Measurement of the isotopic composition of dissolved iron in the open ocean
This work demonstrates for the first time the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for a typical open ocean Fe concentration range (0.1–1 nM). It also presents the first data of this kind. Iron is preconcentrated using a Nitriloacetic Acid Superflo...
Saved in:
Published in | Geophysical research letters Vol. 35; no. 24 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.12.2008
American Geophysical Union |
Subjects | |
Online Access | Get full text |
ISSN | 0094-8276 1944-8007 |
DOI | 10.1029/2008GL035841 |
Cover
Abstract | This work demonstrates for the first time the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for a typical open ocean Fe concentration range (0.1–1 nM). It also presents the first data of this kind. Iron is preconcentrated using a Nitriloacetic Acid Superflow resin and purified using an AG1x4 anion exchange resin. The isotopic ratios are measured with a MC‐ICPMS Neptune, coupled with a desolvator (Aridus II), using a 57Fe‐58Fe double spike mass bias correction. Measurement precision (0.13‰, 2SD) allows resolving small iron isotopic composition variations within the water column, in the Atlantic sector of the Southern Ocean (from δ57Fe = −0.19 to +0.32‰). Isotopically light iron found in the Upper Circumpolar Deep Water is hypothesized to result from organic matter remineralization. Shallow samples suggest that, if occurring, an iron isotopic fractionation during iron uptake by phytoplankton is characterized by a fractionation factor, such as: ∣Δ57Fe(plankton‐seawater)∣ < 0.48‰. |
---|---|
AbstractList | This work demonstrates for the first time the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for a typical open ocean Fe concentration range (0.1-1nM). It also presents the first data of this kind. Iron is preconcentrated using a Nitriloacetic Acid Superflow resin and purified using an AG1x4 anion exchange resin. The isotopic ratios are measured with a MC-ICPMS Neptune, coupled with a desolvator (Aridus II), using a 57Fe-58Fe double spike mass bias correction. Measurement precision (0.13‰, 2SD) allow resolving small iron isotopic composition variations within the water column, in the Atlantic sector of the Southern Ocean (from deltaFe=-0.19 to +0.32‰). Isotopically light iron found in the Upper Circumpolar Deep Water is hypothesized to result from organic matter remineralization. Shallow samples suggest that, if occurring, an iron isotopic fractionation during iron uptake by phytoplankton is characterized by a fractionation factor, such as: abs(deltaFe(plankton-seawater))< 0.48‰. This work demonstrates for the first time the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for a typical open ocean Fe concentration range (0.1 - 1 nM). It also presents the first data of this kind. Iron is preconcentrated using a Nitriloacetic Acid Superflow resin and purified using an AG1x4 anion exchange resin. The isotopic ratios are measured with a MC-ICPMS Neptune, coupled with a desolvator (Aridus II), using a 57Fe-58Fe double spike mass bias correction. Measurement precision (0.13, 2SD) allows resolving small iron isotopic composition variations within the water column, in the Atlantic sector of the Southern Ocean (from 57Fe = -0.19 to +0.32). Isotopically light iron found in the Upper Circumpolar Deep Water is hypothesized to result from organic matter remineralization. Shallow samples suggest that, if occurring, an iron isotopic fractionation during iron uptake by phytoplankton is characterized by a fractionation factor, such as: |*D57Fe(plankton-seawater)| < 0.48. This work demonstrates for the first time the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for a typical open ocean Fe concentration range (0.1–1 nM). It also presents the first data of this kind. Iron is preconcentrated using a Nitriloacetic Acid Superflow resin and purified using an AG1x4 anion exchange resin. The isotopic ratios are measured with a MC‐ICPMS Neptune, coupled with a desolvator (Aridus II), using a 57Fe‐58Fe double spike mass bias correction. Measurement precision (0.13‰, 2SD) allows resolving small iron isotopic composition variations within the water column, in the Atlantic sector of the Southern Ocean (from δ57Fe = −0.19 to +0.32‰). Isotopically light iron found in the Upper Circumpolar Deep Water is