Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water

The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large‐scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present‐day NAD...

Full description

Saved in:
Bibliographic Details
Published inGeochemistry, geophysics, geosystems : G3 Vol. 6; no. 12; pp. np - n/a
Main Authors Lacan, Francois, Jeandel, Catherine
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.12.2005
AGU and the Geochemical Society
Subjects
Online AccessGet full text
ISSN1525-2027
1525-2027
DOI10.1029/2005GC000956

Cover

Abstract The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large‐scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present‐day NADW Nd IC is well characterized at ɛNd = −13.5, the acquisition of this isotopic signature (in other words, the causes of this value) has so far been very sparsely documented. Such an understanding is, however, fundamental to the interpretation of paleo records. Nd IC and rare earth element concentrations were measured at 9 stations within the North Atlantic Subpolar Gyre (SIGNATURE cruise, summer 1999). The comparison of this data set with our understanding of water mass circulation provides a description of how the three layers constituting the NADW, the Labrador Sea Water (LSW, ɛNd = −13.9 ± 0.4), North East Atlantic Deep Water (NEADW, ɛNd −13.2 ± 0.4), and North West Atlantic Bottom Water (NWABW, ɛNd −14.5 ± 0.4), acquire their Nd IC through distinct water mass mixings and lithogenic inputs. These different mechanisms, acting upon water masses from very diverse sources, seem to bring the Nd IC of the three NADW layers to values close together and similar to that of the NADW. It is suggested that sediment/seawater interactions significantly lower the NEADW and NWABW Nd IC along the South East Greenland margin. Since these interactions do not significantly modify the Nd content of these water masses, sediment remobilizations leading to the Nd IC variations are probably associated with Nd removal fluxes from the water mass toward the sediment, a process called boundary exchange. On the other hand, LSW seems to acquire its Nd IC from the Subpolar Mode Waters from which it is formed by deep convection, and no other mechanism needs to be invoked. Its unradiogenic signature could ultimately be linked to fresh water runoff from the Canadian Shield. These conclusions should allow more precise interpretations of paleoceanographic Nd IC records, taking into account the distinct histories of the three NADW layers, including distinct water mass mixings and distinct lithogenic inputs.
AbstractList The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large-scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present-day NADW Nd IC is well characterized at sub(Nd) = -13.5, the acquisition of this isotopic signature (in other words, the causes of this value) has so far been very sparsely documented. Such an understanding is, however, fundamental to the interpretation of paleo records. Nd IC and rare earth element concentrations were measured at 9 stations within the North Atlantic Subpolar Gyre (SIGNATURE cruise, summer 1999). The comparison of this data set with our understanding of water mass circulation provides a description of how the three layers constituting the NADW, the Labrador Sea Water (LSW, sub(Nd) = -13.9 plus or minus 0.4), North East Atlantic Deep Water (NEADW, sub(Nd) -13.2 plus or minus 0.4), and North West Atlantic Bottom Water (NWABW, sub(Nd) -14.5 plus or minus 0.4), acquire their Nd IC through distinct water mass mixings and lithogenic inputs. These different mechanisms, acting upon water masses from very diverse sources, seem to bring the Nd IC of the three NADW layers to values close together and similar to that of the NADW. It is suggested that sediment/seawater interactions significantly lower the NEADW and NWABW Nd IC along the South East Greenland margin. Since these interactions do not significantly modify the Nd content of these water masses, sediment remobilizations leading to the Nd IC variations are probably associated with Nd removal fluxes from the water mass toward the sediment, a process called boundary exchange. On the other hand, LSW seems to acquire its Nd IC from the Subpolar Mode Waters from which it is formed by deep convection, and no other mechanism needs to be invoked. Its unradiogenic signature could ultimately be linked to fresh water runoff from the Canadian Shield. These conclusions should allow more precise interpretations of paleoceanographic Nd IC records, taking into account the distinct histories of the three NADW layers, including distinct water mass mixings and distinct lithogenic inputs.
The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large‐scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present‐day NADW Nd IC is well characterized at ɛ Nd = −13.5, the acquisition of this isotopic signature (in other words, the causes of this value) has so far been very sparsely documented. Such an understanding is, however, fundamental to the interpretation of paleo records. Nd IC and rare earth element concentrations were measured at 9 stations within the North Atlantic Subpolar Gyre (SIGNATURE cruise, summer 1999). The comparison of this data set with our understanding of water mass circulation provides a description of how the three layers constituting the NADW, the Labrador Sea Water (LSW, ɛ Nd = −13.9 ± 0.4), North East Atlantic Deep Water (NEADW, ɛ Nd −13.2 ± 0.4), and North West Atlantic Bottom Water (NWABW, ɛ Nd −14.5 ± 0.4), acquire their Nd IC through distinct water mass mixings and lithogenic inputs. These different mechanisms, acting upon water masses from very diverse sources, seem to bring the Nd IC of the three NADW layers to values close together and similar to that of the NADW. It is suggested that sediment/seawater interactions significantly lower the NEADW and NWABW Nd IC along the South East Greenland margin. Since these interactions do not significantly modify the Nd content of these water masses, sediment remobilizations leading to the Nd IC variations are probably associated with Nd removal fluxes from the water mass toward the sediment, a process called boundary exchange. On the other hand, LSW seems to acquire its Nd IC from the Subpolar Mode Waters from which it is formed by deep convection, and no other mechanism needs to be invoked. Its unradiogenic signature could ultimately be linked to fresh water runoff from the Canadian Shield. These conclusions should allow more precise interpretations of paleoceanographic Nd IC records, taking into account the distinct histories of the three NADW layers, including distinct water mass mixings and distinct lithogenic inputs.
The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large‐scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present‐day NADW Nd IC is well characterized at ɛNd = −13.5, the acquisition of this isotopic signature (in other words, the causes of this value) has so far been very sparsely documented. Such an understanding is, however, fundamental to the interpretation of paleo records. Nd IC and rare earth element concentrations were measured at 9 stations within the North Atlantic Subpolar Gyre (SIGNATURE cruise, summer 1999). The comparison of this data set with our understanding of water mass circulation provides a description of how the three layers constituting the NADW, the Labrador Sea Water (LSW, ɛNd = −13.9 ± 0.4), North East Atlantic Deep Water (NEADW, ɛNd −13.2 ± 0.4), and North West Atlantic Bottom Water (NWABW, ɛNd −14.5 ± 0.4), acquire their Nd IC through distinct water mass mixings and lithogenic inputs. These different mechanisms, acting upon water masses from very diverse sources, seem to bring the Nd IC of the three NADW layers to values close together and similar to that of the NADW. It is suggested that sediment/seawater interactions significantly lower the NEADW and NWABW Nd IC along the South East Greenland margin. Since these interactions do not significantly modify the Nd content of these water masses, sediment remobilizations leading to the Nd IC variations are probably associated with Nd removal fluxes from the water mass toward the sediment, a process called boundary exchange. On the other hand, LSW seems to acquire its Nd IC from the Subpolar Mode Waters from which it is formed by deep convection, and no other mechanism needs to be invoked. Its unradiogenic signature could ultimately be linked to fresh water runoff from the Canadian Shield. These conclusions should allow more precise interpretations of paleoceanographic Nd IC records, taking into account the distinct histories of the three NADW layers, including distinct water mass mixings and distinct lithogenic inputs.
The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large-scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present-day NADW Nd IC is well characterized at e Nd = À13.5, the acquisition of this isotopic signature (in other words, the causes of this value) has so far been very sparsely documented. Such an understanding is, however, fundamental to the interpretation of paleo records. Nd IC and rare earth element concentrations were measured at 9 stations within the North Atlantic Subpolar Gyre (SIGNATURE cruise, summer 1999). The comparison of this data set with our understanding of water mass circulation provides a description of how the three layers constituting the NADW, the Labrador Sea Water (LSW, e Nd = À13.9 ± 0.4), North East Atlantic Deep Water (NEADW, e Nd À13.2 ± 0.4), and North West Atlantic Bottom Water (NWABW, e Nd À14.5 ± 0.4), acquire their Nd IC through distinct water mass mixings and lithogenic inputs. These different mechanisms, acting upon water masses from very diverse sources, seem to bring the Nd IC of the three NADW layers to values close together and similar to that of the NADW. It is suggested that sediment/seawater interactions significantly lower the NEADW and NWABW Nd IC along the South East Greenland margin. Since these interactions do not significantly modify the Nd content of these water masses, sediment remobilizations leading to the Nd IC variations are probably associated with Nd removal fluxes from the water mass toward the sediment, a process called boundary exchange. On the other hand, LSW seems to acquire its Nd IC from the Subpolar Mode Waters from which it is formed by deep convection, and no other mechanism needs to be invoked. Its unradiogenic signature could ultimately be linked to fresh water runoff from the Canadian Shield. These conclusions should allow more precise interpretations of paleoceanographic Nd IC records, taking into account the distinct histories of the three NADW layers, including distinct water mass mixings and distinct lithogenic inputs. Components: 12,506 words, 6 figures, 4 tables.
Author Jeandel, Catherine
Lacan, Francois
Author_xml – sequence: 1
  givenname: Francois
  surname: Lacan
  fullname: Lacan, Francois
  email: francois.lacan@cnes.fr
  organization: CNRS, LEGOS, UMR5566, CNRS-CNES-IRD-UPS, Observatoire Midi-Pyrénées, 18, Avenue E. Belin,, F-31400, Toulouse, France
– sequence: 2
  givenname: Catherine
  surname: Jeandel
  fullname: Jeandel, Catherine
  organization: CNRS, LEGOS, UMR5566, CNRS-CNES-IRD-UPS, Observatoire Midi-Pyrénées, 18, Avenue E. Belin,, F-31400, Toulouse, France
BackLink https://hal.science/hal-00280188$$DView record in HAL
BookMark eNqFkV1r2zAUhsXoYP3Y3X6ALzdo2qMvW74MWeaUhg5GSy6FIktErW25ktI1_74OHqEbdL064vA80oveE3TU-c4g9AXDBQZSXhIAXs0AoOT5B3SMOeETAqQ4enX-hE5ivAfAjHNxjH5N9ePWRZec7zJvs7QxWWd8vWvdts1c9Mn3Tmfat73_m7rxIW2yaWpUlwbiuzF9tlLJhDP00aomms9_5im6-zG_nS0my5_V1Wy6nCjOhjC4rmteYiasqgnYtbV1IdbKWk1ykWugpqiFKBi367WqccGFYoRyLRgok-eEnqJv470b1cg-uFaFnfTKycV0Kfc7ACIAC_GEB_bryPbBP25NTLJ1UZtmCG_8NkqcM0LKkpb0fZQTxggIuk9wPqI6-BiDsYcYGOS-Efm6kQEn_-DaJbX_0xSUa96S8Cj9do3Z_fcBWVXVPC_54ExGx8Vkng-OCg8yL2jB5eqmkuJ6tqDVEmRFXwBqgKvL
CitedBy_id crossref_primary_10_1126_science_aao2473
crossref_primary_10_1016_j_chemgeo_2024_122230
crossref_primary_10_1016_j_marchem_2020_103844
crossref_primary_10_1016_j_palaeo_2021_110359
crossref_primary_10_1016_j_quascirev_2021_107146
crossref_primary_10_1016_j_gca_2009_05_058
crossref_primary_10_1002_2017PA003238
crossref_primary_10_1029_2009GC002869
crossref_primary_10_1016_j_gca_2008_11_046
crossref_primary_10_1016_j_gca_2015_12_019
crossref_primary_10_5194_bg_17_5539_2020
crossref_primary_10_1016_j_gca_2013_10_009
crossref_primary_10_1016_j_gca_2012_09_012
crossref_primary_10_1016_j_oregeorev_2017_09_009
crossref_primary_10_1016_j_chemgeo_2016_06_024
crossref_primary_10_1016_j_epsl_2015_03_007
crossref_primary_10_1038_nature14084
crossref_primary_10_1038_s41561_018_0069_9
crossref_primary_10_1016_j_chemgeo_2013_08_008
crossref_primary_10_1016_j_quascirev_2016_08_035
crossref_primary_10_1016_j_chemgeo_2015_10_015
crossref_primary_10_1007_s11434_011_4452_9
crossref_primary_10_1016_j_chemgeo_2012_01_019
crossref_primary_10_1029_2011GC003741
crossref_primary_10_5194_bg_13_5259_2016
crossref_primary_10_1016_j_chemgeo_2006_12_006
crossref_primary_10_1016_j_gca_2011_11_034
crossref_primary_10_1016_j_epsl_2016_08_037
crossref_primary_10_1016_j_epsl_2010_04_010
crossref_primary_10_1016_j_quascirev_2019_03_011
crossref_primary_10_1029_2017PA003290
crossref_primary_10_1016_j_epsl_2009_01_026
crossref_primary_10_1029_2020GB006569
crossref_primary_10_1016_j_gca_2023_01_001
crossref_primary_10_1016_j_epsl_2011_09_047
crossref_primary_10_1002_2014PA002674
crossref_primary_10_1029_2020PA003928
crossref_primary_10_1016_j_chemgeo_2024_122167
crossref_primary_10_1016_j_palaeo_2016_08_021
crossref_primary_10_1029_2021JC017236
crossref_primary_10_1029_2006GC001302
crossref_primary_10_1016_j_gca_2010_11_005
crossref_primary_10_5194_cp_10_1441_2014
crossref_primary_10_1016_j_quascirev_2012_02_004
crossref_primary_10_1029_2020PA003877
crossref_primary_10_1016_j_epsl_2014_09_011
crossref_primary_10_1038_nature14059
crossref_primary_10_1016_j_chemgeo_2018_10_019
crossref_primary_10_1029_2018GL080074
crossref_primary_10_1029_2007GC001766
crossref_primary_10_5194_cp_4_191_2008
crossref_primary_10_1098_rsta_2015_0293
crossref_primary_10_1029_2011GC003529
crossref_primary_10_1029_2022PA004470
crossref_primary_10_1130_G25363A_1
crossref_primary_10_1016_j_marchem_2019_03_012
crossref_primary_10_2343_geochemj_2_0547
crossref_primary_10_1016_j_jseaes_2013_01_004
crossref_primary_10_1016_j_epsl_2016_06_001
crossref_primary_10_1016_j_chemgeo_2017_09_021
crossref_primary_10_1130_G31677_1
crossref_primary_10_1016_j_gca_2013_03_014
crossref_primary_10_1016_j_gr_2015_08_005
crossref_primary_10_1016_j_epsl_2008_05_027
crossref_primary_10_1016_j_pocean_2023_103127
crossref_primary_10_1021_acsearthspacechem_0c00034
crossref_primary_10_1016_j_epsl_2012_01_037
crossref_primary_10_1016_j_epsl_2020_116299
crossref_primary_10_1016_j_gca_2014_05_041
crossref_primary_10_1002_2015PA002815
crossref_primary_10_1016_j_epsl_2014_12_008
crossref_primary_10_1016_j_epsl_2016_04_013
crossref_primary_10_1016_j_gr_2012_01_009
crossref_primary_10_1016_j_epsl_2011_11_025
crossref_primary_10_1029_2020PA003973
crossref_primary_10_1029_2012PA002312
crossref_primary_10_1029_2006PA001294
crossref_primary_10_1029_2019PA003654
crossref_primary_10_1016_j_epsl_2007_10_053
crossref_primary_10_1016_j_gca_2016_01_018
crossref_primary_10_5194_bg_20_205_2023
crossref_primary_10_5194_os_6_789_2010
crossref_primary_10_1016_j_margeo_2019_01_004
crossref_primary_10_1016_j_epsl_2009_06_007
crossref_primary_10_3389_fmars_2018_00147
crossref_primary_10_1029_2011PA002114
crossref_primary_10_1016_j_marchem_2023_104207
crossref_primary_10_1130_G37114_1
crossref_primary_10_1016_j_chemgeo_2017_01_022
crossref_primary_10_1002_palo_20030
crossref_primary_10_1016_j_epsl_2015_03_011
crossref_primary_10_1016_j_epsl_2008_05_011
crossref_primary_10_3389_fmars_2017_00426
crossref_primary_10_1038_ngeo_2007_5
crossref_primary_10_1130_B35903_1
crossref_primary_10_1016_j_epsl_2014_03_008
crossref_primary_10_1016_j_quascirev_2012_10_029
crossref_primary_10_1016_j_chemgeo_2016_04_016
crossref_primary_10_1038_s41467_019_13707_z
crossref_primary_10_1038_s41561_023_01214_2
crossref_primary_10_1029_2008PA001624
crossref_primary_10_1029_2012PA002337
crossref_primary_10_1038_ncomms10316
crossref_primary_10_1002_2015PA002843
crossref_primary_10_1016_j_epsl_2007_10_037
crossref_primary_10_1016_j_epsl_2013_02_028
crossref_primary_10_1016_j_gca_2017_04_002
crossref_primary_10_1016_j_gca_2018_10_018
crossref_primary_10_1016_j_chemgeo_2009_10_016
crossref_primary_10_1029_2006PA001273
Cites_doi 10.1016/0016-7037(88)90144-5
10.1029/91GB01778
10.1016/j.dsr.2003.09.006
10.1038/35024186
10.1016/j.epsl.2004.06.002
10.1016/0012-821X(93)90104-H
10.1016/0016-7037(87)90217-1
10.1016/S0967-0637(98)00089-2
10.1016/S0967-0637(00)00107-2
10.1029/2004GC000742
10.1029/1999JC900155
10.1029/2000PA000550
10.1016/S0016-7037(03)00501-5
10.1086/628741
10.1016/0012-821X(85)90147-5
10.1029/2004GL019747
10.1126/science.286.5446.1862b
10.1098/rsta.1988.0046
10.1016/j.gca.2004.01.024
10.1029/94JC00530
10.1016/j.epsl.2005.01.004
10.1126/science.1104883
10.1016/0012-821X(80)90125-9
10.1029/1999JC000285
10.1016/0016-7037(94)00367-U
10.1016/S0012-821X(01)00263-1
10.1016/S0012-821X(99)00127-2
10.1029/2000PA000606
10.1016/0012-821X(86)90138-X
10.1086/629606
10.1016/0012-821X(80)90124-7
10.1130/0091-7613(1992)020<0761:WMONII>2.3.CO;2
10.1016/0079-6611(92)90006-L
10.1016/S0079-6611(99)00052-X
10.1016/0016-7037(88)90208-6
10.1016/S0079-6611(01)00011-8
10.1175/1520-0485(1982)012<1169:TSMWOT>2.0.CO;2
10.1016/0198-0149(84)90005-0
10.1016/S0012-821X(96)00251-8
10.1016/B0-08-043751-6/06179-X
10.1016/S0012-821X(99)00244-7
10.1038/35016049
10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2
ContentType Journal Article
Copyright Copyright 2005 by the American Geophysical Union.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright 2005 by the American Geophysical Union.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
7QH
7UA
C1K
F1W
H96
H97
L.G
8FD
FR3
H8D
KR7
L7M
1XC
VOOES
DOI 10.1029/2005GC000956
DatabaseName Istex
CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1525-2027
EndPage n/a
ExternalDocumentID oai_HAL_hal_00280188v1
10_1029_2005GC000956
GGGE695
ark_67375_WNG_8KCH3GL0_G
Genre article
GeographicLocations AN, North Atlantic, North Atlantic Deep Water
Canada, Canadian Shield
AW, West Atlantic
ANE, North Atlantic Subpolar Gyre
AE, East Atlantic
ANE, Atlantic, Labrador Sea Water
ANE, Greenland, Oestgroenland
GeographicLocations_xml – name: ANE, Atlantic, Labrador Sea Water
– name: ANE, North Atlantic Subpolar Gyre
– name: AE, East Atlantic
– name: ANE, Greenland, Oestgroenland
– name: Canada, Canadian Shield
– name: AN, North Atlantic, North Atlantic Deep Water
– name: AW, West Atlantic
GroupedDBID 05W
0R~
1OC
24P
31~
50Y
5GY
8-1
88I
8CJ
8FE
8FH
8G5
8R4
8R5
AAESR
AAFWJ
AAMMB
AANHP
AAYCA
AAZKR
ABCUV
ABUWG
ACAHQ
ACBWZ
ACCMX
ACGFS
ACGOD
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D1J
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OK1
P-X
P2W
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PUEGO
Q2X
R.K
ROL
SUPJJ
UB1
WBKPD
WIN
ZZTAW
~02
~OA
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7QH
7UA
C1K
F1W
H96
H97
L.G
8FD
FR3
H8D
KR7
L7M
1XC
VOOES
ID FETCH-LOGICAL-a5425-1ddd59148fad20fbffd78baffc2686c03e7d88745fbbad1758a4235c840ae6623
ISSN 1525-2027
IngestDate Tue Sep 09 06:33:04 EDT 2025
Tue Aug 05 10:18:02 EDT 2025
Fri Sep 05 04:16:35 EDT 2025
Thu Apr 24 22:59:29 EDT 2025
Tue Jul 01 02:31:33 EDT 2025
Sun Sep 21 06:20:39 EDT 2025
Tue Sep 09 05:32:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords neodymium isotopic composition
North Atlantic Deep Water
sediment seawater interaction
rare earth elements
boundary exchange
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a5425-1ddd59148fad20fbffd78baffc2686c03e7d88745fbbad1758a4235c840ae6623
Notes istex:66446EDE70A3F8E19017F8263E44678B98A87A8F
ark:/67375/WNG-8KCH3GL0-G
ArticleID:2005GC000956
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4915-4719
0000-0001-6794-2279
OpenAccessLink https://hal.science/hal-00280188
PQID 1524420832
PQPubID 23462
PageCount 19
ParticipantIDs hal_primary_oai_HAL_hal_00280188v1
proquest_miscellaneous_1642299393
proquest_miscellaneous_1524420832
crossref_primary_10_1029_2005GC000956
crossref_citationtrail_10_1029_2005GC000956
wiley_primary_10_1029_2005GC000956_GGGE695
istex_primary_ark_67375_WNG_8KCH3GL0_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2005
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: December 2005
PublicationDecade 2000
PublicationTitle Geochemistry, geophysics, geosystems : G3
PublicationTitleAlternate Geochem. Geophys. Geosyst
PublicationYear 2005
Publisher Blackwell Publishing Ltd
AGU and the Geochemical Society
Publisher_xml – name: Blackwell Publishing Ltd
– name: AGU and the Geochemical Society
References Carter, S. J., and M. E. Raymo (1999), Sedimentological and mineralogical control of multisensor track data at sites 981 and 984, Proc. Ocean Drill. Program, Sci. Results, 162, 247-257.
Elderfield, H. (1988), The oceanic chemistry of the rare earth elements, Philos. Trans. R. Soc. London, Ser. A, 325, 105-106.
Lacan, F., and C. Jeandel (2004a), Denmark Strait water circulation traced by heterogeneity in neodymium isotopic compositions, Deep Sea Res., Part I, 51, 71-82.
Tachikawa, K., C. Jeandel, and M. Roy-Barman (1999a), A new approach to Nd residence time in the ocean: The role of atmospheric inputs, Earth Planet. Sci. Lett., 170, 433-446.
Jeandel, C. (1993), Concentration and isotopic composition of neodymium in the South Atlantic Ocean, Earth Planet. Sci. Lett., 117, 581-591.
Jacobsen, S. B., and G. J. Wasserburg (1980), Sm-Nd isotopic evolution of chondrites, Earth Planet. Sci. Lett., 50, 139-155.
Lacan, F., and C. Jeandel (2001), Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and rare earth element patterns, Earth Planet. Sci. Lett., 186, 497-512.
Piepgras, D. J., and S. B. Jacobsen (1988), The isotopic composition of neodymium in the North Pacific, Geochim. Cosmochim. Acta, 52, 1373-1381.
Swift, J. H. (1984), The circulation of the Denmark Strait and Iceland-Scotland overflow waters in the North Atlantic, Deep Sea Res., Part A, 31, 1339-1355.
Talley, L. D. (1999), Mode waters in the subpolar North Atlantic in historical data and during the WOCE period, Int. WOCE Newsl., 37, 3-6.
Talley, L. D., and M. S. McCartney (1982), Distribution and circulation of Labrador Sea Water, J. Phys. Oceanogr., 12, 1189-1205.
Piotrowski, A. M., S. L. Goldstein, S. R. Hemming, and R. G. Fairbanks (2004), Intensification and variability of ocean thermohaline circulation through the last deglaciation, Earth Planet. Sci. Lett., 225, 205-220.
Goldstein, S. L., and S. B. Jacobsen (1987), The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in the seawater, Chem. Geol., 66, 245-272.
Milliman, J. D., and R. H. Meade (1983), World-wide delivery of river sediment to the oceans, J. Geol., 91, 1-21.
Jeandel, C., J. K. Bishop, and A. Zindler (1995), Exchange of Nd and its isotopes between seawater small and large particles in the Sargasso Sea, Geochim. Cosmochim. Acta, 59, 535-547.
Frank, M., N. Whiteley, S. Kasten, J. R. Hein, and K. O'Nions (2002), North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts, Paleoceanography, 17(2), 1022, doi:10.1029/2000PA000606.
Hansen, B., and S. Østerhus (2000), North Atlantic-Nordic Seas exchanges, Prog. Oceanogr., 45, 109-208.
Lacan, F., and C. Jeandel (2004b), Neodymium isotopic composition and rare earth element concentrations in the deep and intermediate Nordic Seas: Constraints on the Iceland Scotland Overflow Water signature, Geochem. Geophys. Geosyst., 5, Q11006, doi:10.1029/2004GC000742.
Milliman, J. D., and J. P. M. Syvitski (1992), Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers, J. Geol., 100, 525-544.
Rutberg, R. L., S. R. Hemming, and S. L. Goldstein (2000), Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios, Nature, 405, 935-938.
Spivack, A. J., and G. J. Wasserburg (1988), Neodymium isotopic composition of the Mediterranean outflow and the eastern North Atlantic, Geochim. Cosmochim. Acta, 52, 2762-2773.
von Blanckenburg, F., and T. F. Nägler (2001), Weathering versus circulation-controlled changes in radiogenic isotope tracer composition of the Labrador Sea and North Atlantic Deep Water, Paleoceanography, 16, 424-434.
Staudigel, H., P. Doyle, and A. Zindler (1985), Sr and Nd isotope systematics in fish teeth, Earth Planet. Sci. Lett., 76, 45-56.
Khatiwala, S., R. Fairbanks, and R. W. Houghton (1999), Freshwater sources to the coastal ocean off northeastern North America: Evidence from H218O/H216O, J. Geophys. Res., 104, 18,241-18,255.
Piotrowski, A. M., S. L. Goldstein, S. R. Hemming, and R. G. Fairbanks (2005), Temporal relationships of carbon cycling and ocean circulation at glacial boundaries, Science, 307, 1933-1938, doi:10.1126/science.1104883.
Duce, R. A., et al. (1991), The atmospheric input of trace species to the world ocean, Global Biogeochem. Cycles, 5, 193-259.
Albarède, F., and S. Goldstein (1992), A world map of Nd isotopes in seafloor ferromanganese deposits, Geology, 20, 761-763.
Stordal, M. C., and G. J. Wasserburg (1986), Neodymium isotopic study of Baffin Bay water: Sources of REE from very old terranes, Earth Planet. Sci. Lett., 77, 259-272.
Lacan, F., and C. Jeandel (2004c), Subpolar Mode Water formation traced by neodymium isotopic composition, Geophys. Res. Lett., 31, L14306, doi:10.1029/2004GL019747.
Tachikawa, K., V. Athias, and C. Jeandel (2003), Neodymium budget in the modern ocean and paleo-oceanographic implications, J. Geophys. Res., 108(C8), 3254, doi:10.1029/1999JC000285.
Dickson, R. R., and J. Brown (1994), The production of North Atlantic Deep Waters: Sources, rates, and pathways, J. Geophys. Res., 99, 12,319-12,341.
McCartney, M. S. (1992), Recirculating components to the deep boundary current of the northern North Atlantic, Prog. Oceanogr., 29, 283-383.
Tachikawa, K., M. Roy-Barman, A. Michard, D. Thouron, D. Yeghicheyan, and C. Jeandel (2004), Neodymium isotopes in the Mediterranean Sea: Comparison between seawater and sediment signals, Geochim. Cosmochim. Acta, 68, 3095-3106.
Vance, D., and K. Burton (1999), Neodymium isotopes in planktonic foraminifera: A record of the response of continental weathering and ocean circulation rates to climate change, Earth Planet. Sci. Lett., 173, 365-379.
Read, J. (2001), CONVEX-91: Water masses and circulation in the Northeast Atlantic subpolar gyre, Prog. Oceanogr., 48, 461-510.
Tachikawa, K., C. Jeandel, A. Vangriesheim, and B. Dupré (1999b), Distribution of rare earth elements and neodymium isotopes in suspended particles of the tropical Atlantic Ocean (EUMELI site), Deep Sea Res., Part I, 46, 733-756.
Rhein, M. (2000), Drifters reveal deep circulation, Nature, 407, 30-31.
Piepgras, D. J., and G. J. Wasserburg (1980), Neodymium isotopic variations in seawater, Earth Planet. Sci. Lett., 50, 128-138.
Fleischmann, U., H. Hildebrandt, A. Putzka, and R. Bayer (2001), Transport of newly ventilated deep water from the Iceland Basin to the Westeuropean Basin, Deep Sea Res., Part I, 48, 1793-1819.
McCartney, M. S., and L. D. Talley (1982), The Subpolar Mode Water of the North Atlantic Ocean, J. Phys. Oceanogr., 51, 1169-1188.
Amakawa, H., Y. Nozaki, D. S. Alibo, J. Zhang, K. Fukugawa, and H. Nagai (2004), Neodymium isotopic variations in Northwest Pacific waters, Geochim. Cosmochim. Acta, 68, 715-727.
von Blanckenburg, F. (1999), Tracing past ocean circulation? Science, 286, 1862-1863.
Lacan, F., and C. Jeandel (2005), Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface, Earth Planet. Sci. Lett., 232, 245-257.
Piepgras, D. J., and G. J. Wasserburg (1987), Rare earth element transport in the western North Atlantic inferred from isotopic observations, Geochim. Cosmochim. Acta, 51, 1257-1271.
Innocent, C., N. Fagel, R. Stevenson, and C. Hillaire-Marcel (1997), Sm-Nd signature of modern and late Quaternary sediments from the northwest North Atlantic: Implications for deep current changes since the Last Glacial Maximum, Earth Planet. Sci. Lett., 146, 607-625.
1982; 12
2002; 17
2004; 225
2001; 186
1987; 51
2005; 232
2000; 45
1995; 59
1982; 51
1992; 100
1986; 77
2004; 68
1999; 170
1999; 46
1999; 286
1999; 162
2004; 5
2001; 48
2003
1983; 91
1988; 52
1999; 104
1988; 325
1991; 5
1997; 146
2000; 407
1987; 66
2004; 31
1984; 31
2003; 108
1993; 117
2004; 51
1980; 50
1996; I
2000; 405
1999; 37
1994; 99
1992; 29
2005; 307
1985
1999; 173
2001; 16
1992; 20
1985; 76
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
Carter S. J. (e_1_2_7_4_1) 1999; 162
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_29_1
Talley L. D. (e_1_2_7_44_1) 1999; 37
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Goldstein S. L. (e_1_2_7_11_1) 1987; 66
References_xml – reference: Khatiwala, S., R. Fairbanks, and R. W. Houghton (1999), Freshwater sources to the coastal ocean off northeastern North America: Evidence from H218O/H216O, J. Geophys. Res., 104, 18,241-18,255.
– reference: Duce, R. A., et al. (1991), The atmospheric input of trace species to the world ocean, Global Biogeochem. Cycles, 5, 193-259.
– reference: Read, J. (2001), CONVEX-91: Water masses and circulation in the Northeast Atlantic subpolar gyre, Prog. Oceanogr., 48, 461-510.
– reference: Albarède, F., and S. Goldstein (1992), A world map of Nd isotopes in seafloor ferromanganese deposits, Geology, 20, 761-763.
– reference: Swift, J. H. (1984), The circulation of the Denmark Strait and Iceland-Scotland overflow waters in the North Atlantic, Deep Sea Res., Part A, 31, 1339-1355.
– reference: Tachikawa, K., C. Jeandel, A. Vangriesheim, and B. Dupré (1999b), Distribution of rare earth elements and neodymium isotopes in suspended particles of the tropical Atlantic Ocean (EUMELI site), Deep Sea Res., Part I, 46, 733-756.
– reference: Dickson, R. R., and J. Brown (1994), The production of North Atlantic Deep Waters: Sources, rates, and pathways, J. Geophys. Res., 99, 12,319-12,341.
– reference: Lacan, F., and C. Jeandel (2005), Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface, Earth Planet. Sci. Lett., 232, 245-257.
– reference: Lacan, F., and C. Jeandel (2001), Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and rare earth element patterns, Earth Planet. Sci. Lett., 186, 497-512.
– reference: Talley, L. D., and M. S. McCartney (1982), Distribution and circulation of Labrador Sea Water, J. Phys. Oceanogr., 12, 1189-1205.
– reference: McCartney, M. S. (1992), Recirculating components to the deep boundary current of the northern North Atlantic, Prog. Oceanogr., 29, 283-383.
– reference: Amakawa, H., Y. Nozaki, D. S. Alibo, J. Zhang, K. Fukugawa, and H. Nagai (2004), Neodymium isotopic variations in Northwest Pacific waters, Geochim. Cosmochim. Acta, 68, 715-727.
– reference: Tachikawa, K., V. Athias, and C. Jeandel (2003), Neodymium budget in the modern ocean and paleo-oceanographic implications, J. Geophys. Res., 108(C8), 3254, doi:10.1029/1999JC000285.
– reference: Spivack, A. J., and G. J. Wasserburg (1988), Neodymium isotopic composition of the Mediterranean outflow and the eastern North Atlantic, Geochim. Cosmochim. Acta, 52, 2762-2773.
– reference: Jeandel, C., J. K. Bishop, and A. Zindler (1995), Exchange of Nd and its isotopes between seawater small and large particles in the Sargasso Sea, Geochim. Cosmochim. Acta, 59, 535-547.
– reference: Milliman, J. D., and R. H. Meade (1983), World-wide delivery of river sediment to the oceans, J. Geol., 91, 1-21.
– reference: Vance, D., and K. Burton (1999), Neodymium isotopes in planktonic foraminifera: A record of the response of continental weathering and ocean circulation rates to climate change, Earth Planet. Sci. Lett., 173, 365-379.
– reference: McCartney, M. S., and L. D. Talley (1982), The Subpolar Mode Water of the North Atlantic Ocean, J. Phys. Oceanogr., 51, 1169-1188.
– reference: Jacobsen, S. B., and G. J. Wasserburg (1980), Sm-Nd isotopic evolution of chondrites, Earth Planet. Sci. Lett., 50, 139-155.
– reference: Jeandel, C. (1993), Concentration and isotopic composition of neodymium in the South Atlantic Ocean, Earth Planet. Sci. Lett., 117, 581-591.
– reference: von Blanckenburg, F., and T. F. Nägler (2001), Weathering versus circulation-controlled changes in radiogenic isotope tracer composition of the Labrador Sea and North Atlantic Deep Water, Paleoceanography, 16, 424-434.
– reference: Fleischmann, U., H. Hildebrandt, A. Putzka, and R. Bayer (2001), Transport of newly ventilated deep water from the Iceland Basin to the Westeuropean Basin, Deep Sea Res., Part I, 48, 1793-1819.
– reference: Frank, M., N. Whiteley, S. Kasten, J. R. Hein, and K. O'Nions (2002), North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts, Paleoceanography, 17(2), 1022, doi:10.1029/2000PA000606.
– reference: Piotrowski, A. M., S. L. Goldstein, S. R. Hemming, and R. G. Fairbanks (2005), Temporal relationships of carbon cycling and ocean circulation at glacial boundaries, Science, 307, 1933-1938, doi:10.1126/science.1104883.
– reference: Milliman, J. D., and J. P. M. Syvitski (1992), Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers, J. Geol., 100, 525-544.
– reference: Talley, L. D. (1999), Mode waters in the subpolar North Atlantic in historical data and during the WOCE period, Int. WOCE Newsl., 37, 3-6.
– reference: Tachikawa, K., C. Jeandel, and M. Roy-Barman (1999a), A new approach to Nd residence time in the ocean: The role of atmospheric inputs, Earth Planet. Sci. Lett., 170, 433-446.
– reference: Innocent, C., N. Fagel, R. Stevenson, and C. Hillaire-Marcel (1997), Sm-Nd signature of modern and late Quaternary sediments from the northwest North Atlantic: Implications for deep current changes since the Last Glacial Maximum, Earth Planet. Sci. Lett., 146, 607-625.
– reference: Lacan, F., and C. Jeandel (2004c), Subpolar Mode Water formation traced by neodymium isotopic composition, Geophys. Res. Lett., 31, L14306, doi:10.1029/2004GL019747.
– reference: Lacan, F., and C. Jeandel (2004a), Denmark Strait water circulation traced by heterogeneity in neodymium isotopic compositions, Deep Sea Res., Part I, 51, 71-82.
– reference: Stordal, M. C., and G. J. Wasserburg (1986), Neodymium isotopic study of Baffin Bay water: Sources of REE from very old terranes, Earth Planet. Sci. Lett., 77, 259-272.
– reference: Carter, S. J., and M. E. Raymo (1999), Sedimentological and mineralogical control of multisensor track data at sites 981 and 984, Proc. Ocean Drill. Program, Sci. Results, 162, 247-257.
– reference: Rutberg, R. L., S. R. Hemming, and S. L. Goldstein (2000), Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios, Nature, 405, 935-938.
– reference: Tachikawa, K., M. Roy-Barman, A. Michard, D. Thouron, D. Yeghicheyan, and C. Jeandel (2004), Neodymium isotopes in the Mediterranean Sea: Comparison between seawater and sediment signals, Geochim. Cosmochim. Acta, 68, 3095-3106.
– reference: von Blanckenburg, F. (1999), Tracing past ocean circulation? Science, 286, 1862-1863.
– reference: Elderfield, H. (1988), The oceanic chemistry of the rare earth elements, Philos. Trans. R. Soc. London, Ser. A, 325, 105-106.
– reference: Goldstein, S. L., and S. B. Jacobsen (1987), The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in the seawater, Chem. Geol., 66, 245-272.
– reference: Rhein, M. (2000), Drifters reveal deep circulation, Nature, 407, 30-31.
– reference: Staudigel, H., P. Doyle, and A. Zindler (1985), Sr and Nd isotope systematics in fish teeth, Earth Planet. Sci. Lett., 76, 45-56.
– reference: Piepgras, D. J., and G. J. Wasserburg (1980), Neodymium isotopic variations in seawater, Earth Planet. Sci. Lett., 50, 128-138.
– reference: Lacan, F., and C. Jeandel (2004b), Neodymium isotopic composition and rare earth element concentrations in the deep and intermediate Nordic Seas: Constraints on the Iceland Scotland Overflow Water signature, Geochem. Geophys. Geosyst., 5, Q11006, doi:10.1029/2004GC000742.
– reference: Piotrowski, A. M., S. L. Goldstein, S. R. Hemming, and R. G. Fairbanks (2004), Intensification and variability of ocean thermohaline circulation through the last deglaciation, Earth Planet. Sci. Lett., 225, 205-220.
– reference: Piepgras, D. J., and S. B. Jacobsen (1988), The isotopic composition of neodymium in the North Pacific, Geochim. Cosmochim. Acta, 52, 1373-1381.
– reference: Piepgras, D. J., and G. J. Wasserburg (1987), Rare earth element transport in the western North Atlantic inferred from isotopic observations, Geochim. Cosmochim. Acta, 51, 1257-1271.
– reference: Hansen, B., and S. Østerhus (2000), North Atlantic-Nordic Seas exchanges, Prog. Oceanogr., 45, 109-208.
– year: 1985
– volume: 173
  start-page: 365
  year: 1999
  end-page: 379
  article-title: Neodymium isotopes in planktonic foraminifera: A record of the response of continental weathering and ocean circulation rates to climate change
  publication-title: Earth Planet. Sci. Lett.
– volume: 17
  issue: 2
  year: 2002
  article-title: North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts
  publication-title: Paleoceanography
– volume: 31
  year: 2004
  article-title: Subpolar Mode Water formation traced by neodymium isotopic composition
  publication-title: Geophys. Res. Lett.
– volume: 77
  start-page: 259
  year: 1986
  end-page: 272
  article-title: Neodymium isotopic study of Baffin Bay water: Sources of REE from very old terranes
  publication-title: Earth Planet. Sci. Lett.
– volume: 307
  start-page: 1933
  year: 2005
  end-page: 1938
  article-title: Temporal relationships of carbon cycling and ocean circulation at glacial boundaries
  publication-title: Science
– volume: 37
  start-page: 3
  year: 1999
  end-page: 6
  article-title: Mode waters in the subpolar North Atlantic in historical data and during the WOCE period
  publication-title: Int. WOCE Newsl.
– volume: 108
  issue: C8
  year: 2003
  article-title: Neodymium budget in the modern ocean and paleo‐oceanographic implications
  publication-title: J. Geophys. Res.
– volume: 46
  start-page: 733
  year: 1999
  end-page: 756
  article-title: Distribution of rare earth elements and neodymium isotopes in suspended particles of the tropical Atlantic Ocean (EUMELI site)
  publication-title: Deep Sea Res., Part I
– volume: 5
  start-page: 193
  year: 1991
  end-page: 259
  article-title: The atmospheric input of trace species to the world ocean
  publication-title: Global Biogeochem. Cycles
– volume: 52
  start-page: 1373
  year: 1988
  end-page: 1381
  article-title: The isotopic composition of neodymium in the North Pacific
  publication-title: Geochim. Cosmochim. Acta
– volume: 50
  start-page: 128
  year: 1980
  end-page: 138
  article-title: Neodymium isotopic variations in seawater
  publication-title: Earth Planet. Sci. Lett.
– volume: I
  year: 1996
– start-page: 453
  year: 2003
  end-page: 489
– volume: 100
  start-page: 525
  year: 1992
  end-page: 544
  article-title: Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers
  publication-title: J. Geol.
– volume: 407
  start-page: 30
  year: 2000
  end-page: 31
  article-title: Drifters reveal deep circulation
  publication-title: Nature
– volume: 59
  start-page: 535
  year: 1995
  end-page: 547
  article-title: Exchange of Nd and its isotopes between seawater small and large particles in the Sargasso Sea
  publication-title: Geochim. Cosmochim. Acta
– volume: 76
  start-page: 45
  year: 1985
  end-page: 56
  article-title: Sr and Nd isotope systematics in fish teeth
  publication-title: Earth Planet. Sci. Lett.
– volume: 31
  start-page: 1339
  year: 1984
  end-page: 1355
  article-title: The circulation of the Denmark Strait and Iceland‐Scotland overflow waters in the North Atlantic
  publication-title: Deep Sea Res., Part A
– volume: 66
  start-page: 245
  year: 1987
  end-page: 272
  article-title: The Nd and Sr isotopic systematics of river‐water dissolved material: Implications for the sources of Nd and Sr in the seawater
  publication-title: Chem. Geol.
– volume: 68
  start-page: 3095
  year: 2004
  end-page: 3106
  article-title: Neodymium isotopes in the Mediterranean Sea: Comparison between seawater and sediment signals
  publication-title: Geochim. Cosmochim. Acta
– volume: 162
  start-page: 247
  year: 1999
  end-page: 257
  article-title: Sedimentological and mineralogical control of multisensor track data at sites 981 and 984
  publication-title: Proc. Ocean Drill. Program, Sci. Results
– volume: 12
  start-page: 1189
  year: 1982
  end-page: 1205
  article-title: Distribution and circulation of Labrador Sea Water
  publication-title: J. Phys. Oceanogr.
– volume: 286
  start-page: 1862
  year: 1999
  end-page: 1863
  article-title: Tracing past ocean circulation?
  publication-title: Science
– volume: 51
  start-page: 71
  year: 2004
  end-page: 82
  article-title: Denmark Strait water circulation traced by heterogeneity in neodymium isotopic compositions
  publication-title: Deep Sea Res., Part I
– volume: 5
  year: 2004
  article-title: Neodymium isotopic composition and rare earth element concentrations in the deep and intermediate Nordic Seas: Constraints on the Iceland Scotland Overflow Water signature
  publication-title: Geochem. Geophys. Geosyst.
– volume: 51
  start-page: 1257
  year: 1987
  end-page: 1271
  article-title: Rare earth element transport in the western North Atlantic inferred from isotopic observations
  publication-title: Geochim. Cosmochim. Acta
– volume: 99
  start-page: 12,319
  year: 1994
  end-page: 12,341
  article-title: The production of North Atlantic Deep Waters: Sources, rates, and pathways
  publication-title: J. Geophys. Res.
– volume: 29
  start-page: 283
  year: 1992
  end-page: 383
  article-title: Recirculating components to the deep boundary current of the northern North Atlantic
  publication-title: Prog. Oceanogr.
– volume: 48
  start-page: 461
  year: 2001
  end-page: 510
  article-title: CONVEX‐91: Water masses and circulation in the Northeast Atlantic subpolar gyre
  publication-title: Prog. Oceanogr.
– volume: 146
  start-page: 607
  year: 1997
  end-page: 625
  article-title: Sm‐Nd signature of modern and late Quaternary sediments from the northwest North Atlantic: Implications for deep current changes since the Last Glacial Maximum
  publication-title: Earth Planet. Sci. Lett.
– volume: 104
  start-page: 18,241
  year: 1999
  end-page: 18,255
  article-title: Freshwater sources to the coastal ocean off northeastern North America: Evidence from H O/H O
  publication-title: J. Geophys. Res.
– volume: 45
  start-page: 109
  year: 2000
  end-page: 208
  article-title: North Atlantic‐Nordic Seas exchanges
  publication-title: Prog. Oceanogr.
– volume: 117
  start-page: 581
  year: 1993
  end-page: 591
  article-title: Concentration and isotopic composition of neodymium in the South Atlantic Ocean
  publication-title: Earth Planet. Sci. Lett.
– volume: 52
  start-page: 2762
  year: 1988
  end-page: 2773
  article-title: Neodymium isotopic composition of the Mediterranean outflow and the eastern North Atlantic
  publication-title: Geochim. Cosmochim. Acta
– volume: 232
  start-page: 245
  year: 2005
  end-page: 257
  article-title: Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent‐ocean interface
  publication-title: Earth Planet. Sci. Lett.
– volume: 325
  start-page: 105
  year: 1988
  end-page: 106
  article-title: The oceanic chemistry of the rare earth elements
  publication-title: Philos. Trans. R. Soc. London, Ser. A
– volume: 50
  start-page: 139
  year: 1980
  end-page: 155
  article-title: Sm‐Nd isotopic evolution of chondrites
  publication-title: Earth Planet. Sci. Lett.
– volume: 405
  start-page: 935
  year: 2000
  end-page: 938
  article-title: Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios
  publication-title: Nature
– volume: 68
  start-page: 715
  year: 2004
  end-page: 727
  article-title: Neodymium isotopic variations in Northwest Pacific waters
  publication-title: Geochim. Cosmochim. Acta
– volume: 91
  start-page: 1
  year: 1983
  end-page: 21
  article-title: World‐wide delivery of river sediment to the oceans
  publication-title: J. Geol.
– volume: 225
  start-page: 205
  year: 2004
  end-page: 220
  article-title: Intensification and variability of ocean thermohaline circulation through the last deglaciation
  publication-title: Earth Planet. Sci. Lett.
– volume: 186
  start-page: 497
  year: 2001
  end-page: 512
  article-title: Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and rare earth element patterns
  publication-title: Earth Planet. Sci. Lett.
– volume: 48
  start-page: 1793
  year: 2001
  end-page: 1819
  article-title: Transport of newly ventilated deep water from the Iceland Basin to the Westeuropean Basin
  publication-title: Deep Sea Res., Part I
– volume: 20
  start-page: 761
  year: 1992
  end-page: 763
  article-title: A world map of Nd isotopes in seafloor ferromanganese deposits
  publication-title: Geology
– volume: 51
  start-page: 1169
  year: 1982
  end-page: 1188
  article-title: The Subpolar Mode Water of the North Atlantic Ocean
  publication-title: J. Phys. Oceanogr.
– volume: 16
  start-page: 424
  year: 2001
  end-page: 434
  article-title: Weathering versus circulation‐controlled changes in radiogenic isotope tracer composition of the Labrador Sea and North Atlantic Deep Water
  publication-title: Paleoceanography
– volume: 170
  start-page: 433
  year: 1999
  end-page: 446
  article-title: A new approach to Nd residence time in the ocean: The role of atmospheric inputs
  publication-title: Earth Planet. Sci. Lett.
– volume: 66
  start-page: 245
  year: 1987
  ident: e_1_2_7_11_1
  article-title: The Nd and Sr isotopic systematics of river‐water dissolved material: Implications for the sources of Nd and Sr in the seawater
  publication-title: Chem. Geol.
– ident: e_1_2_7_36_1
  doi: 10.1016/0016-7037(88)90144-5
– ident: e_1_2_7_6_1
  doi: 10.1029/91GB01778
– ident: e_1_2_7_19_1
  doi: 10.1016/j.dsr.2003.09.006
– ident: e_1_2_7_33_1
  doi: 10.1038/35024186
– ident: e_1_2_7_30_1
  doi: 10.1016/j.epsl.2004.06.002
– ident: e_1_2_7_15_1
  doi: 10.1016/0012-821X(93)90104-H
– ident: e_1_2_7_29_1
  doi: 10.1016/0016-7037(87)90217-1
– ident: e_1_2_7_41_1
  doi: 10.1016/S0967-0637(98)00089-2
– ident: e_1_2_7_8_1
  doi: 10.1016/S0967-0637(00)00107-2
– ident: e_1_2_7_20_1
  doi: 10.1029/2004GC000742
– ident: e_1_2_7_17_1
  doi: 10.1029/1999JC900155
– ident: e_1_2_7_49_1
  doi: 10.1029/2000PA000550
– ident: e_1_2_7_3_1
  doi: 10.1016/S0016-7037(03)00501-5
– ident: e_1_2_7_25_1
  doi: 10.1086/628741
– ident: e_1_2_7_37_1
  doi: 10.1016/0012-821X(85)90147-5
– ident: e_1_2_7_21_1
  doi: 10.1029/2004GL019747
– ident: e_1_2_7_48_1
  doi: 10.1126/science.286.5446.1862b
– ident: e_1_2_7_7_1
  doi: 10.1098/rsta.1988.0046
– ident: e_1_2_7_43_1
  doi: 10.1016/j.gca.2004.01.024
– ident: e_1_2_7_5_1
  doi: 10.1029/94JC00530
– ident: e_1_2_7_22_1
  doi: 10.1016/j.epsl.2005.01.004
– ident: e_1_2_7_31_1
  doi: 10.1126/science.1104883
– ident: e_1_2_7_14_1
  doi: 10.1016/0012-821X(80)90125-9
– ident: e_1_2_7_42_1
  doi: 10.1029/1999JC000285
– ident: e_1_2_7_16_1
  doi: 10.1016/0016-7037(94)00367-U
– volume: 37
  start-page: 3
  year: 1999
  ident: e_1_2_7_44_1
  article-title: Mode waters in the subpolar North Atlantic in historical data and during the WOCE period
  publication-title: Int. WOCE Newsl.
– ident: e_1_2_7_18_1
  doi: 10.1016/S0012-821X(01)00263-1
– ident: e_1_2_7_40_1
  doi: 10.1016/S0012-821X(99)00127-2
– ident: e_1_2_7_35_1
– ident: e_1_2_7_9_1
  doi: 10.1029/2000PA000606
– ident: e_1_2_7_38_1
  doi: 10.1016/0012-821X(86)90138-X
– ident: e_1_2_7_26_1
  doi: 10.1086/629606
– ident: e_1_2_7_28_1
  doi: 10.1016/0012-821X(80)90124-7
– ident: e_1_2_7_46_1
– ident: e_1_2_7_2_1
  doi: 10.1130/0091-7613(1992)020<0761:WMONII>2.3.CO;2
– ident: e_1_2_7_23_1
  doi: 10.1016/0079-6611(92)90006-L
– ident: e_1_2_7_12_1
  doi: 10.1016/S0079-6611(99)00052-X
– ident: e_1_2_7_27_1
  doi: 10.1016/0016-7037(88)90208-6
– volume: 162
  start-page: 247
  year: 1999
  ident: e_1_2_7_4_1
  article-title: Sedimentological and mineralogical control of multisensor track data at sites 981 and 984
  publication-title: Proc. Ocean Drill. Program, Sci. Results
– ident: e_1_2_7_32_1
  doi: 10.1016/S0079-6611(01)00011-8
– ident: e_1_2_7_24_1
  doi: 10.1175/1520-0485(1982)012<1169:TSMWOT>2.0.CO;2
– ident: e_1_2_7_39_1
  doi: 10.1016/0198-0149(84)90005-0
– ident: e_1_2_7_13_1
  doi: 10.1016/S0012-821X(96)00251-8
– ident: e_1_2_7_10_1
  doi: 10.1016/B0-08-043751-6/06179-X
– ident: e_1_2_7_47_1
  doi: 10.1016/S0012-821X(99)00244-7
– ident: e_1_2_7_34_1
  doi: 10.1038/35016049
– ident: e_1_2_7_45_1
  doi: 10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2
SSID ssj0014558
Score 2.1781356
Snippet The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large‐scale...
The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large-scale...
SourceID hal
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms boundary exchange
Circulation
Deep water
Integrated circuits
Marketing
Neodymium
neodymium isotopic composition
North Atlantic Deep Water
Ocean, Atmosphere
rare earth elements
Sciences of the Universe
Sea water
sediment seawater interaction
Sediments
Signatures
water mass
Title Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water
URI https://api.istex.fr/ark:/67375/WNG-8KCH3GL0-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2005GC000956
https://www.proquest.com/docview/1524420832
https://www.proquest.com/docview/1642299393
https://hal.science/hal-00280188
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RVkhcEE8RKMgg4EBkaq-9fhyjkDqCECSUqLmt9gkWaZw2CaIc-O3Mrh91RKgKFytejTb2zHj2m915IPRSejyIQybd2NfahSVAu4nU3AV04DPBiS-YyXf-OI6G0_D9jMwue2za7JI1fyt-7swr-R-pwhjI1WTJ_oNkm0lhAH6DfOEKEobrtWTcE2ebvAy6qs_6F6qQF6f55rSbr4p1scyFjRovtqmq05r1HPgKFO-UWnZPWB2pW2HVTJluWmU7OCOJL6oo90FW1V1ZBXpldxWyxn6MmGANJhZF3opRNBvW8628w61NB9IK4KjsJCau2Tcpl5EdY5Vxjdo6hFuWcrFsrbnlzR_W3MOmGKr5_6xvweCOotnjT_R4OhrRyWA22UMHOAYIZSI4fw2aw6SQ2DatzfNV-Q8w-1F77i1ksvfVxMUemE_tx5bz0XZhLAaZ3EG3K-fB6ZWacBfdUIt76GZmmzNf3EefW_rgFNoBHjuNPji1PjgtfaiprD44tT44Rh8cqw8P0PR4MOkP3apnhssImF_Xl1KSFHxczST2NNdaxglnWgscJZHwAhXLxLQ40JwzCdgxYQCoiQA_n6kIsPBDtL8oFuoRciTnmDMSqFSJUHspxzJIuOCSS8kByHZQt-YXFVVBedPXZE5tYANOaZu7HfSqoV6WhVT-QvcCWN-QmOrnw96ImjEbBuAnyXe_g15byTRk7PybiVCMCT0ZZzT50IclZOTRrIOe16Kj8L2YwzAGjN-sKGhDaEJLAnwFDTjnANeCFN71jZX7lY9OsywbRCl5fI0Jn6Bbl9_VIdpfn2_UU4C3a_7MKu9v-I-kNA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acquisition+of+the+neodymium+isotopic+composition+of+the+North+Atlantic+Deep+Water&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Lacan%2C+Francois&rft.au=Jeandel%2C+Catherine&rft.date=2005-12-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=6&rft.issue=12&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1029%2F2005GC000956&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon