Automated analysis of foraminifera fossil records by image classification using a convolutional neural network

Manual identification of foraminiferal morphospecies or morphotypes under stereo microscopes is time consuming for micropalaeontologists and not possible for nonspecialists. Therefore, a long-term goal has been to automate this process to improve its efficiency and repeatability. Recent advances in...

Full description

Saved in:
Bibliographic Details
Published inJournal of micropalaeontology Vol. 39; no. 2; pp. 183 - 202
Main Authors Marchant, Ross, Tetard, Martin, Pratiwi, Adnya, Adebayo, Michael, de Garidel-Thoron, Thibault
Format Journal Article
LanguageEnglish
Published Bath Copernicus GmbH 15.10.2020
Geological Society
Copernicus Publications
Subjects
Online AccessGet full text
ISSN2041-4978
0262-821X
2041-4978
DOI10.5194/jm-39-183-2020

Cover

Abstract Manual identification of foraminiferal morphospecies or morphotypes under stereo microscopes is time consuming for micropalaeontologists and not possible for nonspecialists. Therefore, a long-term goal has been to automate this process to improve its efficiency and repeatability. Recent advances in computation hardware have seen deep convolutional neural networks emerge as the state-of-the-art technique for image-based automated classification. Here, we describe a method for classifying large foraminifera image sets using convolutional neural networks. Construction of the classifier is demonstrated on the publicly available Endless Forams image set with a best accuracy of approximately 90 %. A complete automatic analysis is performed for benthic species dated to the last deglacial period for a sediment core from the north-eastern Pacific and for planktonic species dated from the present until 180 000 years ago in a core from the western Pacific warm pool. The relative abundances from automatic counting based on more than 500 000 images compare favourably with manual counting, showing the same signal dynamics. Our workflow opens the way to automated palaeoceanographic reconstruction based on computer image analysis and is freely available for use.
AbstractList Manual identification of foraminiferal morphospecies or morphotypes under stereo microscopes is time consuming for micropalaeontologists and not possible for nonspecialists. Therefore, a long-term goal has been to automate this process to improve its efficiency and repeatability. Recent advances in computation hardware have seen deep convolutional neural networks emerge as the state-of-the-art technique for image-based automated classification. Here, we describe a method for classifying large foraminifera image sets using convolutional neural networks. Construction of the classifier is demonstrated on the publicly available Endless Forams image set with a best accuracy of approximately 90 %. A complete automatic analysis is performed for benthic species dated to the last deglacial period for a sediment core from the north-eastern Pacific and for planktonic species dated from the present until 180 000 years ago in a core from the western Pacific warm pool. The relative abundances from automatic counting based on more than 500 000 images compare favourably with manual counting, showing the same signal dynamics. Our workflow opens the way to automated palaeoceanographic reconstruction based on computer image analysis and is freely available for use.
Manual identification of foraminiferal morphospecies or morphotypes under stereo microscopes is time consuming for micropalaeontologists and not possible for nonspecialists. Therefore, a long-term goal has been to automate this process to improve its efficiency and repeatability. Recent advances in computation hardware have seen deep convolutional neural networks emerge as the state-of-the-art technique for image-based automated classification. Here, we describe a method for classifying large foraminifera image sets using convo-lutional neural networks. Construction of the classifier is demonstrated on the publicly available Endless Forams image set with a best accuracy of approximately 90 %. A complete automatic analysis is performed for benthic species dated to the last deglacial period for a sediment core from the northeastern Pacific and for planktonic species dated from the present until 180 000 years ago in a core from the western Pacific warm pool. The relative abundances from automatic counting based on more than 500 000 images compare favourably with manual counting, showing the same signal dynamics. Our workflow opens the way to automated palaeoceanographic reconstruction based on computer image analysis and is freely available for use.
Audience Academic
Author Marchant, Ross
Pratiwi, Adnya
Tetard, Martin
Adebayo, Michael
de Garidel-Thoron, Thibault
Author_xml – sequence: 1
  givenname: Ross
  orcidid: 0000-0003-2248-0378
  surname: Marchant
  fullname: Marchant, Ross
– sequence: 2
  givenname: Martin
  orcidid: 0000-0003-0487-1949
  surname: Tetard
  fullname: Tetard, Martin
– sequence: 3
  givenname: Adnya
  surname: Pratiwi
  fullname: Pratiwi, Adnya
– sequence: 4
  givenname: Michael
  orcidid: 0000-0002-9044-2405
  surname: Adebayo
  fullname: Adebayo, Michael
– sequence: 5
  givenname: Thibault
  orcidid: 0000-0001-8983-9571
  surname: de Garidel-Thoron
  fullname: de Garidel-Thoron, Thibault
BackLink https://hal.science/hal-02997928$$DView record in HAL
BookMark eNp1UcFu3CAURFEqJdn02jNSTz04xYBZOK6itom0Ui_NGT1j2OLakAJOtX8fdrdK2koVhwfDzLynN1foPMRgEXrXkpuuVfzjODdMNa1kDSWUnKFLSnjbcLWW53_cL9BVziMhVFAuLlHYLCXOUOyAIcC0zz7j6LCLCWYfvLMJ6iNnP-FkTUxDxv0e-xl2FpsJ6ofzBoqPAS_Zhx0GbGJ4itNywGDCwS7pWMqvmH5cozcOpmzf_q4r9PD507fbu2b79cv97WbbQMe60hjiOscHANpZxyQhlnNgne0oYz3rHRNUGtMKw01Paa9oT6zoXcu5c8wCZSt0f_IdIoz6MdWB015H8PoIxLTTkIo3k9VUiOrJBtN3kgtFpKLQKgmSCDWQ2nCFPpy8vsP0l9XdZqsPGKFKrRWVT23lvj9xH1P8udhc9BiXVPeQNeUdUVStGamsmxNrB3UAH1wsCUw9g519XZ91vuIbwSSXQnD1KjCpZpGse5mjJfoQvh5nzZSu4etD-FXA_xEYX44x1U5--p_sGfhWtVc
CitedBy_id crossref_primary_10_1016_j_jestch_2023_101589
crossref_primary_10_3389_fmars_2022_798002
crossref_primary_10_5194_jm_40_163_2021
crossref_primary_10_1016_j_micron_2024_103611
crossref_primary_10_1007_s10462_024_11080_y
crossref_primary_10_1038_s42003_023_04803_4
crossref_primary_10_1016_j_marmicro_2023_102293
crossref_primary_10_3390_jmse8120998
crossref_primary_10_1016_j_earscirev_2024_104765
crossref_primary_10_1109_ACCESS_2023_3291620
crossref_primary_10_1016_j_marmicro_2024_102394
crossref_primary_10_3389_feart_2022_1046327
crossref_primary_10_1016_j_marmicro_2023_102296
crossref_primary_10_1007_s11042_022_13810_2
crossref_primary_10_1016_j_marmicro_2023_102268
crossref_primary_10_1093_pnasnexus_pgad419
crossref_primary_10_5194_jm_41_165_2022
crossref_primary_10_5194_bg_22_863_2025
crossref_primary_10_1093_icesjms_fsab123
crossref_primary_10_1029_2022GC010689
crossref_primary_10_1016_j_gloplacha_2023_104283
crossref_primary_10_1007_s13369_022_06822_5
crossref_primary_10_1029_2022GC010586
crossref_primary_10_1007_s11760_024_03322_x
crossref_primary_10_1016_j_cageo_2024_105701
crossref_primary_10_1038_s41598_025_90988_z
crossref_primary_10_1016_j_marmicro_2025_102442
crossref_primary_10_1371_journal_pone_0292536
crossref_primary_10_5194_cp_16_2415_2020
crossref_primary_10_1016_j_acags_2022_100092
crossref_primary_10_1016_j_marpetgeo_2024_106911
crossref_primary_10_1017_pab_2022_14
crossref_primary_10_1016_j_marmicro_2021_102016
crossref_primary_10_31796_ogummf_1096951
Cites_doi 10.5194/jm-37-431-2018
10.1016/S0893-6080(99)00011-8
10.1126/science.293.5539.2440
10.1127/0078-0421/2012/0020
10.1007/978-3-319-46493-0_38
10.1186/1471-2105-14-115
10.1002/2016PA003034
10.1144/jmpaleo2014-017
10.1109/CVPR.2009.5206848
10.1109/CVPR.2017.243
10.2113/gsjfr.26.2.113
10.3354/meps247017
10.3354/meps139281
10.1007/1-4020-2122-4
10.1016/S1572-5480(07)01011-1
10.1109/ICCV.2015.123
10.5244/C.30.87
10.1016/j.neunet.2014.09.003
10.1109/CVPR.2016.308
10.3354/meps079303
10.1029/2011PA002126
10.1109/CVPR.2016.90
10.3390/app7050460
10.1109/CVPR.2015.7298594
10.5194/cp-10-405-2014
10.1029/2006PA001269
10.1109/ICDAR.2003.1227801
10.1038/280554a0
10.1086/644681
10.1109/SSCI.2017.8285164
10.1109/SSCI.2017.8280982
10.1016/j.marmicro.2003.09.003
10.1029/2019PA003612
10.1109/CAIA.1994.323653
10.1109/CVPR.2017.634
10.1007/s11263-015-0816-y
10.1145/3065386
10.1016/j.marmicro.2019.01.005
ContentType Journal Article
Copyright COPYRIGHT 2020 Copernicus GmbH
2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: COPYRIGHT 2020 Copernicus GmbH
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
1XC
VOOES
DOA
DOI 10.5194/jm-39-183-2020
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database (ProQuest)
Biological Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: WRHA-DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Statistics
Environmental Sciences
EISSN 2041-4978
EndPage 202
ExternalDocumentID oai_doaj_org_article_2663b33dcb584690892a198a8069d023
oai_HAL_hal_02997928v1
A638486649
10_5194_jm_39_183_2020
GroupedDBID 2XV
5GY
88I
8FE
8FH
AAFWJ
AAWFE
AAYXX
ABUWG
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ITC
LK5
LK8
LYL
M2P
M7P
M7R
OK1
P2P
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RGW
RHI
RKB
SJN
TUQ
~02
PMFND
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
1XC
AAACY
PUEGO
VOOES
ID FETCH-LOGICAL-a535t-c0f5f4daa25ef3800e44a35e5233b3bf3628cc16c4cb22b92b0e6bf144ff3ea23
IEDL.DBID DOA
ISSN 2041-4978
0262-821X
IngestDate Wed Aug 27 01:28:44 EDT 2025
Fri Sep 12 12:42:04 EDT 2025
Sun Jul 13 04:40:18 EDT 2025
Tue Jun 10 20:30:47 EDT 2025
Tue Jul 01 01:06:53 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords RECOGNITION
IDENTIFICATION
PLANKTIC FORAMINIFERA
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a535t-c0f5f4daa25ef3800e44a35e5233b3bf3628cc16c4cb22b92b0e6bf144ff3ea23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9044-2405
0000-0003-0487-1949
0000-0001-8983-9571
0000-0003-2248-0378
OpenAccessLink https://doaj.org/article/2663b33dcb584690892a198a8069d023
PQID 2450929730
PQPubID 2069190
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_2663b33dcb584690892a198a8069d023
hal_primary_oai_HAL_hal_02997928v1
proquest_journals_2450929730
gale_infotracacademiconefile_A638486649
crossref_primary_10_5194_jm_39_183_2020
crossref_citationtrail_10_5194_jm_39_183_2020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Bath
PublicationPlace_xml – name: Bath
PublicationTitle Journal of micropalaeontology
PublicationYear 2020
Publisher Copernicus GmbH
Geological Society
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Geological Society
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref18
  doi: 10.5194/jm-37-431-2018
– ident: ref37
– ident: ref1
– ident: ref17
  doi: 10.1016/S0893-6080(99)00011-8
– ident: ref6
  doi: 10.1126/science.293.5539.2440
– ident: ref20
  doi: 10.1127/0078-0421/2012/0020
– ident: ref23
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref41
  doi: 10.1186/1471-2105-14-115
– ident: ref47
  doi: 10.1002/2016PA003034
– ident: ref8
  doi: 10.1144/jmpaleo2014-017
– ident: ref43
– ident: ref15
  doi: 10.1109/CVPR.2009.5206848
– ident: ref27
  doi: 10.1109/CVPR.2017.243
– ident: ref51
  doi: 10.2113/gsjfr.26.2.113
– ident: ref13
  doi: 10.3354/meps247017
– ident: ref12
  doi: 10.3354/meps139281
– ident: ref11
– ident: ref34
– ident: ref7
  doi: 10.1007/1-4020-2122-4
– ident: ref31
  doi: 10.1016/S1572-5480(07)01011-1
– ident: ref2
– ident: ref21
  doi: 10.1109/ICCV.2015.123
– ident: ref52
  doi: 10.5244/C.30.87
– ident: ref40
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref46
  doi: 10.1109/CVPR.2016.308
– ident: ref44
  doi: 10.3354/meps079303
– ident: ref9
  doi: 10.1029/2011PA002126
– ident: ref16
– ident: ref22
  doi: 10.1109/CVPR.2016.90
– ident: ref38
  doi: 10.3390/app7050460
– ident: ref33
– ident: ref45
  doi: 10.1109/CVPR.2015.7298594
– ident: ref10
  doi: 10.5194/cp-10-405-2014
– ident: ref3
– ident: ref14
  doi: 10.1029/2006PA001269
– ident: ref42
  doi: 10.1109/ICDAR.2003.1227801
– ident: ref48
  doi: 10.1038/280554a0
– ident: ref24
  doi: 10.1086/644681
– ident: ref29
– ident: ref53
  doi: 10.1109/SSCI.2017.8285164
– ident: ref25
– ident: ref19
  doi: 10.1109/SSCI.2017.8280982
– ident: ref5
  doi: 10.1016/j.marmicro.2003.09.003
– ident: ref26
  doi: 10.1029/2019PA003612
– ident: ref32
  doi: 10.1109/CAIA.1994.323653
– ident: ref50
  doi: 10.1109/CVPR.2017.634
– ident: ref4
– ident: ref39
  doi: 10.1007/s11263-015-0816-y
– ident: ref28
– ident: ref49
– ident: ref30
  doi: 10.1145/3065386
– ident: ref36
  doi: 10.1016/j.marmicro.2019.01.005
– ident: ref35
SSID ssj0026246
Score 2.4468522
Snippet Manual identification of foraminiferal morphospecies or morphotypes under stereo microscopes is time consuming for micropalaeontologists and not possible for...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 183
SubjectTerms Applied research
Artificial neural networks
Automatic
Automation
Biodiversity and Ecology
Classification
Datasets
Earth Sciences
Engineering Sciences
Environmental Sciences
Fossil foraminifera
Geology
Human performance
Image processing
Machine Learning
Methods
Microscopes
Morphology
Neural networks
Paleontology
Physiological aspects
Sciences of the Universe
Sediments
Statistics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBaJQ6GX0id1kxZRCj2J7Oqx1h5KcUpSU1pTSgO-CT3ThtibOE4h_74zWq37gPZke1cgSzOa-bQ7-j5CXjlvtbZSsZiCYFIKx5ydRJaEqyZe-TZk0b5P82Z2Kj8s1GKHzIezMFhWOcTEHKhD5_EZ-SGXkNpQaKl6e3nFUDUK364OEhq2SCuEN5libJfscVRVHpG9o-P55y_bLVjD-6M78IVpXi96GkdAMfLwfMlEy8DDwXFQ_fu3NJXZ_Lcxe_cblkz-FblzOjq5T-4VHEmnveEfkJ24ekjuvM86vbePyGp6s-kAjMZAbaEdoV2igFAtkomkuLbwA9bDBe0f01xTd0u_LyG6UI-AGiuIstEoVsafUUuxPr34KXSMPJj5I1eRPyanJ8df381YkVZgVgm1Yb5KKslgLVcxCQCNUUorVIRtqXDCJUhr2vu68dI7zl3LXRUbl2D3lZKIlosnZLTqVvEpoS4kHXSlnQoWbnvrKqG5TDHaRjaVHRM2zKTxhXcc5S8uDOw_cObN-dKI1sDMG5z5MXm9bX_ZM278s-URGmbbCpmy84VufWbKwjMAQGBEIniHUAvfcnJbt9rqqmkDABboDs1qcD3D3_K2HEuAwSEzlplCgJK6aWQ7Ji_B8n_0Npt-NHitgqQ-abn-UY_JweAYpkSDa_PLd5_9__Y-uYsDw9xYqwMy2qxv4nMAPRv3onjyT_lzASU
  priority: 102
  providerName: ProQuest
Title Automated analysis of foraminifera fossil records by image classification using a convolutional neural network
URI https://www.proquest.com/docview/2450929730
https://hal.science/hal-02997928
https://doaj.org/article/2663b33dcb584690892a198a8069d023
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: WRHA-DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-4978
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0026246
  issn: 2041-4978
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2041-4978
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0026246
  issn: 2041-4978
  databaseCode: BENPR
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5aEXwRf-LZWoIIPoXm8uuyj1dpPUSLiIV7C5NsopbenbRXof99Z7K5owrii0-3txtIdvLtfDN3s98w9iYm8B6MFbn0Whijo4gwyaLoKCfJpq6vTfs-nbjZqfkwt_Nbrb6oJmyQBx4Md4AEoqPWfYpElfQvlQJMlMFL1_VIOOR9kcY2yVRLtZwaXtHBA-HVeD7INWK0Yg7OFkJ3ApGMAKEu37foqKr2b33z3e9UGvmHh660c_yIPWzxIp8O63zM7uTlE3b_fe3He_2ULadX6xUGnbnn0ORF-KpwjESBRENKvgD8grg_58PPMZc8XvMfC_QiPFHgTJVCdXM4VcB_48CpDr3hEScmvcv6UavFn7HT46Ov72aitVAQYLVdiySLLaYHUDYXjcFhNga0zZh-olVjQfryKY1dMikqFTsVZXaxYJZVis6g9HO2s1wt8wvGY19876WPtge8nCBK7ZUpOYMzTsKIiY0lQ2r64tTm4jxgnkGWD2eLoLuAlg9k-RF7ux3_c1DW-OvIQ9qY7ShSxK4nECeh4ST8Cyc4HW1roOcWl5WgvX6AN0cKWGGKjsh450w3Yq9x53-bbTb9GOicRPKedMr_Go_Y3gYYoT31l0EZDL-oGZh8-T-WvMse0O0TU47NHttZX1zlVxgCreM-u3d4dPL5y35F_Q1grwLy
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKwQXxFOkFLAQiJPVXdu78R4qlEJLStMIoVbKzfhZqJpsm6Sg_Dl-GzMbb3hIcOspya4lx-N5fLM7_oaQl9YZpYwsWIheMCmFZdZ0A4vCZl1XuMo3TfuOhmX_RH4YFaM18qM9C4Nlla1PbBy1rx0-I9_mEkIbNlrK3lxcMuwahW9X2xYaJrVW8DsNxVg62HEYFt8hhZvtHLyD_X7F-f7e8ds-S10GmClEMWcui0WU3hhehCgAPwUpjSgCZGjCChvBwyvn8tJJZzm3FbdZKG2ERCRGEQwSH0AI2ADYIcCqNnb3hh8_rVK-ki-PCsEXpng-WtJGAmqS22djJioGFgWKit3GfwuLTfeAVYy48QVLNP-KFE34279L7iTcSntLRbtH1sLkPrn5vukLvHhAJr2reQ3gN3hqEs0JrSMFRGyQvCSGqYEfYH_ndPlYaEbtgn4dgzejDgE8Viw1SkKxEv-UGor18MkuYGLk3Ww-mqr1h-TkWoT8iKxP6kl4TKj1UXmVKVt4A7edsZlQXMYQTCnLzHQIayWpXeI5x3Yb5xryHZS8PhtrUWmQvEbJd8jr1fiLJcPHP0fu4sasRiEzd3Ohnp7qZOgaAA-sSHhnEdrhW1Vu8koZlZWVB4AE0-G2avQf8LecSccgYHHIxKV74BClKktZdcgL2Pk_Zuv3BhqvZQAiuhVX3_IO2WoVQyfvM9O_bGXz_7efk1v946OBHhwMD5-Q27hIjMt5sUXW59Or8BQA19w-S1pNyefrNqSfWgo_DA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxFOkFLAQiJOVje3deA8VSmlDSktUISrlZvwsVE3SJikof5FfxcyuNzwkuPWUZNeS47Fn5pvdmfkIeWmdUcrInIXoBZNSWGZNL7AobNZzuSt9Rdr3YVQMT-T7cT7eID-aWhhMq2xsYmWo_czhM_IOl-DakGgp68SUFnG8N3hzccmQQQrftDZ0GibRLPidqt1YKvI4DKvvEM4tdg72YO9fcT7Y__R2yBLjADO5yJfMZTGP0hvD8xAFYKkgpRF5gGhNWGEjWHvlXLdw0lnObcltFgobISiJUQSDTRDAHWz2sF60RTZ390fHH9fhX8HrsiH4whTvjusWkoCgZOdswkTJQLvg0CLz-G8usmISWPuLG18wXfMvr1G5wsFdcidhWNqvD909shGm98nNdxVH8OoBmfavljMAwsFTk1qe0FmkgI4NNjKJYW7gB-jiOa0fES2oXdGvE7Bs1CGYx-yl6sBQzMo_pYZibnzSEZgYe3BWH1UG-0Nyci1CfkRa09k0PCbU-qi8ypTNvYHbzthMKC5jCKaQRWbahDWS1C71PEfqjXMNsQ9KXp9NtCg1SF6j5Nvk9Xr8Rd3t458jd3Fj1qOwS3d1YTY_1UnpNYAfWJHwziLMwzes3HRLZVRWlB7AEkyH26rRlsDfciaVRMDisCuX7oNxlKooZNkmL2Dn_5ht2D_SeC0DQNErufrWbZPt5mDoZIkW-pfebP3_9nNyCxRKHx2MDp-Q27hGdNHdfJu0lvOr8BSw19I-S4eaks_XrUc_AS3pQ0Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+analysis+of+foraminifera+fossil+records+by+image+classification+using+a+convolutional+neural+network&rft.jtitle=Journal+of+micropalaeontology&rft.au=Marchant%2C+Ross&rft.au=Tetard%2C+Ma&rft.au=Pratiwi%2C+Adnya&rft.au=Adebayo%2C+Michael&rft.date=2020-10-15&rft.pub=Copernicus+GmbH&rft.issn=0262-821X&rft.volume=39&rft.issue=2&rft.spage=183&rft_id=info:doi/10.5194%2Fjm-39-183-2020&rft.externalDocID=A638486649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-4978&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-4978&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-4978&client=summon