hypothesized to result from organic matter remineralization. Shallow samples suggest that, if occurring, an iron isotopic fractionation during iron uptake by phytoplankton is characterized by a fractionation factor, such as: ∣Δ57Fe(plankton‐seawater)∣ < 0.48‰. This work demonstrates for the first time the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for a typical open ocean Fe concentration range (0.1–1 nM). It also presents the first data of this kind. Iron is preconcentrated using a Nitriloacetic Acid Superflow resin and purified using an AG1x4 anion exchange resin. The isotopic ratios are measured with a MC‐ICPMS Neptune, coupled with a desolvator (Aridus II), using a 57 Fe‐ 58 Fe double spike mass bias correction. Measurement precision (0.13‰, 2SD) allows resolving small iron isotopic composition variations within the water column, in the Atlantic sector of the Southern Ocean (from δ 57 Fe = −0.19 to +0.32‰). Isotopically light iron found in the Upper Circumpolar Deep Water is hypothesized to result from organic matter remineralization. Shallow samples suggest that, if occurring, an iron isotopic fractionation during iron uptake by phytoplankton is characterized by a fractionation factor, such as: ∣Δ 57 Fe (plankton‐seawater) ∣ < 0.48‰. |
Author | Radic, A. Jeandel, C. Lacan, F. Pradoux, C. Freydier, R. Poitrasson, F. Sarthou, G. |
Author_xml | – sequence: 1 givenname: F. surname: Lacan fullname: Lacan, F. email: francois.lacan@legos.obs-mip.fr organization: LEGOS, Observatoire Midi-Pyrénées, Université de Tolouse, Toulouse, France – sequence: 2 givenname: A. surname: Radic fullname: Radic, A. organization: LEGOS, Observatoire Midi-Pyrénées, Université de Tolouse, Toulouse, France – sequence: 3 givenname: C. surname: Jeandel fullname: Jeandel, C. organization: LEGOS, Observatoire Midi-Pyrénées, Université de Tolouse, Toulouse, France – sequence: 4 givenname: F. surname: Poitrasson fullname: Poitrasson, F. organization: LMTG, CNRS, Toulouse, France – sequence: 5 givenname: G. surname: Sarthou fullname: Sarthou, G. organization: LEMAR, Université Européenne de Bretagne, Rennes, France – sequence: 6 givenname: C. surname: Pradoux fullname: Pradoux, C. organization: LEGOS, Observatoire Midi-Pyrénées, Université de Tolouse, Toulouse, France – sequence: 7 givenname: R. surname: Freydier fullname: Freydier, R. organization: LMTG, CNRS, Toulouse, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21077879$$DView record in Pascal Francis https://hal.science/hal-00399111$$DView record in HAL |
BookMark | eNp9kU1v1DAQhi3USmxbbvyAXEBCIjD-SBwfqwpSRFoQAtGb5Thj1ZCNUztb6L_H210qhATyYayZ533tmTkiB1OYkJCnFF5RYOo1A2jaDnjVCPqIrKgSomwA5AFZAah8Z7J-TI5S-gYAHDhdkfcXaNIm4hqnpQiuWK6x8CksYfa2sGE9h-QXH6ZtbfAphfEWh8LHnPHTPR1mzFWLZjohh86MCZ_s4zH58vbN57PzsvvQvjs77UpT8YaVBi1UchC1cozVNcs_kVYoJ7ireiUs7V0tpaixomB7ZYTigJy53M3Qw9DzY_Ji53ttRj1HvzbxTgfj9flpp7e53JxSlNJbmtnnO3aO4WaDadFrnyyOo5kwbJJmoJRsgGfw2R40yZrRRTNZnx7sGQUpG6kyx3acjSGliE5bv5jtiJZo_Kgp6O0u9J-7yKKXf4l--_4D37_xw494919Wt586VuWTReVO5NOCPx9EJn7XteSy0l8vWy0-XrWX8oprwX8B-J2nNg |
CODEN | GPRLAJ |
CitedBy_id | crossref_primary_10_1016_j_chemgeo_2011_07_019 crossref_primary_10_1016_j_gca_2016_12_022 crossref_primary_10_1146_annurev_marine_033023_083652 crossref_primary_10_1016_j_trac_2011_03_006 crossref_primary_10_1016_j_marchem_2010_01_001 crossref_primary_10_1029_2011GB004043 crossref_primary_10_1016_j_gca_2015_05_023 crossref_primary_10_1016_j_gca_2015_04_031 crossref_primary_10_1021_ac1002504 crossref_primary_10_1029_2021GB006968 crossref_primary_10_1038_ngeo964 crossref_primary_10_5194_bg_7_1075_2010 crossref_primary_10_1016_j_gca_2013_12_017 crossref_primary_10_1016_j_aca_2010_07_037 crossref_primary_10_1016_j_chemgeo_2021_120381 crossref_primary_10_1016_j_gca_2009_06_027 crossref_primary_10_1016_j_chemgeo_2012_01_022 crossref_primary_10_1016_j_dsr2_2014_11_014 crossref_primary_10_3390_w14132038 crossref_primary_10_1002_2015GC006012 crossref_primary_10_1146_annurev_marine_032822_103431 crossref_primary_10_1039_B925232K crossref_primary_10_1016_j_dsr2_2014_12_004 crossref_primary_10_1016_j_gca_2011_12_001 crossref_primary_10_1016_j_chemgeo_2021_120388 crossref_primary_10_1098_rsta_2016_0076 crossref_primary_10_1016_j_marchem_2014_08_009 crossref_primary_10_1029_2020GB006814 crossref_primary_10_1007_s00216_024_05343_4 crossref_primary_10_5194_bg_10_233_2013 crossref_primary_10_1073_pnas_1420188112 crossref_primary_10_1007_s11631_018_0284_5 crossref_primary_10_1111_j_1751_908X_2010_00063_x crossref_primary_10_3389_fenvc_2021_692025 crossref_primary_10_1016_j_chemgeo_2009_05_010 crossref_primary_10_1016_j_chemgeo_2011_02_019 crossref_primary_10_1038_ncomms3143 crossref_primary_10_1130_G38432_1 crossref_primary_10_5194_bg_11_5493_2014 crossref_primary_10_1016_j_epsl_2011_03_015 crossref_primary_10_1016_j_gca_2012_06_003 crossref_primary_10_1021_acs_est_1c06922 crossref_primary_10_1016_j_chemgeo_2014_03_019 crossref_primary_10_1002_2015GB005357 crossref_primary_10_1016_j_marchem_2017_07_003 crossref_primary_10_1073_pnas_1603107114 crossref_primary_10_5194_bg_9_3231_2012 crossref_primary_10_1073_pnas_1421576112 crossref_primary_10_1038_nature13482 crossref_primary_10_1016_j_chemgeo_2012_03_024 crossref_primary_10_1016_j_gca_2018_02_031 crossref_primary_10_1016_j_chemgeo_2021_120201 crossref_primary_10_1002_rcm_7368 crossref_primary_10_1016_j_marchem_2016_04_007 |
Cites_doi | 10.1016/j.aca.2007.02.055 10.1016/j.aca.2004.09.005 10.1126/science.1131669 10.1016/0039-9140(80)80166-4 10.1016/j.epsl.2008.02.022 10.1016/S1387-3806(03)00078-2 10.1016/S0012-821X(01)00581-7 10.1016/0016-7037(78)90105-9 10.1029/2000GC000124 10.1016/j.ijms.2004.11.025 10.1038/331341a0 10.1016/j.chemgeo.2003.08.011 10.1016/j.dsr2.2003.10.012 10.1130/0091-7613(2003)031<0629:IICOFC>2.0.CO;2 10.1016/j.chemgeo.2006.06.010 10.1016/j.epsl.2004.05.010 10.1016/j.aca.2008.06.013 10.1016/j.chemgeo.2005.07.005 10.1029/2004GL020216 10.1126/science.287.5460.2000 10.1515/9781501509360-013 10.1130/0091-7613(2001)029<0699:DOSAII>2.0.CO;2 10.1016/j.gca.2006.01.007 10.1016/j.epsl.2006.05.004 10.1126/science.1105959 10.1016/j.dsr2.2007.12.028 |
ContentType | Journal Article |
Copyright | Copyright 2008 by the American Geophysical Union. 2009 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright 2008 by the American Geophysical Union. – notice: 2009 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION IQODW 7TG 7TN F1W H96 KL. L.G M7N 1XC VOOES |
DOI | 10.1029/2008GL035841 |
DatabaseName | Istex CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_00399111v1 21077879 10_1029_2008GL035841 GRL25252 ark_67375_WNG_4PXGN7X3_4 |
Genre | article |
GeographicLocations | Antarctic Ocean PSW, Antarctic, Atlantic Sector PS, Antarctic Ocean AS, Tropical Atlantic, Circumpolar Deep Water |
GeographicLocations_xml | – name: AS, Tropical Atlantic, Circumpolar Deep Water – name: PS, Antarctic Ocean – name: PSW, Antarctic, Atlantic Sector |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 31~ 33P 50Y 5GY 5VS 6TJ 702 7XC 8-1 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AANHP AASGY AAXRX AAZKR ABCUV ABJCF ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACTHY ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFPKN AFRAH AFZJQ AGQPQ AGXDD AI. AIDQK AIDYY AIQQE AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ASPBG ATCPS AVUZU AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI BSCLL CCPQU CS3 D1K DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ K6- L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R M7S MEWTI MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W P62 PALCI PATMY PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PUEGO PYCSY Q2X R.K RIWAO RJQFR RNS ROL SAMSI SUPJJ TN5 TWZ UPT UQL VH1 VOH WBKPD WH7 WIN WXSBR XSW ZCG ZZTAW ~02 ~OA ~~A 3V. A00 AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE OHT WIH WYJ AAYXX CITATION IQODW 7TG 7TN F1W H96 KL. L.G M7N 1XC VOOES |
ID | FETCH-LOGICAL-a5382-aec057d469f226620307c49f43f5b94c1bf67746e510cb9a4930e32f944db0db3 |
ISSN | 0094-8276 |
IngestDate | Tue Sep 09 06:32:51 EDT 2025 Fri Sep 05 00:09:05 EDT 2025 Mon Jul 21 09:14:23 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Tue Jul 01 01:41:55 EDT 2025 Wed Jan 22 16:39:18 EST 2025 Sun Sep 21 06:20:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | sea water resins Quaternary Bias accuracy Isotopic composition concentration Deep water upper Quaternary Uptake Anion exchange Neptune acids corrections isotope fractionation organic materials phytoplankton iron plankton Feasibility Cenozoic Phanerozoic Holocene Atlantic |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a5382-aec057d469f226620307c49f43f5b94c1bf67746e510cb9a4930e32f944db0db3 |
Notes | ark:/67375/WNG-4PXGN7X3-4 istex:663D4977D0AD858DFF5EF9EBE4EAFF69BEDAB58A ArticleID:2008GL035841 Tab-delimited Table 1.Tab-delimited Table 2. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4915-4719 0000-0001-6560-6669 0000-0001-6794-2279 0000-0003-4097-2771 0000-0001-6250-0391 |
OpenAccessLink | https://hal.science/hal-00399111 |
PQID | 20997803 |
PQPubID | 23462 |
PageCount | 5 |
ParticipantIDs | hal_primary_oai_HAL_hal_00399111v1 proquest_miscellaneous_20997803 pascalfrancis_primary_21077879 crossref_citationtrail_10_1029_2008GL035841 crossref_primary_10_1029_2008GL035841 wiley_primary_10_1029_2008GL035841_GRL25252 istex_primary_ark_67375_WNG_4PXGN7X3_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2008 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: December 2008 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC |
PublicationTitle | Geophysical research letters |
PublicationTitleAlternate | Geophys. Res. Lett |
PublicationYear | 2008 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Poitrasson, F., and R. Freydier (2005), Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS, Chem. Geol., 222, 132-147. Severmann, S., C. M. Johnson, B. L. Beard, and J. McManus (2006), The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments, Geochim. Cosmochim. Acta, 70, 2006-2022, doi:2010.1016/j.gca.2006.2001.2007. Siebert, C., T. F. Nägler, and J. D. Kramers (2001), Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry, Geochem. Geophys. Geosyst., 2(7), 1032, doi:10.1029/2000GC000124. Blain, S., G. Sarthou, and P. Laan (2008), Distribution of dissolved iron during the natural iron-fertilization experiment KEOPS (Kerguelen Plateau, Southern Ocean), Deep Sea Res., Part II, 55, 594-605. Russel, W. A., D. A. Papanastassiou, and T. A. Tombrello (1978), Ca isotope fractionation on the Earth and other solar system materials, Geochim. Cosmochim. Acta, 42, 1075-1090. Croot, P. L., K. Andersson, M. Ozturk, and D. R. Turner (2004), The distribution and specification of iron along 6°E in the Southern Ocean, Deep Sea Res., Part II, 51, 2857-2879. Weyer, S., and J. B. Schwieters (2003), High precision Fe isotope measurements with high mass resolution MC-ICPMS, Int. J. Mass Spectrom., 226, 355-368. Poitrasson, F. (2006), On the iron isotope homogeneity level of the continental crust, Chem. Geol., 235, 195-200. de Jong, J., V. Schoemann, D. Lannuzel, J. L. Tison, and N. Mattielli (2008), High-accuracy determination of iron in seawater by isotopoe dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for pre-concentration and matrix separation, Anal. Chim. Acta, 623, 126-139. Schoenberg, R., and F. von Blanckenburg (2005), An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS, Int. J. Mass Spectrom., 242, 257-272. Strelow, F. W. E. (1980), Improved separation of iron from copper and other elements by anion-exchange chromatography on a 4% cross-linked resin with high concentrations of hydrochloric acid, Talanta, 27, 727-732. Dideriksen, K., J. A. Baker, and S. L. S. Stipp (2008), Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B, Earth Planet. Sci. Lett., 269, 280-290. Bergquist, B. A., and E. A. Boyle (2006), Iron isotopes in the Amazon River system: Weathering and transport signatures, Earth Planet. Sci. Lett., 248, 54-68. Martin, J. H., and S. E. Fitzwater (1988), Iron deficiency limits phytoplancton growth in the north-east Pacific subarctic, Nature, 331, 341-343. Elrod, V. A., W. M. Berelson, K. H. Coale, and K. S. Johnson (2004), The flux of iron from continental shelf sediments: A missing source for global budgets, Geophys. Res. Lett., 31, L12307, doi:10.1029/2004GL020216. Zhu, X.-K., R. K. O'Nions, Y. Guo, and B. C. Reynolds (2000), Secular variation of iron isotopes in North Atlantic Deep Water, Science, 287, 2000-2002. Boyle, E., and W. J. Jenkins (2008), Hydrothermal iron in the deep western South Pacific, Geochim. Cosmochim. Acta, 72, A107. Bullen, T. D., A. F. White, C. W. Childs, D. V. Vivit, and M. S. Schulz (2001), Demonstration of significant abiotic iron isotope fractionation in nature, Geology, 29, 699-702. Beard, B. L., C. M. Johnson, K. L. Von Damm, and R. L. Poulson (2003), Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans, Geology, 31, 629-632. Levasseur, S., M. Frank, J. R. Hein, and A. Halliday (2004), The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: Implications for seawater chemistry? Earth Planet. Sci. Lett., 224, 91-105. Rouxel, O., N. Dobbek, J. Ludden, and Y. Fouquet (2003), Iron isotope fractionation during oceanic crust alteration, Chem. Geol., 202, 155-182. de Jong, J., et al. (2007), Precise measurement of Fe isotopes in marine samples by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), Anal. Chim. Acta, 589, 105-119. Jickells, T. D., et al. (2005), Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 308, 67-71. Lohan, M. C., A. M. Aguilar-Islas, R. P. Franks, and K. W. Bruland (2005), Determination of iron and copper in seawater at pH 1.7 with a new commercially available chelating resin, NTA superflow, Anal. Chim. Acta, 530, 121-129. Boyd, P. W., et al. (2007), Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions, Science, 315, 612-617. Johnson, C. M., J. L. Skulan, B. L. Beard, H. Sun, K. H. Nealson, and P. S. Braterman (2002), Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions, Earth Planet. Sci. Lett., 195, 141-153. Dideriksen, K., J. Baker, S. L. S. Stipp, and H. M. Williams (2003), Fe Isotope analysis by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) using 58Fe-54Fe double spike, Geophys. Res. Abstr., 5, 06718. 2006; 70 1980; 27 2007; 589 2004; 224 2002; 195 2005; 530 2008; 623 2008; 55 2008; 269 2001; 29 2008; 72 2003; 31 2006; 235 2004; 55 2004; 31 2004; 51 2007; 315 2003; 226 2005; 242 2005; 222 1978; 42 2003; 5 2005; 308 1988; 331 2001; 2 2000; 287 2006; 248 2003; 202 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_15_1 Boyle E. (e_1_2_9_7_1) 2008; 72 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 Beard B. L. (e_1_2_9_2_1) 2004 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 Dideriksen K. (e_1_2_9_12_1) 2003; 5 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – reference: Jickells, T. D., et al. (2005), Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 308, 67-71. – reference: Bullen, T. D., A. F. White, C. W. Childs, D. V. Vivit, and M. S. Schulz (2001), Demonstration of significant abiotic iron isotope fractionation in nature, Geology, 29, 699-702. – reference: Weyer, S., and J. B. Schwieters (2003), High precision Fe isotope measurements with high mass resolution MC-ICPMS, Int. J. Mass Spectrom., 226, 355-368. – reference: Bergquist, B. A., and E. A. Boyle (2006), Iron isotopes in the Amazon River system: Weathering and transport signatures, Earth Planet. Sci. Lett., 248, 54-68. – reference: Levasseur, S., M. Frank, J. R. Hein, and A. Halliday (2004), The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: Implications for seawater chemistry? Earth Planet. Sci. Lett., 224, 91-105. – reference: Poitrasson, F. (2006), On the iron isotope homogeneity level of the continental crust, Chem. Geol., 235, 195-200. – reference: Russel, W. A., D. A. Papanastassiou, and T. A. Tombrello (1978), Ca isotope fractionation on the Earth and other solar system materials, Geochim. Cosmochim. Acta, 42, 1075-1090. – reference: Zhu, X.-K., R. K. O'Nions, Y. Guo, and B. C. Reynolds (2000), Secular variation of iron isotopes in North Atlantic Deep Water, Science, 287, 2000-2002. – reference: Dideriksen, K., J. Baker, S. L. S. Stipp, and H. M. Williams (2003), Fe Isotope analysis by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) using 58Fe-54Fe double spike, Geophys. Res. Abstr., 5, 06718. – reference: Severmann, S., C. M. Johnson, B. L. Beard, and J. McManus (2006), The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments, Geochim. Cosmochim. Acta, 70, 2006-2022, doi:2010.1016/j.gca.2006.2001.2007. – reference: Poitrasson, F., and R. Freydier (2005), Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS, Chem. Geol., 222, 132-147. – reference: Dideriksen, K., J. A. Baker, and S. L. S. Stipp (2008), Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B, Earth Planet. Sci. Lett., 269, 280-290. – reference: de Jong, J., et al. (2007), Precise measurement of Fe isotopes in marine samples by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), Anal. Chim. Acta, 589, 105-119. – reference: Martin, J. H., and S. E. Fitzwater (1988), Iron deficiency limits phytoplancton growth in the north-east Pacific subarctic, Nature, 331, 341-343. – reference: Boyd, P. W., et al. (2007), Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions, Science, 315, 612-617. – reference: Boyle, E., and W. J. Jenkins (2008), Hydrothermal iron in the deep western South Pacific, Geochim. Cosmochim. Acta, 72, A107. – reference: Strelow, F. W. E. (1980), Improved separation of iron from copper and other elements by anion-exchange chromatography on a 4% cross-linked resin with high concentrations of hydrochloric acid, Talanta, 27, 727-732. – reference: Croot, P. L., K. Andersson, M. Ozturk, and D. R. Turner (2004), The distribution and specification of iron along 6°E in the Southern Ocean, Deep Sea Res., Part II, 51, 2857-2879. – reference: de Jong, J., V. Schoemann, D. Lannuzel, J. L. Tison, and N. Mattielli (2008), High-accuracy determination of iron in seawater by isotopoe dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for pre-concentration and matrix separation, Anal. Chim. Acta, 623, 126-139. – reference: Johnson, C. M., J. L. Skulan, B. L. Beard, H. Sun, K. H. Nealson, and P. S. Braterman (2002), Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions, Earth Planet. Sci. Lett., 195, 141-153. – reference: Beard, B. L., C. M. Johnson, K. L. Von Damm, and R. L. Poulson (2003), Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans, Geology, 31, 629-632. – reference: Siebert, C., T. F. Nägler, and J. D. Kramers (2001), Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry, Geochem. Geophys. Geosyst., 2(7), 1032, doi:10.1029/2000GC000124. – reference: Rouxel, O., N. Dobbek, J. Ludden, and Y. Fouquet (2003), Iron isotope fractionation during oceanic crust alteration, Chem. Geol., 202, 155-182. – reference: Schoenberg, R., and F. von Blanckenburg (2005), An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS, Int. J. Mass Spectrom., 242, 257-272. – reference: Blain, S., G. Sarthou, and P. Laan (2008), Distribution of dissolved iron during the natural iron-fertilization experiment KEOPS (Kerguelen Plateau, Southern Ocean), Deep Sea Res., Part II, 55, 594-605. – reference: Lohan, M. C., A. M. Aguilar-Islas, R. P. Franks, and K. W. Bruland (2005), Determination of iron and copper in seawater at pH 1.7 with a new commercially available chelating resin, NTA superflow, Anal. Chim. Acta, 530, 121-129. – reference: Elrod, V. A., W. M. Berelson, K. H. Coale, and K. S. Johnson (2004), The flux of iron from continental shelf sediments: A missing source for global budgets, Geophys. Res. Lett., 31, L12307, doi:10.1029/2004GL020216. – volume: 623 start-page: 126 year: 2008 end-page: 139 article-title: High‐accuracy determination of iron in seawater by isotopoe dilution multiple collector inductively coupled plasma mass spectrometry (ID‐MC‐ICP‐MS) using nitrilotriacetic acid chelating resin for pre‐concentration and matrix separation publication-title: Anal. Chim. Acta – volume: 31 start-page: 629 year: 2003 end-page: 632 article-title: Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans publication-title: Geology – volume: 202 start-page: 155 year: 2003 end-page: 182 article-title: Iron isotope fractionation during oceanic crust alteration publication-title: Chem. Geol. – volume: 222 start-page: 132 year: 2005 end-page: 147 article-title: Heavy iron isotope composition of granites determined by high resolution MC‐ICP‐MS publication-title: Chem. Geol. – volume: 224 start-page: 91 year: 2004 end-page: 105 article-title: The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: Implications for seawater chemistry? publication-title: Earth Planet. Sci. Lett. – volume: 308 start-page: 67 year: 2005 end-page: 71 article-title: Global iron connections between desert dust, ocean biogeochemistry, and climate publication-title: Science – volume: 235 start-page: 195 year: 2006 end-page: 200 article-title: On the iron isotope homogeneity level of the continental crust publication-title: Chem. Geol. – volume: 315 start-page: 612 year: 2007 end-page: 617 article-title: Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions publication-title: Science – volume: 31 year: 2004 article-title: The flux of iron from continental shelf sediments: A missing source for global budgets publication-title: Geophys. Res. Lett. – volume: 2 issue: 7 year: 2001 article-title: Determination of molybdenum isotope fractionation by double‐spike multicollector inductively coupled plasma mass spectrometry publication-title: Geochem. Geophys. Geosyst. – volume: 27 start-page: 727 year: 1980 end-page: 732 article-title: Improved separation of iron from copper and other elements by anion‐exchange chromatography on a 4% cross‐linked resin with high concentrations of hydrochloric acid publication-title: Talanta – volume: 55 start-page: 319 year: 2004 end-page: 357 – volume: 55 start-page: 594 year: 2008 end-page: 605 article-title: Distribution of dissolved iron during the natural iron‐fertilization experiment KEOPS (Kerguelen Plateau, Southern Ocean) publication-title: Deep Sea Res., Part II – volume: 248 start-page: 54 year: 2006 end-page: 68 article-title: Iron isotopes in the Amazon River system: Weathering and transport signatures publication-title: Earth Planet. Sci. Lett. – volume: 331 start-page: 341 year: 1988 end-page: 343 article-title: Iron deficiency limits phytoplancton growth in the north‐east Pacific subarctic publication-title: Nature – volume: 195 start-page: 141 year: 2002 end-page: 153 article-title: Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions publication-title: Earth Planet. Sci. Lett. – volume: 42 start-page: 1075 year: 1978 end-page: 1090 article-title: Ca isotope fractionation on the Earth and other solar system materials publication-title: Geochim. Cosmochim. Acta – volume: 5 start-page: 06718 year: 2003 article-title: Fe Isotope analysis by multi‐collector inductively coupled plasma mass spectrometry (MC‐ICP‐MS) using Fe‐ Fe double spike publication-title: Geophys. Res. Abstr. – volume: 589 start-page: 105 year: 2007 end-page: 119 article-title: Precise measurement of Fe isotopes in marine samples by multi‐collector inductively coupled plasma mass spectrometry (MC‐ICP‐MS) publication-title: Anal. Chim. Acta – volume: 269 start-page: 280 year: 2008 end-page: 290 article-title: Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)‐desferrioxamine B publication-title: Earth Planet. Sci. Lett. – volume: 530 start-page: 121 year: 2005 end-page: 129 article-title: Determination of iron and copper in seawater at pH 1.7 with a new commercially available chelating resin, NTA superflow publication-title: Anal. Chim. Acta – volume: 242 start-page: 257 year: 2005 end-page: 272 article-title: An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high‐resolution multicollector ICP‐MS publication-title: Int. J. Mass Spectrom. – volume: 72 year: 2008 article-title: Hydrothermal iron in the deep western South Pacific publication-title: Geochim. Cosmochim. Acta – volume: 287 start-page: 2000 year: 2000 end-page: 2002 article-title: Secular variation of iron isotopes in North Atlantic Deep Water publication-title: Science – volume: 70 start-page: 2006 year: 2006 end-page: 2022 article-title: The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments publication-title: Geochim. Cosmochim. Acta – volume: 29 start-page: 699 year: 2001 end-page: 702 article-title: Demonstration of significant abiotic iron isotope fractionation in nature publication-title: Geology – volume: 51 start-page: 2857 year: 2004 end-page: 2879 article-title: The distribution and specification of iron along 6°E in the Southern Ocean publication-title: Deep Sea Res., Part II – volume: 226 start-page: 355 year: 2003 end-page: 368 article-title: High precision Fe isotope measurements with high mass resolution MC‐ICPMS publication-title: Int. J. Mass Spectrom. – ident: e_1_2_9_10_1 doi: 10.1016/j.aca.2007.02.055 – ident: e_1_2_9_18_1 doi: 10.1016/j.aca.2004.09.005 – ident: e_1_2_9_6_1 doi: 10.1126/science.1131669 – ident: e_1_2_9_27_1 doi: 10.1016/0039-9140(80)80166-4 – ident: e_1_2_9_13_1 doi: 10.1016/j.epsl.2008.02.022 – ident: e_1_2_9_28_1 doi: 10.1016/S1387-3806(03)00078-2 – ident: e_1_2_9_16_1 doi: 10.1016/S0012-821X(01)00581-7 – ident: e_1_2_9_23_1 doi: 10.1016/0016-7037(78)90105-9 – ident: e_1_2_9_26_1 doi: 10.1029/2000GC000124 – ident: e_1_2_9_24_1 doi: 10.1016/j.ijms.2004.11.025 – volume: 72 year: 2008 ident: e_1_2_9_7_1 article-title: Hydrothermal iron in the deep western South Pacific publication-title: Geochim. Cosmochim. Acta – ident: e_1_2_9_19_1 doi: 10.1038/331341a0 – ident: e_1_2_9_22_1 doi: 10.1016/j.chemgeo.2003.08.011 – ident: e_1_2_9_9_1 doi: 10.1016/j.dsr2.2003.10.012 – ident: e_1_2_9_3_1 doi: 10.1130/0091-7613(2003)031<0629:IICOFC>2.0.CO;2 – ident: e_1_2_9_20_1 doi: 10.1016/j.chemgeo.2006.06.010 – ident: e_1_2_9_17_1 doi: 10.1016/j.epsl.2004.05.010 – ident: e_1_2_9_11_1 doi: 10.1016/j.aca.2008.06.013 – ident: e_1_2_9_21_1 doi: 10.1016/j.chemgeo.2005.07.005 – ident: e_1_2_9_14_1 doi: 10.1029/2004GL020216 – ident: e_1_2_9_29_1 doi: 10.1126/science.287.5460.2000 – start-page: 319 volume-title: Geochemistry of Non‐Traditional Stable Isotopes, Rev. Mineral. Geochem. year: 2004 ident: e_1_2_9_2_1 doi: 10.1515/9781501509360-013 – ident: e_1_2_9_8_1 doi: 10.1130/0091-7613(2001)029<0699:DOSAII>2.0.CO;2 – ident: e_1_2_9_25_1 doi: 10.1016/j.gca.2006.01.007 – ident: e_1_2_9_4_1 doi: 10.1016/j.epsl.2006.05.004 – ident: e_1_2_9_15_1 doi: 10.1126/science.1105959 – ident: e_1_2_9_5_1 doi: 10.1016/j.dsr2.2007.12.028 – volume: 5 start-page: 06718 year: 2003 ident: e_1_2_9_12_1 article-title: Fe Isotope analysis by multi‐collector inductively coupled plasma mass spectrometry (MC‐ICP‐MS) using 58Fe‐54Fe double spike publication-title: Geophys. Res. Abstr. |
SSID | ssj0003031 |
Score | 2.2159932 |
Snippet | This work demonstrates for the first time the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for a typical open ocean... |
SourceID | hal proquest pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Earth sciences Earth, ocean, space Exact sciences and technology iron isotopic composition Ocean, Atmosphere open ocean Sciences of the Universe seawater |
Title | Measurement of the isotopic composition of dissolved iron in the open ocean |
URI | https://api.istex.fr/ark:/67375/WNG-4PXGN7X3-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2008GL035841 https://www.proquest.com/docview/20997803 https://hal.science/hal-00399111 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgFRIvaHyJwhgRAl6qjNRx0vixmliq0VUTWqHiJYodW4uomqrtJuCv585x3FTAxHiJIufifPzOd2f7Pgh5E8lAF1RLX0ua-0wV2udh0fcFZzQPuUyEyaV3NolHU3Y6i2bbpWwTXbIRR_LnH-NK_gdVaANcMUr2Fsi6TqEBzgFfOALCcPwnjM-2C3zNXn-5rjbVspTGV9w6ZOE13Hev5tdgXmJcW-PdiLWzeqDBLItYIzVV1bKBzyYDuuzNTdyPs8DHuayXTk-OtltFRWnqpQ9d06nCNWqzynzsGs-rcrMCm71q398sPCQtJw4rTDnzEzqwmaxr-ckZtAV1IdtGwNb5SCwj1RHTVtc6TfSbIA8o5kHFx6bjIAQrqb9VWM0mvaOLbqI0ujr9NAaqCHR1B144BoHYGX6efp06pQ2avC6uaL_JxkhA9-_bXe9YL3cv0Xe2g8PxO_rU5mvARdf1UHYmLO1pj7FbLvbJAzvh8IY19zwkd9TiEbmXmoLOP-DMuADL9WPyscVNXqU94A-v4SavxU14zXGTh9zklQtDjdzkGW56QqYnHy6OR74tteHnoPGonysJhnvBYq7BHo8pin7JuGahjmDYyr7QMUwUYgUiXAqeMx4GKqQa4C5EUIjwKdlbVAv1jHhcUBlJIWQgYLogBwn0DHNmJVieRJEOu6TX_MJM2jz0WA5lnhl_CMqz9g_vkreOelnnX_kL3WtAw5Fg0vTRcJxhG4afo0q_BqJ3BixHlq--oWPjIMq-TNKMnc_SyWAWZqxLDnfQdDfQfjAAFce75FUDbwbyGDfZ8oWqrtaZCUVPAvxMg_qNb501fPn8VtQvyP3tgDwge5vVlXoJtvFGHFq-_gX4K69Y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgFYIXxKdWPjYLAS8oIvNHEj9WiKWwtEJohYoXy3ZsUTEl09pN8N9z52ShfQAJ5SVKLlHi8939bP98R8hL6dJQs-CS4JhJhK9Donh9lFglmOHKFTbm0pvNs-lCfFzKZV_nFPfCdPkhhgk3tIzor9HAcUK6zzaASTJx5b6sUg4hFIY_IwnBFLr4aPJl8W0xOGPw0F3RPCWSguVZz32HN7zdfn4nKt38jpzIETbzT-RKmjU0V-jqXOwA0W04G-PR8T1ytweSdNJp_j654ZsH5FYZC_X-grNI7XTrh-Rk9mcakLaBAuKjq3W7ac9XjiKjvKdt4T1cnW_PrnxNcfcbXTVRGitsUYhzpnlEFsfvT99Nk76EQmLAk7HEeAeArIYxcACclTE0aSdUEDxIUIc7siEDAJh5ME1nlRGKp56zoISobVpb_pjsNW3j9wlVljnprHWpBRjo8gLeDGMhb4UppAx8TN5cN6F2fX5xLHNxpuM6N1N6u8HH5NUgfd7l1fiL3AvQxiCCybCnk0rjNdxWjK76CoReR2UNYubiBxLWcqm_zkstPi3Leb7kWozJwY42hwdg4JuD61JjcnitXg12hosnpvHt5VrHLcZFir8Ztf7Pr9bl54pJOJ78l_QhuT09nVW6-jA_eUruRGpKZM48I3ubi0v_HPDPxh70ffw3zdn5BQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbGqiFeEIMhusFmIeAFRWS288OPFVtTWFdNE2UVL5bt2KJiSqq1m-C_587JQvsAEspLlZ6j1Ne7-87-fEfIm8TGvmTeRt4yHQlX-kjy8jgyUjDNpc1NqKV3PklHU_F5lszaBTc8C9PUh-gW3NAygr9GA1-Uvi02gDUyceO-GMccIihkPz2I5AKSr97g6_TbtPPF4KCbnnlSRDnL0pb6Dk_4sD5-Iyg9-I6UyB7O8k-kSuolzJZv2lxs4NB1NBvC0fAJedziSDpoFL9Ltlz1lOwUoU_vL_gUmJ12-Yycnf9ZBaS1pwD46HxZr-rF3FIklLesLfwON-fr6ztXUjz8RudVkMYGWxTCnK72yHR4-uXjKGo7KEQaHBmLtLOAx0pIgT3ArJShRVshveA-AW3YY-NTwH-pA8u0Rmoheew481KI0sSl4c_JdlVX7gWh0jCbWGNsbAAF2iyHJ0Mq5IzQeZJ43ifv76dQ2ba8OHa5uFZhm5tJtT7hffK2k140ZTX-IvcatNGJYC3s0WCs8B6eKkZPfQdC74KyOjF98wP5almiriaFEhezYpLNuBJ9crihzW4A5L0ZeC7ZJ0f36lVgZrh3oitX3y5VOGGcx_gzg9b_-daquByzBK79_5I-Ig8vToZq_GlydkAeBWJK4M28JNurm1v3CtDPyhy2f_HfPIv4Lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+the+isotopic+composition+of+dissolved+iron+in+the+open+ocean&rft.jtitle=Geophysical+research+letters&rft.au=Lacan%2C+F.&rft.au=Radic%2C+A.&rft.au=Jeandel%2C+C.&rft.au=Poitrasson%2C+F.&rft.date=2008-12-01&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=35&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2008GL035841&rft.externalDBID=10.1029%252F2008GL035841&rft.externalDocID=GRL25252 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |