Automated analysis of foraminifera fossil records by image classification using a convolutional neural network
Manual identification of foraminiferal morphospecies or morphotypes under stereo microscopes is time consuming for micropalaeontologists and not possible for nonspecialists. Therefore, a long-term goal has been to automate this process to improve its efficiency and repeatability. Recent advances in...
Saved in:
Published in | Journal of micropalaeontology Vol. 39; no. 2; pp. 183 - 202 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bath
Copernicus GmbH
15.10.2020
Geological Society Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 2041-4978 0262-821X 2041-4978 |
DOI | 10.5194/jm-39-183-2020 |
Cover
Abstract | Manual identification of foraminiferal morphospecies or morphotypes under stereo microscopes is time consuming for micropalaeontologists and not possible for nonspecialists. Therefore, a long-term goal has been to automate this process to improve its efficiency and repeatability. Recent advances in computation hardware have seen deep convolutional neural networks emerge as the state-of-the-art technique for image-based automated classification. Here, we describe a method for classifying large foraminifera image sets using convolutional neural networks. Construction of the classifier is demonstrated on the publicly available Endless Forams image set with a best accuracy of approximately 90 %. A complete automatic analysis is performed for benthic species dated to the last deglacial period for a sediment core from the north-eastern Pacific and for planktonic species dated from the present until 180 000 years ago in a core from the western Pacific warm pool. The relative abundances from automatic counting based on more than 500 000 images compare favourably with manual counting, showing the same signal dynamics. Our workflow opens the way to automated palaeoceanographic reconstruction based on computer image analysis and is freely available for use. |
---|---|
AbstractList | Manual identification of foraminiferal morphospecies or morphotypes under stereo microscopes is time consuming for micropalaeontologists and not possible for nonspecialists. Therefore, a long-term goal has been to automate this process to improve its efficiency and repeatability. Recent advances in computation hardware have seen deep convolutional neural networks emerge as the state-of-the-art technique for image-based automated classification. Here, we describe a method for classifying large foraminifera image sets using convolutional neural networks. Construction of the classifier is demonstrated on the publicly available Endless Forams image set with a best accuracy of approximately 90 %. A complete automatic analysis is performed for benthic species dated to the last deglacial period for a sediment core from the north-eastern Pacific and for planktonic species dated from the present until 180 000 years ago in a core from the western Pacific warm pool. The relative abundances from automatic counting based on more than 500 000 images compare favourably with manual counting, showing the same signal dynamics. Our workflow opens the way to automated palaeoceanographic reconstruction based on computer image analysis and is freely available for use. Manual identification of foraminiferal morphospecies or morphotypes under stereo microscopes is time consuming for micropalaeontologists and not possible for nonspecialists. Therefore, a long-term goal has been to automate this process to improve its efficiency and repeatability. Recent advances in computation hardware have seen deep convolutional neural networks emerge as the state-of-the-art technique for image-based automated classification. Here, we describe a method for classifying large foraminifera image sets using convo-lutional neural networks. Construction of the classifier is demonstrated on the publicly available Endless Forams image set with a best accuracy of approximately 90 %. A complete automatic analysis is performed for benthic species dated to the last deglacial period for a sediment core from the northeastern Pacific and for planktonic species dated from the present until 180 000 years ago in a core from the western Pacific warm pool. The relative abundances from automatic counting based on more than 500 000 images compare favourably with manual counting, showing the same signal dynamics. Our workflow opens the way to automated palaeoceanographic reconstruction based on computer image analysis and is freely available for use. |
Audience | Academic |
Author | Marchant, Ross Pratiwi, Adnya Tetard, Martin Adebayo, Michael de Garidel-Thoron, Thibault |
Author_xml | – sequence: 1 givenname: Ross orcidid: 0000-0003-2248-0378 surname: Marchant fullname: Marchant, Ross – sequence: 2 givenname: Martin orcidid: 0000-0003-0487-1949 surname: Tetard fullname: Tetard, Martin – sequence: 3 givenname: Adnya surname: Pratiwi fullname: Pratiwi, Adnya – sequence: 4 givenname: Michael orcidid: 0000-0002-9044-2405 surname: Adebayo fullname: Adebayo, Michael – sequence: 5 givenname: Thibault orcidid: 0000-0001-8983-9571 surname: de Garidel-Thoron fullname: de Garidel-Thoron, Thibault |
BackLink | https://hal.science/hal-02997928$$DView record in HAL |
BookMark | eNp1UcFu3CAURFEqJdn02jNSTz04xYBZOK6itom0Ui_NGT1j2OLakAJOtX8fdrdK2koVhwfDzLynN1foPMRgEXrXkpuuVfzjODdMNa1kDSWUnKFLSnjbcLWW53_cL9BVziMhVFAuLlHYLCXOUOyAIcC0zz7j6LCLCWYfvLMJ6iNnP-FkTUxDxv0e-xl2FpsJ6ofzBoqPAS_Zhx0GbGJ4itNywGDCwS7pWMqvmH5cozcOpmzf_q4r9PD507fbu2b79cv97WbbQMe60hjiOscHANpZxyQhlnNgne0oYz3rHRNUGtMKw01Paa9oT6zoXcu5c8wCZSt0f_IdIoz6MdWB015H8PoIxLTTkIo3k9VUiOrJBtN3kgtFpKLQKgmSCDWQ2nCFPpy8vsP0l9XdZqsPGKFKrRWVT23lvj9xH1P8udhc9BiXVPeQNeUdUVStGamsmxNrB3UAH1wsCUw9g519XZ91vuIbwSSXQnD1KjCpZpGse5mjJfoQvh5nzZSu4etD-FXA_xEYX44x1U5--p_sGfhWtVc |
CitedBy_id | crossref_primary_10_1016_j_jestch_2023_101589 crossref_primary_10_3389_fmars_2022_798002 crossref_primary_10_5194_jm_40_163_2021 crossref_primary_10_1016_j_micron_2024_103611 crossref_primary_10_1007_s10462_024_11080_y crossref_primary_10_1038_s42003_023_04803_4 crossref_primary_10_1016_j_marmicro_2023_102293 crossref_primary_10_3390_jmse8120998 crossref_primary_10_1016_j_earscirev_2024_104765 crossref_primary_10_1109_ACCESS_2023_3291620 crossref_primary_10_1016_j_marmicro_2024_102394 crossref_primary_10_3389_feart_2022_1046327 crossref_primary_10_1016_j_marmicro_2023_102296 crossref_primary_10_1007_s11042_022_13810_2 crossref_primary_10_1016_j_marmicro_2023_102268 crossref_primary_10_1093_pnasnexus_pgad419 crossref_primary_10_5194_jm_41_165_2022 crossref_primary_10_5194_bg_22_863_2025 crossref_primary_10_1093_icesjms_fsab123 crossref_primary_10_1029_2022GC010689 crossref_primary_10_1016_j_gloplacha_2023_104283 crossref_primary_10_1007_s13369_022_06822_5 crossref_primary_10_1029_2022GC010586 crossref_primary_10_1007_s11760_024_03322_x crossref_primary_10_1016_j_cageo_2024_105701 crossref_primary_10_1038_s41598_025_90988_z crossref_primary_10_1016_j_marmicro_2025_102442 crossref_primary_10_1371_journal_pone_0292536 crossref_primary_10_5194_cp_16_2415_2020 crossref_primary_10_1016_j_acags_2022_100092 crossref_primary_10_1016_j_marpetgeo_2024_106911 crossref_primary_10_1017_pab_2022_14 crossref_primary_10_1016_j_marmicro_2021_102016 crossref_primary_10_31796_ogummf_1096951 |
Cites_doi | 10.5194/jm-37-431-2018 10.1016/S0893-6080(99)00011-8 10.1126/science.293.5539.2440 10.1127/0078-0421/2012/0020 10.1007/978-3-319-46493-0_38 10.1186/1471-2105-14-115 10.1002/2016PA003034 10.1144/jmpaleo2014-017 10.1109/CVPR.2009.5206848 10.1109/CVPR.2017.243 10.2113/gsjfr.26.2.113 10.3354/meps247017 10.3354/meps139281 10.1007/1-4020-2122-4 10.1016/S1572-5480(07)01011-1 10.1109/ICCV.2015.123 10.5244/C.30.87 10.1016/j.neunet.2014.09.003 10.1109/CVPR.2016.308 10.3354/meps079303 10.1029/2011PA002126 10.1109/CVPR.2016.90 10.3390/app7050460 10.1109/CVPR.2015.7298594 10.5194/cp-10-405-2014 10.1029/2006PA001269 10.1109/ICDAR.2003.1227801 10.1038/280554a0 10.1086/644681 10.1109/SSCI.2017.8285164 10.1109/SSCI.2017.8280982 10.1016/j.marmicro.2003.09.003 10.1029/2019PA003612 10.1109/CAIA.1994.323653 10.1109/CVPR.2017.634 10.1007/s11263-015-0816-y 10.1145/3065386 10.1016/j.marmicro.2019.01.005 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 1XC VOOES DOA |
DOI | 10.5194/jm-39-183-2020 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database (ProQuest) Biological Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: WRHA-DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Statistics Environmental Sciences |
EISSN | 2041-4978 |
EndPage | 202 |
ExternalDocumentID | oai_doaj_org_article_2663b33dcb584690892a198a8069d023 oai_HAL_hal_02997928v1 A638486649 10_5194_jm_39_183_2020 |
GroupedDBID | 2XV 5GY 88I 8FE 8FH AAFWJ AAWFE AAYXX ABUWG ADBBV AENEX AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BCNDV BENPR BHPHI BKSAR BPHCQ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ITC LK5 LK8 LYL M2P M7P M7R OK1 P2P PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC RGW RHI RKB SJN TUQ ~02 PMFND 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 1XC AAACY PUEGO VOOES |
ID | FETCH-LOGICAL-a535t-c0f5f4daa25ef3800e44a35e5233b3bf3628cc16c4cb22b92b0e6bf144ff3ea23 |
IEDL.DBID | DOA |
ISSN | 2041-4978 0262-821X |
IngestDate | Wed Aug 27 01:28:44 EDT 2025 Fri Sep 12 12:42:04 EDT 2025 Sun Jul 13 04:40:18 EDT 2025 Tue Jun 10 20:30:47 EDT 2025 Tue Jul 01 01:06:53 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | RECOGNITION IDENTIFICATION PLANKTIC FORAMINIFERA |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a535t-c0f5f4daa25ef3800e44a35e5233b3bf3628cc16c4cb22b92b0e6bf144ff3ea23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9044-2405 0000-0003-0487-1949 0000-0001-8983-9571 0000-0003-2248-0378 |
OpenAccessLink | https://doaj.org/article/2663b33dcb584690892a198a8069d023 |
PQID | 2450929730 |
PQPubID | 2069190 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2663b33dcb584690892a198a8069d023 hal_primary_oai_HAL_hal_02997928v1 proquest_journals_2450929730 gale_infotracacademiconefile_A638486649 crossref_primary_10_5194_jm_39_183_2020 crossref_citationtrail_10_5194_jm_39_183_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-15 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Bath |
PublicationPlace_xml | – name: Bath |
PublicationTitle | Journal of micropalaeontology |
PublicationYear | 2020 |
Publisher | Copernicus GmbH Geological Society Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Geological Society – name: Copernicus Publications |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref18 doi: 10.5194/jm-37-431-2018 – ident: ref37 – ident: ref1 – ident: ref17 doi: 10.1016/S0893-6080(99)00011-8 – ident: ref6 doi: 10.1126/science.293.5539.2440 – ident: ref20 doi: 10.1127/0078-0421/2012/0020 – ident: ref23 doi: 10.1007/978-3-319-46493-0_38 – ident: ref41 doi: 10.1186/1471-2105-14-115 – ident: ref47 doi: 10.1002/2016PA003034 – ident: ref8 doi: 10.1144/jmpaleo2014-017 – ident: ref43 – ident: ref15 doi: 10.1109/CVPR.2009.5206848 – ident: ref27 doi: 10.1109/CVPR.2017.243 – ident: ref51 doi: 10.2113/gsjfr.26.2.113 – ident: ref13 doi: 10.3354/meps247017 – ident: ref12 doi: 10.3354/meps139281 – ident: ref11 – ident: ref34 – ident: ref7 doi: 10.1007/1-4020-2122-4 – ident: ref31 doi: 10.1016/S1572-5480(07)01011-1 – ident: ref2 – ident: ref21 doi: 10.1109/ICCV.2015.123 – ident: ref52 doi: 10.5244/C.30.87 – ident: ref40 doi: 10.1016/j.neunet.2014.09.003 – ident: ref46 doi: 10.1109/CVPR.2016.308 – ident: ref44 doi: 10.3354/meps079303 – ident: ref9 doi: 10.1029/2011PA002126 – ident: ref16 – ident: ref22 doi: 10.1109/CVPR.2016.90 – ident: ref38 doi: 10.3390/app7050460 – ident: ref33 – ident: ref45 doi: 10.1109/CVPR.2015.7298594 – ident: ref10 doi: 10.5194/cp-10-405-2014 – ident: ref3 – ident: ref14 doi: 10.1029/2006PA001269 – ident: ref42 doi: 10.1109/ICDAR.2003.1227801 – ident: ref48 doi: 10.1038/280554a0 – ident: ref24 doi: 10.1086/644681 – ident: ref29 – ident: ref53 doi: 10.1109/SSCI.2017.8285164 – ident: ref25 – ident: ref19 doi: 10.1109/SSCI.2017.8280982 – ident: ref5 doi: 10.1016/j.marmicro.2003.09.003 – ident: ref26 doi: 10.1029/2019PA003612 – ident: ref32 doi: 10.1109/CAIA.1994.323653 – ident: ref50 doi: 10.1109/CVPR.2017.634 – ident: ref4 – ident: ref39 doi: 10.1007/s11263-015-0816-y – ident: ref28 – ident: ref49 – ident: ref30 doi: 10.1145/3065386 – ident: ref36 doi: 10.1016/j.marmicro.2019.01.005 – ident: ref35 |
SSID | ssj0026246 |
Score | 2.4468522 |
Snippet | Manual identification of foraminiferal morphospecies or morphotypes under stereo microscopes is time consuming for micropalaeontologists and not possible for... |
SourceID | doaj hal proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 183 |
SubjectTerms | Applied research Artificial neural networks Automatic Automation Biodiversity and Ecology Classification Datasets Earth Sciences Engineering Sciences Environmental Sciences Fossil foraminifera Geology Human performance Image processing Machine Learning Methods Microscopes Morphology Neural networks Paleontology Physiological aspects Sciences of the Universe Sediments Statistics |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBaJQ6GX0id1kxZRCj2J7Oqx1h5KcUpSU1pTSgO-CT3ThtibOE4h_74zWq37gPZke1cgSzOa-bQ7-j5CXjlvtbZSsZiCYFIKx5ydRJaEqyZe-TZk0b5P82Z2Kj8s1GKHzIezMFhWOcTEHKhD5_EZ-SGXkNpQaKl6e3nFUDUK364OEhq2SCuEN5libJfscVRVHpG9o-P55y_bLVjD-6M78IVpXi96GkdAMfLwfMlEy8DDwXFQ_fu3NJXZ_Lcxe_cblkz-FblzOjq5T-4VHEmnveEfkJ24ekjuvM86vbePyGp6s-kAjMZAbaEdoV2igFAtkomkuLbwA9bDBe0f01xTd0u_LyG6UI-AGiuIstEoVsafUUuxPr34KXSMPJj5I1eRPyanJ8df381YkVZgVgm1Yb5KKslgLVcxCQCNUUorVIRtqXDCJUhr2vu68dI7zl3LXRUbl2D3lZKIlosnZLTqVvEpoS4kHXSlnQoWbnvrKqG5TDHaRjaVHRM2zKTxhXcc5S8uDOw_cObN-dKI1sDMG5z5MXm9bX_ZM278s-URGmbbCpmy84VufWbKwjMAQGBEIniHUAvfcnJbt9rqqmkDABboDs1qcD3D3_K2HEuAwSEzlplCgJK6aWQ7Ji_B8n_0Npt-NHitgqQ-abn-UY_JweAYpkSDa_PLd5_9__Y-uYsDw9xYqwMy2qxv4nMAPRv3onjyT_lzASU priority: 102 providerName: ProQuest |
Title | Automated analysis of foraminifera fossil records by image classification using a convolutional neural network |
URI | https://www.proquest.com/docview/2450929730 https://hal.science/hal-02997928 https://doaj.org/article/2663b33dcb584690892a198a8069d023 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: WRHA-DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-4978 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0026246 issn: 2041-4978 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2041-4978 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0026246 issn: 2041-4978 databaseCode: BENPR dateStart: 19820101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5aEXwRf-LZWoIIPoXm8uuyj1dpPUSLiIV7C5NsopbenbRXof99Z7K5owrii0-3txtIdvLtfDN3s98w9iYm8B6MFbn0Whijo4gwyaLoKCfJpq6vTfs-nbjZqfkwt_Nbrb6oJmyQBx4Md4AEoqPWfYpElfQvlQJMlMFL1_VIOOR9kcY2yVRLtZwaXtHBA-HVeD7INWK0Yg7OFkJ3ApGMAKEu37foqKr2b33z3e9UGvmHh660c_yIPWzxIp8O63zM7uTlE3b_fe3He_2ULadX6xUGnbnn0ORF-KpwjESBRENKvgD8grg_58PPMZc8XvMfC_QiPFHgTJVCdXM4VcB_48CpDr3hEScmvcv6UavFn7HT46Ov72aitVAQYLVdiySLLaYHUDYXjcFhNga0zZh-olVjQfryKY1dMikqFTsVZXaxYJZVis6g9HO2s1wt8wvGY19876WPtge8nCBK7ZUpOYMzTsKIiY0lQ2r64tTm4jxgnkGWD2eLoLuAlg9k-RF7ux3_c1DW-OvIQ9qY7ShSxK4nECeh4ST8Cyc4HW1roOcWl5WgvX6AN0cKWGGKjsh450w3Yq9x53-bbTb9GOicRPKedMr_Go_Y3gYYoT31l0EZDL-oGZh8-T-WvMse0O0TU47NHttZX1zlVxgCreM-u3d4dPL5y35F_Q1grwLy |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKwQXxFOkFLAQiJPVXdu78R4qlEJLStMIoVbKzfhZqJpsm6Sg_Dl-GzMbb3hIcOspya4lx-N5fLM7_oaQl9YZpYwsWIheMCmFZdZ0A4vCZl1XuMo3TfuOhmX_RH4YFaM18qM9C4Nlla1PbBy1rx0-I9_mEkIbNlrK3lxcMuwahW9X2xYaJrVW8DsNxVg62HEYFt8hhZvtHLyD_X7F-f7e8ds-S10GmClEMWcui0WU3hhehCgAPwUpjSgCZGjCChvBwyvn8tJJZzm3FbdZKG2ERCRGEQwSH0AI2ADYIcCqNnb3hh8_rVK-ki-PCsEXpng-WtJGAmqS22djJioGFgWKit3GfwuLTfeAVYy48QVLNP-KFE34279L7iTcSntLRbtH1sLkPrn5vukLvHhAJr2reQ3gN3hqEs0JrSMFRGyQvCSGqYEfYH_ndPlYaEbtgn4dgzejDgE8Viw1SkKxEv-UGor18MkuYGLk3Ww-mqr1h-TkWoT8iKxP6kl4TKj1UXmVKVt4A7edsZlQXMYQTCnLzHQIayWpXeI5x3Yb5xryHZS8PhtrUWmQvEbJd8jr1fiLJcPHP0fu4sasRiEzd3Ohnp7qZOgaAA-sSHhnEdrhW1Vu8koZlZWVB4AE0-G2avQf8LecSccgYHHIxKV74BClKktZdcgL2Pk_Zuv3BhqvZQAiuhVX3_IO2WoVQyfvM9O_bGXz_7efk1v946OBHhwMD5-Q27hIjMt5sUXW59Or8BQA19w-S1pNyefrNqSfWgo_DA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxFOkFLAQiJOVje3deA8VSmlDSktUISrlZvwsVE3SJikof5FfxcyuNzwkuPWUZNeS47Fn5pvdmfkIeWmdUcrInIXoBZNSWGZNL7AobNZzuSt9Rdr3YVQMT-T7cT7eID-aWhhMq2xsYmWo_czhM_IOl-DakGgp68SUFnG8N3hzccmQQQrftDZ0GibRLPidqt1YKvI4DKvvEM4tdg72YO9fcT7Y__R2yBLjADO5yJfMZTGP0hvD8xAFYKkgpRF5gGhNWGEjWHvlXLdw0lnObcltFgobISiJUQSDTRDAHWz2sF60RTZ390fHH9fhX8HrsiH4whTvjusWkoCgZOdswkTJQLvg0CLz-G8usmISWPuLG18wXfMvr1G5wsFdcidhWNqvD909shGm98nNdxVH8OoBmfavljMAwsFTk1qe0FmkgI4NNjKJYW7gB-jiOa0fES2oXdGvE7Bs1CGYx-yl6sBQzMo_pYZibnzSEZgYe3BWH1UG-0Nyci1CfkRa09k0PCbU-qi8ypTNvYHbzthMKC5jCKaQRWbahDWS1C71PEfqjXMNsQ9KXp9NtCg1SF6j5Nvk9Xr8Rd3t458jd3Fj1qOwS3d1YTY_1UnpNYAfWJHwziLMwzes3HRLZVRWlB7AEkyH26rRlsDfciaVRMDisCuX7oNxlKooZNkmL2Dn_5ht2D_SeC0DQNErufrWbZPt5mDoZIkW-pfebP3_9nNyCxRKHx2MDp-Q27hGdNHdfJu0lvOr8BSw19I-S4eaks_XrUc_AS3pQ0Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+analysis+of+foraminifera+fossil+records+by+image+classification+using+a+convolutional+neural+network&rft.jtitle=Journal+of+micropalaeontology&rft.au=Marchant%2C+Ross&rft.au=Tetard%2C+Ma&rft.au=Pratiwi%2C+Adnya&rft.au=Adebayo%2C+Michael&rft.date=2020-10-15&rft.pub=Copernicus+GmbH&rft.issn=0262-821X&rft.volume=39&rft.issue=2&rft.spage=183&rft_id=info:doi/10.5194%2Fjm-39-183-2020&rft.externalDocID=A638486649 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-4978&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-4978&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-4978&client=summon |