqgnYtbV1IdbKWk1ykWugpqiFKBi367WqccGFYoRyLRgok-eEnqJv470b1cg-uFaFnfTKycV0Kfc7ACIAC_GEB_bryPbBP25NTLJ1UZtmCG_8NkqcM0LKkpb0fZQTxggIuk9wPqI6-BiDsYcYGOS-Efm6kQEn_-DaJbX_0xSUa96S8Cj9do3Z_fcBWVXVPC_54ExGx8Vkng-OCg8yL2jB5eqmkuJ6tqDVEmRFXwBqgKvL |
CitedBy_id | crossref_primary_10_1126_science_aao2473 crossref_primary_10_1016_j_chemgeo_2024_122230 crossref_primary_10_1016_j_marchem_2020_103844 crossref_primary_10_1016_j_palaeo_2021_110359 crossref_primary_10_1016_j_quascirev_2021_107146 crossref_primary_10_1016_j_gca_2009_05_058 crossref_primary_10_1002_2017PA003238 crossref_primary_10_1029_2009GC002869 crossref_primary_10_1016_j_gca_2008_11_046 crossref_primary_10_1016_j_gca_2015_12_019 crossref_primary_10_5194_bg_17_5539_2020 crossref_primary_10_1016_j_gca_2013_10_009 crossref_primary_10_1016_j_gca_2012_09_012 crossref_primary_10_1016_j_oregeorev_2017_09_009 crossref_primary_10_1016_j_chemgeo_2016_06_024 crossref_primary_10_1016_j_epsl_2015_03_007 crossref_primary_10_1038_nature14084 crossref_primary_10_1038_s41561_018_0069_9 crossref_primary_10_1016_j_chemgeo_2013_08_008 crossref_primary_10_1016_j_quascirev_2016_08_035 crossref_primary_10_1016_j_chemgeo_2015_10_015 crossref_primary_10_1007_s11434_011_4452_9 crossref_primary_10_1016_j_chemgeo_2012_01_019 crossref_primary_10_1029_2011GC003741 crossref_primary_10_5194_bg_13_5259_2016 crossref_primary_10_1016_j_chemgeo_2006_12_006 crossref_primary_10_1016_j_gca_2011_11_034 crossref_primary_10_1016_j_epsl_2016_08_037 crossref_primary_10_1016_j_epsl_2010_04_010 crossref_primary_10_1016_j_quascirev_2019_03_011 crossref_primary_10_1029_2017PA003290 crossref_primary_10_1016_j_epsl_2009_01_026 crossref_primary_10_1029_2020GB006569 crossref_primary_10_1016_j_gca_2023_01_001 crossref_primary_10_1016_j_epsl_2011_09_047 crossref_primary_10_1002_2014PA002674 crossref_primary_10_1029_2020PA003928 crossref_primary_10_1016_j_chemgeo_2024_122167 crossref_primary_10_1016_j_palaeo_2016_08_021 crossref_primary_10_1029_2021JC017236 crossref_primary_10_1029_2006GC001302 crossref_primary_10_1016_j_gca_2010_11_005 crossref_primary_10_5194_cp_10_1441_2014 crossref_primary_10_1016_j_quascirev_2012_02_004 crossref_primary_10_1029_2020PA003877 crossref_primary_10_1016_j_epsl_2014_09_011 crossref_primary_10_1038_nature14059 crossref_primary_10_1016_j_chemgeo_2018_10_019 crossref_primary_10_1029_2018GL080074 crossref_primary_10_1029_2007GC001766 crossref_primary_10_5194_cp_4_191_2008 crossref_primary_10_1098_rsta_2015_0293 crossref_primary_10_1029_2011GC003529 crossref_primary_10_1029_2022PA004470 crossref_primary_10_1130_G25363A_1 crossref_primary_10_1016_j_marchem_2019_03_012 crossref_primary_10_2343_geochemj_2_0547 crossref_primary_10_1016_j_jseaes_2013_01_004 crossref_primary_10_1016_j_epsl_2016_06_001 crossref_primary_10_1016_j_chemgeo_2017_09_021 crossref_primary_10_1130_G31677_1 crossref_primary_10_1016_j_gca_2013_03_014 crossref_primary_10_1016_j_gr_2015_08_005 crossref_primary_10_1016_j_epsl_2008_05_027 crossref_primary_10_1016_j_pocean_2023_103127 crossref_primary_10_1021_acsearthspacechem_0c00034 crossref_primary_10_1016_j_epsl_2012_01_037 crossref_primary_10_1016_j_epsl_2020_116299 crossref_primary_10_1016_j_gca_2014_05_041 crossref_primary_10_1002_2015PA002815 crossref_primary_10_1016_j_epsl_2014_12_008 crossref_primary_10_1016_j_epsl_2016_04_013 crossref_primary_10_1016_j_gr_2012_01_009 crossref_primary_10_1016_j_epsl_2011_11_025 crossref_primary_10_1029_2020PA003973 crossref_primary_10_1029_2012PA002312 crossref_primary_10_1029_2006PA001294 crossref_primary_10_1029_2019PA003654 crossref_primary_10_1016_j_epsl_2007_10_053 crossref_primary_10_1016_j_gca_2016_01_018 crossref_primary_10_5194_bg_20_205_2023 crossref_primary_10_5194_os_6_789_2010 crossref_primary_10_1016_j_margeo_2019_01_004 crossref_primary_10_1016_j_epsl_2009_06_007 crossref_primary_10_3389_fmars_2018_00147 crossref_primary_10_1029_2011PA002114 crossref_primary_10_1016_j_marchem_2023_104207 crossref_primary_10_1130_G37114_1 crossref_primary_10_1016_j_chemgeo_2017_01_022 crossref_primary_10_1002_palo_20030 crossref_primary_10_1016_j_epsl_2015_03_011 crossref_primary_10_1016_j_epsl_2008_05_011 crossref_primary_10_3389_fmars_2017_00426 crossref_primary_10_1038_ngeo_2007_5 crossref_primary_10_1130_B35903_1 crossref_primary_10_1016_j_epsl_2014_03_008 crossref_primary_10_1016_j_quascirev_2012_10_029 crossref_primary_10_1016_j_chemgeo_2016_04_016 crossref_primary_10_1038_s41467_019_13707_z crossref_primary_10_1038_s41561_023_01214_2 crossref_primary_10_1029_2008PA001624 crossref_primary_10_1029_2012PA002337 crossref_primary_10_1038_ncomms10316 crossref_primary_10_1002_2015PA002843 crossref_primary_10_1016_j_epsl_2007_10_037 crossref_primary_10_1016_j_epsl_2013_02_028 crossref_primary_10_1016_j_gca_2017_04_002 crossref_primary_10_1016_j_gca_2018_10_018 crossref_primary_10_1016_j_chemgeo_2009_10_016 crossref_primary_10_1029_2006PA001273 |
Cites_doi | 10.1016/0016-7037(88)90144-5 10.1029/91GB01778 10.1016/j.dsr.2003.09.006 10.1038/35024186 10.1016/j.epsl.2004.06.002 10.1016/0012-821X(93)90104-H 10.1016/0016-7037(87)90217-1 10.1016/S0967-0637(98)00089-2 10.1016/S0967-0637(00)00107-2 10.1029/2004GC000742 10.1029/1999JC900155 10.1029/2000PA000550 10.1016/S0016-7037(03)00501-5 10.1086/628741 10.1016/0012-821X(85)90147-5 10.1029/2004GL019747 10.1126/science.286.5446.1862b 10.1098/rsta.1988.0046 10.1016/j.gca.2004.01.024 10.1029/94JC00530 10.1016/j.epsl.2005.01.004 10.1126/science.1104883 10.1016/0012-821X(80)90125-9 10.1029/1999JC000285 10.1016/0016-7037(94)00367-U 10.1016/S0012-821X(01)00263-1 10.1016/S0012-821X(99)00127-2 10.1029/2000PA000606 10.1016/0012-821X(86)90138-X 10.1086/629606 10.1016/0012-821X(80)90124-7 10.1130/0091-7613(1992)020<0761:WMONII>2.3.CO;2 10.1016/0079-6611(92)90006-L 10.1016/S0079-6611(99)00052-X 10.1016/0016-7037(88)90208-6 10.1016/S0079-6611(01)00011-8 10.1175/1520-0485(1982)012<1169:TSMWOT>2.0.CO;2 10.1016/0198-0149(84)90005-0 10.1016/S0012-821X(96)00251-8 10.1016/B0-08-043751-6/06179-X 10.1016/S0012-821X(99)00244-7 10.1038/35016049 10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2 |
ContentType | Journal Article |
Copyright | Copyright 2005 by the American Geophysical Union. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright 2005 by the American Geophysical Union. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION 7QH 7UA C1K F1W H96 H97 L.G 8FD FR3 H8D KR7 L7M 1XC VOOES |
DOI | 10.1029/2005GC000956 |
DatabaseName | Istex CrossRef Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1525-2027 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_00280188v1 10_1029_2005GC000956 GGGE695 ark_67375_WNG_8KCH3GL0_G |
Genre | article |
GeographicLocations | AN, North Atlantic, North Atlantic Deep Water Canada, Canadian Shield AW, West Atlantic ANE, North Atlantic Subpolar Gyre AE, East Atlantic ANE, Atlantic, Labrador Sea Water ANE, Greenland, Oestgroenland |
GeographicLocations_xml | – name: ANE, Atlantic, Labrador Sea Water – name: ANE, North Atlantic Subpolar Gyre – name: AE, East Atlantic – name: ANE, Greenland, Oestgroenland – name: Canada, Canadian Shield – name: AN, North Atlantic, North Atlantic Deep Water – name: AW, West Atlantic |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 50Y 5GY 8-1 88I 8CJ 8FE 8FH 8G5 8R4 8R5 AAESR AAFWJ AAMMB AANHP AAYCA AAZKR ABCUV ABUWG ACAHQ ACBWZ ACCMX ACGFS ACGOD ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADIYS ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFPKN AGQPQ AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI BSCLL CCPQU CS3 D1J DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OK1 P-X P2W PCBAR PHGZM PHGZT PQQKQ PROAC PUEGO Q2X R.K ROL SUPJJ UB1 WBKPD WIN ZZTAW ~02 ~OA AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7QH 7UA C1K F1W H96 H97 L.G 8FD FR3 H8D KR7 L7M 1XC VOOES |
ID | FETCH-LOGICAL-a5425-1ddd59148fad20fbffd78baffc2686c03e7d88745fbbad1758a4235c840ae6623 |
ISSN | 1525-2027 |
IngestDate | Tue Sep 09 06:33:04 EDT 2025 Tue Aug 05 10:18:02 EDT 2025 Fri Sep 05 04:16:35 EDT 2025 Thu Apr 24 22:59:29 EDT 2025 Tue Jul 01 02:31:33 EDT 2025 Sun Sep 21 06:20:39 EDT 2025 Tue Sep 09 05:32:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | neodymium isotopic composition North Atlantic Deep Water sediment seawater interaction rare earth elements boundary exchange |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a5425-1ddd59148fad20fbffd78baffc2686c03e7d88745fbbad1758a4235c840ae6623 |
Notes | istex:66446EDE70A3F8E19017F8263E44678B98A87A8F ark:/67375/WNG-8KCH3GL0-G ArticleID:2005GC000956 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4915-4719 0000-0001-6794-2279 |
OpenAccessLink | https://hal.science/hal-00280188 |
PQID | 1524420832 |
PQPubID | 23462 |
PageCount | 19 |
ParticipantIDs | hal_primary_oai_HAL_hal_00280188v1 proquest_miscellaneous_1642299393 proquest_miscellaneous_1524420832 crossref_primary_10_1029_2005GC000956 crossref_citationtrail_10_1029_2005GC000956 wiley_primary_10_1029_2005GC000956_GGGE695 istex_primary_ark_67375_WNG_8KCH3GL0_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2005 |
PublicationDateYYYYMMDD | 2005-12-01 |
PublicationDate_xml | – month: 12 year: 2005 text: December 2005 |
PublicationDecade | 2000 |
PublicationTitle | Geochemistry, geophysics, geosystems : G3 |
PublicationTitleAlternate | Geochem. Geophys. Geosyst |
PublicationYear | 2005 |
Publisher | Blackwell Publishing Ltd AGU and the Geochemical Society |
Publisher_xml | – name: Blackwell Publishing Ltd – name: AGU and the Geochemical Society |
References | Carter, S. J., and M. E. Raymo (1999), Sedimentological and mineralogical control of multisensor track data at sites 981 and 984, Proc. Ocean Drill. Program, Sci. Results, 162, 247-257. Elderfield, H. (1988), The oceanic chemistry of the rare earth elements, Philos. Trans. R. Soc. London, Ser. A, 325, 105-106. Lacan, F., and C. Jeandel (2004a), Denmark Strait water circulation traced by heterogeneity in neodymium isotopic compositions, Deep Sea Res., Part I, 51, 71-82. Tachikawa, K., C. Jeandel, and M. Roy-Barman (1999a), A new approach to Nd residence time in the ocean: The role of atmospheric inputs, Earth Planet. Sci. Lett., 170, 433-446. Jeandel, C. (1993), Concentration and isotopic composition of neodymium in the South Atlantic Ocean, Earth Planet. Sci. Lett., 117, 581-591. Jacobsen, S. B., and G. J. Wasserburg (1980), Sm-Nd isotopic evolution of chondrites, Earth Planet. Sci. Lett., 50, 139-155. Lacan, F., and C. Jeandel (2001), Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and rare earth element patterns, Earth Planet. Sci. Lett., 186, 497-512. Piepgras, D. J., and S. B. Jacobsen (1988), The isotopic composition of neodymium in the North Pacific, Geochim. Cosmochim. Acta, 52, 1373-1381. Swift, J. H. (1984), The circulation of the Denmark Strait and Iceland-Scotland overflow waters in the North Atlantic, Deep Sea Res., Part A, 31, 1339-1355. Talley, L. D. (1999), Mode waters in the subpolar North Atlantic in historical data and during the WOCE period, Int. WOCE Newsl., 37, 3-6. Talley, L. D., and M. S. McCartney (1982), Distribution and circulation of Labrador Sea Water, J. Phys. Oceanogr., 12, 1189-1205. Piotrowski, A. M., S. L. Goldstein, S. R. Hemming, and R. G. Fairbanks (2004), Intensification and variability of ocean thermohaline circulation through the last deglaciation, Earth Planet. Sci. Lett., 225, 205-220. Goldstein, S. L., and S. B. Jacobsen (1987), The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in the seawater, Chem. Geol., 66, 245-272. Milliman, J. D., and R. H. Meade (1983), World-wide delivery of river sediment to the oceans, J. Geol., 91, 1-21. Jeandel, C., J. K. Bishop, and A. Zindler (1995), Exchange of Nd and its isotopes between seawater small and large particles in the Sargasso Sea, Geochim. Cosmochim. Acta, 59, 535-547. Frank, M., N. Whiteley, S. Kasten, J. R. Hein, and K. O'Nions (2002), North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts, Paleoceanography, 17(2), 1022, doi:10.1029/2000PA000606. Hansen, B., and S. Østerhus (2000), North Atlantic-Nordic Seas exchanges, Prog. Oceanogr., 45, 109-208. Lacan, F., and C. Jeandel (2004b), Neodymium isotopic composition and rare earth element concentrations in the deep and intermediate Nordic Seas: Constraints on the Iceland Scotland Overflow Water signature, Geochem. Geophys. Geosyst., 5, Q11006, doi:10.1029/2004GC000742. Milliman, J. D., and J. P. M. Syvitski (1992), Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers, J. Geol., 100, 525-544. Rutberg, R. L., S. R. Hemming, and S. L. Goldstein (2000), Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios, Nature, 405, 935-938. Spivack, A. J., and G. J. Wasserburg (1988), Neodymium isotopic composition of the Mediterranean outflow and the eastern North Atlantic, Geochim. Cosmochim. Acta, 52, 2762-2773. von Blanckenburg, F., and T. F. Nägler (2001), Weathering versus circulation-controlled changes in radiogenic isotope tracer composition of the Labrador Sea and North Atlantic Deep Water, Paleoceanography, 16, 424-434. Staudigel, H., P. Doyle, and A. Zindler (1985), Sr and Nd isotope systematics in fish teeth, Earth Planet. Sci. Lett., 76, 45-56. Khatiwala, S., R. Fairbanks, and R. W. Houghton (1999), Freshwater sources to the coastal ocean off northeastern North America: Evidence from H218O/H216O, J. Geophys. Res., 104, 18,241-18,255. Piotrowski, A. M., S. L. Goldstein, S. R. Hemming, and R. G. Fairbanks (2005), Temporal relationships of carbon cycling and ocean circulation at glacial boundaries, Science, 307, 1933-1938, doi:10.1126/science.1104883. Duce, R. A., et al. (1991), The atmospheric input of trace species to the world ocean, Global Biogeochem. Cycles, 5, 193-259. Albarède, F., and S. Goldstein (1992), A world map of Nd isotopes in seafloor ferromanganese deposits, Geology, 20, 761-763. Stordal, M. C., and G. J. Wasserburg (1986), Neodymium isotopic study of Baffin Bay water: Sources of REE from very old terranes, Earth Planet. Sci. Lett., 77, 259-272. Lacan, F., and C. Jeandel (2004c), Subpolar Mode Water formation traced by neodymium isotopic composition, Geophys. Res. Lett., 31, L14306, doi:10.1029/2004GL019747. Tachikawa, K., V. Athias, and C. Jeandel (2003), Neodymium budget in the modern ocean and paleo-oceanographic implications, J. Geophys. Res., 108(C8), 3254, doi:10.1029/1999JC000285. Dickson, R. R., and J. Brown (1994), The production of North Atlantic Deep Waters: Sources, rates, and pathways, J. Geophys. Res., 99, 12,319-12,341. McCartney, M. S. (1992), Recirculating components to the deep boundary current of the northern North Atlantic, Prog. Oceanogr., 29, 283-383. Tachikawa, K., M. Roy-Barman, A. Michard, D. Thouron, D. Yeghicheyan, and C. Jeandel (2004), Neodymium isotopes in the Mediterranean Sea: Comparison between seawater and sediment signals, Geochim. Cosmochim. Acta, 68, 3095-3106. Vance, D., and K. Burton (1999), Neodymium isotopes in planktonic foraminifera: A record of the response of continental weathering and ocean circulation rates to climate change, Earth Planet. Sci. Lett., 173, 365-379. Read, J. (2001), CONVEX-91: Water masses and circulation in the Northeast Atlantic subpolar gyre, Prog. Oceanogr., 48, 461-510. Tachikawa, K., C. Jeandel, A. Vangriesheim, and B. Dupré (1999b), Distribution of rare earth elements and neodymium isotopes in suspended particles of the tropical Atlantic Ocean (EUMELI site), Deep Sea Res., Part I, 46, 733-756. Rhein, M. (2000), Drifters reveal deep circulation, Nature, 407, 30-31. Piepgras, D. J., and G. J. Wasserburg (1980), Neodymium isotopic variations in seawater, Earth Planet. Sci. Lett., 50, 128-138. Fleischmann, U., H. Hildebrandt, A. Putzka, and R. Bayer (2001), Transport of newly ventilated deep water from the Iceland Basin to the Westeuropean Basin, Deep Sea Res., Part I, 48, 1793-1819. McCartney, M. S., and L. D. Talley (1982), The Subpolar Mode Water of the North Atlantic Ocean, J. Phys. Oceanogr., 51, 1169-1188. Amakawa, H., Y. Nozaki, D. S. Alibo, J. Zhang, K. Fukugawa, and H. Nagai (2004), Neodymium isotopic variations in Northwest Pacific waters, Geochim. Cosmochim. Acta, 68, 715-727. von Blanckenburg, F. (1999), Tracing past ocean circulation? Science, 286, 1862-1863. Lacan, F., and C. Jeandel (2005), Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface, Earth Planet. Sci. Lett., 232, 245-257. Piepgras, D. J., and G. J. Wasserburg (1987), Rare earth element transport in the western North Atlantic inferred from isotopic observations, Geochim. Cosmochim. Acta, 51, 1257-1271. Innocent, C., N. Fagel, R. Stevenson, and C. Hillaire-Marcel (1997), Sm-Nd signature of modern and late Quaternary sediments from the northwest North Atlantic: Implications for deep current changes since the Last Glacial Maximum, Earth Planet. Sci. Lett., 146, 607-625. 1982; 12 2002; 17 2004; 225 2001; 186 1987; 51 2005; 232 2000; 45 1995; 59 1982; 51 1992; 100 1986; 77 2004; 68 1999; 170 1999; 46 1999; 286 1999; 162 2004; 5 2001; 48 2003 1983; 91 1988; 52 1999; 104 1988; 325 1991; 5 1997; 146 2000; 407 1987; 66 2004; 31 1984; 31 2003; 108 1993; 117 2004; 51 1980; 50 1996; I 2000; 405 1999; 37 1994; 99 1992; 29 2005; 307 1985 1999; 173 2001; 16 1992; 20 1985; 76 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 Carter S. J. (e_1_2_7_4_1) 1999; 162 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_29_1 Talley L. D. (e_1_2_7_44_1) 1999; 37 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Goldstein S. L. (e_1_2_7_11_1) 1987; 66 |
References_xml | – reference: Khatiwala, S., R. Fairbanks, and R. W. Houghton (1999), Freshwater sources to the coastal ocean off northeastern North America: Evidence from H218O/H216O, J. Geophys. Res., 104, 18,241-18,255. – reference: Duce, R. A., et al. (1991), The atmospheric input of trace species to the world ocean, Global Biogeochem. Cycles, 5, 193-259. – reference: Read, J. (2001), CONVEX-91: Water masses and circulation in the Northeast Atlantic subpolar gyre, Prog. Oceanogr., 48, 461-510. – reference: Albarède, F., and S. Goldstein (1992), A world map of Nd isotopes in seafloor ferromanganese deposits, Geology, 20, 761-763. – reference: Swift, J. H. (1984), The circulation of the Denmark Strait and Iceland-Scotland overflow waters in the North Atlantic, Deep Sea Res., Part A, 31, 1339-1355. – reference: Tachikawa, K., C. Jeandel, A. Vangriesheim, and B. Dupré (1999b), Distribution of rare earth elements and neodymium isotopes in suspended particles of the tropical Atlantic Ocean (EUMELI site), Deep Sea Res., Part I, 46, 733-756. – reference: Dickson, R. R., and J. Brown (1994), The production of North Atlantic Deep Waters: Sources, rates, and pathways, J. Geophys. Res., 99, 12,319-12,341. – reference: Lacan, F., and C. Jeandel (2005), Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface, Earth Planet. Sci. Lett., 232, 245-257. – reference: Lacan, F., and C. Jeandel (2001), Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and rare earth element patterns, Earth Planet. Sci. Lett., 186, 497-512. – reference: Talley, L. D., and M. S. McCartney (1982), Distribution and circulation of Labrador Sea Water, J. Phys. Oceanogr., 12, 1189-1205. – reference: McCartney, M. S. (1992), Recirculating components to the deep boundary current of the northern North Atlantic, Prog. Oceanogr., 29, 283-383. – reference: Amakawa, H., Y. Nozaki, D. S. Alibo, J. Zhang, K. Fukugawa, and H. Nagai (2004), Neodymium isotopic variations in Northwest Pacific waters, Geochim. Cosmochim. Acta, 68, 715-727. – reference: Tachikawa, K., V. Athias, and C. Jeandel (2003), Neodymium budget in the modern ocean and paleo-oceanographic implications, J. Geophys. Res., 108(C8), 3254, doi:10.1029/1999JC000285. – reference: Spivack, A. J., and G. J. Wasserburg (1988), Neodymium isotopic composition of the Mediterranean outflow and the eastern North Atlantic, Geochim. Cosmochim. Acta, 52, 2762-2773. – reference: Jeandel, C., J. K. Bishop, and A. Zindler (1995), Exchange of Nd and its isotopes between seawater small and large particles in the Sargasso Sea, Geochim. Cosmochim. Acta, 59, 535-547. – reference: Milliman, J. D., and R. H. Meade (1983), World-wide delivery of river sediment to the oceans, J. Geol., 91, 1-21. – reference: Vance, D., and K. Burton (1999), Neodymium isotopes in planktonic foraminifera: A record of the response of continental weathering and ocean circulation rates to climate change, Earth Planet. Sci. Lett., 173, 365-379. – reference: McCartney, M. S., and L. D. Talley (1982), The Subpolar Mode Water of the North Atlantic Ocean, J. Phys. Oceanogr., 51, 1169-1188. – reference: Jacobsen, S. B., and G. J. Wasserburg (1980), Sm-Nd isotopic evolution of chondrites, Earth Planet. Sci. Lett., 50, 139-155. – reference: Jeandel, C. (1993), Concentration and isotopic composition of neodymium in the South Atlantic Ocean, Earth Planet. Sci. Lett., 117, 581-591. – reference: von Blanckenburg, F., and T. F. Nägler (2001), Weathering versus circulation-controlled changes in radiogenic isotope tracer composition of the Labrador Sea and North Atlantic Deep Water, Paleoceanography, 16, 424-434. – reference: Fleischmann, U., H. Hildebrandt, A. Putzka, and R. Bayer (2001), Transport of newly ventilated deep water from the Iceland Basin to the Westeuropean Basin, Deep Sea Res., Part I, 48, 1793-1819. – reference: Frank, M., N. Whiteley, S. Kasten, J. R. Hein, and K. O'Nions (2002), North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts, Paleoceanography, 17(2), 1022, doi:10.1029/2000PA000606. – reference: Piotrowski, A. M., S. L. Goldstein, S. R. Hemming, and R. G. Fairbanks (2005), Temporal relationships of carbon cycling and ocean circulation at glacial boundaries, Science, 307, 1933-1938, doi:10.1126/science.1104883. – reference: Milliman, J. D., and J. P. M. Syvitski (1992), Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers, J. Geol., 100, 525-544. – reference: Talley, L. D. (1999), Mode waters in the subpolar North Atlantic in historical data and during the WOCE period, Int. WOCE Newsl., 37, 3-6. – reference: Tachikawa, K., C. Jeandel, and M. Roy-Barman (1999a), A new approach to Nd residence time in the ocean: The role of atmospheric inputs, Earth Planet. Sci. Lett., 170, 433-446. – reference: Innocent, C., N. Fagel, R. Stevenson, and C. Hillaire-Marcel (1997), Sm-Nd signature of modern and late Quaternary sediments from the northwest North Atlantic: Implications for deep current changes since the Last Glacial Maximum, Earth Planet. Sci. Lett., 146, 607-625. – reference: Lacan, F., and C. Jeandel (2004c), Subpolar Mode Water formation traced by neodymium isotopic composition, Geophys. Res. Lett., 31, L14306, doi:10.1029/2004GL019747. – reference: Lacan, F., and C. Jeandel (2004a), Denmark Strait water circulation traced by heterogeneity in neodymium isotopic compositions, Deep Sea Res., Part I, 51, 71-82. – reference: Stordal, M. C., and G. J. Wasserburg (1986), Neodymium isotopic study of Baffin Bay water: Sources of REE from very old terranes, Earth Planet. Sci. Lett., 77, 259-272. – reference: Carter, S. J., and M. E. Raymo (1999), Sedimentological and mineralogical control of multisensor track data at sites 981 and 984, Proc. Ocean Drill. Program, Sci. Results, 162, 247-257. – reference: Rutberg, R. L., S. R. Hemming, and S. L. Goldstein (2000), Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios, Nature, 405, 935-938. – reference: Tachikawa, K., M. Roy-Barman, A. Michard, D. Thouron, D. Yeghicheyan, and C. Jeandel (2004), Neodymium isotopes in the Mediterranean Sea: Comparison between seawater and sediment signals, Geochim. Cosmochim. Acta, 68, 3095-3106. – reference: von Blanckenburg, F. (1999), Tracing past ocean circulation? Science, 286, 1862-1863. – reference: Elderfield, H. (1988), The oceanic chemistry of the rare earth elements, Philos. Trans. R. Soc. London, Ser. A, 325, 105-106. – reference: Goldstein, S. L., and S. B. Jacobsen (1987), The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in the seawater, Chem. Geol., 66, 245-272. – reference: Rhein, M. (2000), Drifters reveal deep circulation, Nature, 407, 30-31. – reference: Staudigel, H., P. Doyle, and A. Zindler (1985), Sr and Nd isotope systematics in fish teeth, Earth Planet. Sci. Lett., 76, 45-56. – reference: Piepgras, D. J., and G. J. Wasserburg (1980), Neodymium isotopic variations in seawater, Earth Planet. Sci. Lett., 50, 128-138. – reference: Lacan, F., and C. Jeandel (2004b), Neodymium isotopic composition and rare earth element concentrations in the deep and intermediate Nordic Seas: Constraints on the Iceland Scotland Overflow Water signature, Geochem. Geophys. Geosyst., 5, Q11006, doi:10.1029/2004GC000742. – reference: Piotrowski, A. M., S. L. Goldstein, S. R. Hemming, and R. G. Fairbanks (2004), Intensification and variability of ocean thermohaline circulation through the last deglaciation, Earth Planet. Sci. Lett., 225, 205-220. – reference: Piepgras, D. J., and S. B. Jacobsen (1988), The isotopic composition of neodymium in the North Pacific, Geochim. Cosmochim. Acta, 52, 1373-1381. – reference: Piepgras, D. J., and G. J. Wasserburg (1987), Rare earth element transport in the western North Atlantic inferred from isotopic observations, Geochim. Cosmochim. Acta, 51, 1257-1271. – reference: Hansen, B., and S. Østerhus (2000), North Atlantic-Nordic Seas exchanges, Prog. Oceanogr., 45, 109-208. – year: 1985 – volume: 173 start-page: 365 year: 1999 end-page: 379 article-title: Neodymium isotopes in planktonic foraminifera: A record of the response of continental weathering and ocean circulation rates to climate change publication-title: Earth Planet. Sci. Lett. – volume: 17 issue: 2 year: 2002 article-title: North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts publication-title: Paleoceanography – volume: 31 year: 2004 article-title: Subpolar Mode Water formation traced by neodymium isotopic composition publication-title: Geophys. Res. Lett. – volume: 77 start-page: 259 year: 1986 end-page: 272 article-title: Neodymium isotopic study of Baffin Bay water: Sources of REE from very old terranes publication-title: Earth Planet. Sci. Lett. – volume: 307 start-page: 1933 year: 2005 end-page: 1938 article-title: Temporal relationships of carbon cycling and ocean circulation at glacial boundaries publication-title: Science – volume: 37 start-page: 3 year: 1999 end-page: 6 article-title: Mode waters in the subpolar North Atlantic in historical data and during the WOCE period publication-title: Int. WOCE Newsl. – volume: 108 issue: C8 year: 2003 article-title: Neodymium budget in the modern ocean and paleo‐oceanographic implications publication-title: J. Geophys. Res. – volume: 46 start-page: 733 year: 1999 end-page: 756 article-title: Distribution of rare earth elements and neodymium isotopes in suspended particles of the tropical Atlantic Ocean (EUMELI site) publication-title: Deep Sea Res., Part I – volume: 5 start-page: 193 year: 1991 end-page: 259 article-title: The atmospheric input of trace species to the world ocean publication-title: Global Biogeochem. Cycles – volume: 52 start-page: 1373 year: 1988 end-page: 1381 article-title: The isotopic composition of neodymium in the North Pacific publication-title: Geochim. Cosmochim. Acta – volume: 50 start-page: 128 year: 1980 end-page: 138 article-title: Neodymium isotopic variations in seawater publication-title: Earth Planet. Sci. Lett. – volume: I year: 1996 – start-page: 453 year: 2003 end-page: 489 – volume: 100 start-page: 525 year: 1992 end-page: 544 article-title: Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers publication-title: J. Geol. – volume: 407 start-page: 30 year: 2000 end-page: 31 article-title: Drifters reveal deep circulation publication-title: Nature – volume: 59 start-page: 535 year: 1995 end-page: 547 article-title: Exchange of Nd and its isotopes between seawater small and large particles in the Sargasso Sea publication-title: Geochim. Cosmochim. Acta – volume: 76 start-page: 45 year: 1985 end-page: 56 article-title: Sr and Nd isotope systematics in fish teeth publication-title: Earth Planet. Sci. Lett. – volume: 31 start-page: 1339 year: 1984 end-page: 1355 article-title: The circulation of the Denmark Strait and Iceland‐Scotland overflow waters in the North Atlantic publication-title: Deep Sea Res., Part A – volume: 66 start-page: 245 year: 1987 end-page: 272 article-title: The Nd and Sr isotopic systematics of river‐water dissolved material: Implications for the sources of Nd and Sr in the seawater publication-title: Chem. Geol. – volume: 68 start-page: 3095 year: 2004 end-page: 3106 article-title: Neodymium isotopes in the Mediterranean Sea: Comparison between seawater and sediment signals publication-title: Geochim. Cosmochim. Acta – volume: 162 start-page: 247 year: 1999 end-page: 257 article-title: Sedimentological and mineralogical control of multisensor track data at sites 981 and 984 publication-title: Proc. Ocean Drill. Program, Sci. Results – volume: 12 start-page: 1189 year: 1982 end-page: 1205 article-title: Distribution and circulation of Labrador Sea Water publication-title: J. Phys. Oceanogr. – volume: 286 start-page: 1862 year: 1999 end-page: 1863 article-title: Tracing past ocean circulation? publication-title: Science – volume: 51 start-page: 71 year: 2004 end-page: 82 article-title: Denmark Strait water circulation traced by heterogeneity in neodymium isotopic compositions publication-title: Deep Sea Res., Part I – volume: 5 year: 2004 article-title: Neodymium isotopic composition and rare earth element concentrations in the deep and intermediate Nordic Seas: Constraints on the Iceland Scotland Overflow Water signature publication-title: Geochem. Geophys. Geosyst. – volume: 51 start-page: 1257 year: 1987 end-page: 1271 article-title: Rare earth element transport in the western North Atlantic inferred from isotopic observations publication-title: Geochim. Cosmochim. Acta – volume: 99 start-page: 12,319 year: 1994 end-page: 12,341 article-title: The production of North Atlantic Deep Waters: Sources, rates, and pathways publication-title: J. Geophys. Res. – volume: 29 start-page: 283 year: 1992 end-page: 383 article-title: Recirculating components to the deep boundary current of the northern North Atlantic publication-title: Prog. Oceanogr. – volume: 48 start-page: 461 year: 2001 end-page: 510 article-title: CONVEX‐91: Water masses and circulation in the Northeast Atlantic subpolar gyre publication-title: Prog. Oceanogr. – volume: 146 start-page: 607 year: 1997 end-page: 625 article-title: Sm‐Nd signature of modern and late Quaternary sediments from the northwest North Atlantic: Implications for deep current changes since the Last Glacial Maximum publication-title: Earth Planet. Sci. Lett. – volume: 104 start-page: 18,241 year: 1999 end-page: 18,255 article-title: Freshwater sources to the coastal ocean off northeastern North America: Evidence from H O/H O publication-title: J. Geophys. Res. – volume: 45 start-page: 109 year: 2000 end-page: 208 article-title: North Atlantic‐Nordic Seas exchanges publication-title: Prog. Oceanogr. – volume: 117 start-page: 581 year: 1993 end-page: 591 article-title: Concentration and isotopic composition of neodymium in the South Atlantic Ocean publication-title: Earth Planet. Sci. Lett. – volume: 52 start-page: 2762 year: 1988 end-page: 2773 article-title: Neodymium isotopic composition of the Mediterranean outflow and the eastern North Atlantic publication-title: Geochim. Cosmochim. Acta – volume: 232 start-page: 245 year: 2005 end-page: 257 article-title: Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent‐ocean interface publication-title: Earth Planet. Sci. Lett. – volume: 325 start-page: 105 year: 1988 end-page: 106 article-title: The oceanic chemistry of the rare earth elements publication-title: Philos. Trans. R. Soc. London, Ser. A – volume: 50 start-page: 139 year: 1980 end-page: 155 article-title: Sm‐Nd isotopic evolution of chondrites publication-title: Earth Planet. Sci. Lett. – volume: 405 start-page: 935 year: 2000 end-page: 938 article-title: Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios publication-title: Nature – volume: 68 start-page: 715 year: 2004 end-page: 727 article-title: Neodymium isotopic variations in Northwest Pacific waters publication-title: Geochim. Cosmochim. Acta – volume: 91 start-page: 1 year: 1983 end-page: 21 article-title: World‐wide delivery of river sediment to the oceans publication-title: J. Geol. – volume: 225 start-page: 205 year: 2004 end-page: 220 article-title: Intensification and variability of ocean thermohaline circulation through the last deglaciation publication-title: Earth Planet. Sci. Lett. – volume: 186 start-page: 497 year: 2001 end-page: 512 article-title: Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and rare earth element patterns publication-title: Earth Planet. Sci. Lett. – volume: 48 start-page: 1793 year: 2001 end-page: 1819 article-title: Transport of newly ventilated deep water from the Iceland Basin to the Westeuropean Basin publication-title: Deep Sea Res., Part I – volume: 20 start-page: 761 year: 1992 end-page: 763 article-title: A world map of Nd isotopes in seafloor ferromanganese deposits publication-title: Geology – volume: 51 start-page: 1169 year: 1982 end-page: 1188 article-title: The Subpolar Mode Water of the North Atlantic Ocean publication-title: J. Phys. Oceanogr. – volume: 16 start-page: 424 year: 2001 end-page: 434 article-title: Weathering versus circulation‐controlled changes in radiogenic isotope tracer composition of the Labrador Sea and North Atlantic Deep Water publication-title: Paleoceanography – volume: 170 start-page: 433 year: 1999 end-page: 446 article-title: A new approach to Nd residence time in the ocean: The role of atmospheric inputs publication-title: Earth Planet. Sci. Lett. – volume: 66 start-page: 245 year: 1987 ident: e_1_2_7_11_1 article-title: The Nd and Sr isotopic systematics of river‐water dissolved material: Implications for the sources of Nd and Sr in the seawater publication-title: Chem. Geol. – ident: e_1_2_7_36_1 doi: 10.1016/0016-7037(88)90144-5 – ident: e_1_2_7_6_1 doi: 10.1029/91GB01778 – ident: e_1_2_7_19_1 doi: 10.1016/j.dsr.2003.09.006 – ident: e_1_2_7_33_1 doi: 10.1038/35024186 – ident: e_1_2_7_30_1 doi: 10.1016/j.epsl.2004.06.002 – ident: e_1_2_7_15_1 doi: 10.1016/0012-821X(93)90104-H – ident: e_1_2_7_29_1 doi: 10.1016/0016-7037(87)90217-1 – ident: e_1_2_7_41_1 doi: 10.1016/S0967-0637(98)00089-2 – ident: e_1_2_7_8_1 doi: 10.1016/S0967-0637(00)00107-2 – ident: e_1_2_7_20_1 doi: 10.1029/2004GC000742 – ident: e_1_2_7_17_1 doi: 10.1029/1999JC900155 – ident: e_1_2_7_49_1 doi: 10.1029/2000PA000550 – ident: e_1_2_7_3_1 doi: 10.1016/S0016-7037(03)00501-5 – ident: e_1_2_7_25_1 doi: 10.1086/628741 – ident: e_1_2_7_37_1 doi: 10.1016/0012-821X(85)90147-5 – ident: e_1_2_7_21_1 doi: 10.1029/2004GL019747 – ident: e_1_2_7_48_1 doi: 10.1126/science.286.5446.1862b – ident: e_1_2_7_7_1 doi: 10.1098/rsta.1988.0046 – ident: e_1_2_7_43_1 doi: 10.1016/j.gca.2004.01.024 – ident: e_1_2_7_5_1 doi: 10.1029/94JC00530 – ident: e_1_2_7_22_1 doi: 10.1016/j.epsl.2005.01.004 – ident: e_1_2_7_31_1 doi: 10.1126/science.1104883 – ident: e_1_2_7_14_1 doi: 10.1016/0012-821X(80)90125-9 – ident: e_1_2_7_42_1 doi: 10.1029/1999JC000285 – ident: e_1_2_7_16_1 doi: 10.1016/0016-7037(94)00367-U – volume: 37 start-page: 3 year: 1999 ident: e_1_2_7_44_1 article-title: Mode waters in the subpolar North Atlantic in historical data and during the WOCE period publication-title: Int. WOCE Newsl. – ident: e_1_2_7_18_1 doi: 10.1016/S0012-821X(01)00263-1 – ident: e_1_2_7_40_1 doi: 10.1016/S0012-821X(99)00127-2 – ident: e_1_2_7_35_1 – ident: e_1_2_7_9_1 doi: 10.1029/2000PA000606 – ident: e_1_2_7_38_1 doi: 10.1016/0012-821X(86)90138-X – ident: e_1_2_7_26_1 doi: 10.1086/629606 – ident: e_1_2_7_28_1 doi: 10.1016/0012-821X(80)90124-7 – ident: e_1_2_7_46_1 – ident: e_1_2_7_2_1 doi: 10.1130/0091-7613(1992)020<0761:WMONII>2.3.CO;2 – ident: e_1_2_7_23_1 doi: 10.1016/0079-6611(92)90006-L – ident: e_1_2_7_12_1 doi: 10.1016/S0079-6611(99)00052-X – ident: e_1_2_7_27_1 doi: 10.1016/0016-7037(88)90208-6 – volume: 162 start-page: 247 year: 1999 ident: e_1_2_7_4_1 article-title: Sedimentological and mineralogical control of multisensor track data at sites 981 and 984 publication-title: Proc. Ocean Drill. Program, Sci. Results – ident: e_1_2_7_32_1 doi: 10.1016/S0079-6611(01)00011-8 – ident: e_1_2_7_24_1 doi: 10.1175/1520-0485(1982)012<1169:TSMWOT>2.0.CO;2 – ident: e_1_2_7_39_1 doi: 10.1016/0198-0149(84)90005-0 – ident: e_1_2_7_13_1 doi: 10.1016/S0012-821X(96)00251-8 – ident: e_1_2_7_10_1 doi: 10.1016/B0-08-043751-6/06179-X – ident: e_1_2_7_47_1 doi: 10.1016/S0012-821X(99)00244-7 – ident: e_1_2_7_34_1 doi: 10.1038/35016049 – ident: e_1_2_7_45_1 doi: 10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2 |
SSID | ssj0014558 |
Score | 2.1781356 |
Snippet | The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large‐scale... The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large-scale... |
SourceID | hal proquest crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | boundary exchange Circulation Deep water Integrated circuits Marketing Neodymium neodymium isotopic composition North Atlantic Deep Water Ocean, Atmosphere rare earth elements Sciences of the Universe Sea water sediment seawater interaction Sediments Signatures water mass |
Title | Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water |
URI | https://api.istex.fr/ark:/67375/WNG-8KCH3GL0-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2005GC000956 https://www.proquest.com/docview/1524420832 https://www.proquest.com/docview/1642299393 https://hal.science/hal-00280188 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RVkhcEE8RKMgg4EBkaq-9fhyjkDqCECSUqLmt9gkWaZw2CaIc-O3Mrh91RKgKFytejTb2zHj2m915IPRSejyIQybd2NfahSVAu4nU3AV04DPBiS-YyXf-OI6G0_D9jMwue2za7JI1fyt-7swr-R-pwhjI1WTJ_oNkm0lhAH6DfOEKEobrtWTcE2ebvAy6qs_6F6qQF6f55rSbr4p1scyFjRovtqmq05r1HPgKFO-UWnZPWB2pW2HVTJluWmU7OCOJL6oo90FW1V1ZBXpldxWyxn6MmGANJhZF3opRNBvW8628w61NB9IK4KjsJCau2Tcpl5EdY5Vxjdo6hFuWcrFsrbnlzR_W3MOmGKr5_6xvweCOotnjT_R4OhrRyWA22UMHOAYIZSI4fw2aw6SQ2DatzfNV-Q8w-1F77i1ksvfVxMUemE_tx5bz0XZhLAaZ3EG3K-fB6ZWacBfdUIt76GZmmzNf3EefW_rgFNoBHjuNPji1PjgtfaiprD44tT44Rh8cqw8P0PR4MOkP3apnhssImF_Xl1KSFHxczST2NNdaxglnWgscJZHwAhXLxLQ40JwzCdgxYQCoiQA_n6kIsPBDtL8oFuoRciTnmDMSqFSJUHspxzJIuOCSS8kByHZQt-YXFVVBedPXZE5tYANOaZu7HfSqoV6WhVT-QvcCWN-QmOrnw96ImjEbBuAnyXe_g15byTRk7PybiVCMCT0ZZzT50IclZOTRrIOe16Kj8L2YwzAGjN-sKGhDaEJLAnwFDTjnANeCFN71jZX7lY9OsywbRCl5fI0Jn6Bbl9_VIdpfn2_UU4C3a_7MKu9v-I-kNA |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acquisition+of+the+neodymium+isotopic+composition+of+the+North+Atlantic+Deep+Water&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Lacan%2C+Francois&rft.au=Jeandel%2C+Catherine&rft.date=2005-12-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=6&rft.issue=12&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1029%2F2005GC000956&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon |