Deficits in Transcriptional Regulators of Cortical Parvalbumin Neurons in Schizophrenia

ObjectiveIn schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalb...

Full description

Saved in:
Bibliographic Details
Published inAmerican Journal of Psychiatry Vol. 169; no. 10; pp. 1082 - 1091
Main Authors Volk, David W, Matsubara, Takurou, Li, Siyu, Sengupta, Elizabeth J, Georgiev, Danko, Minabe, Yoshio, Sampson, Allan, Hashimoto, Takanori, Lewis, David A
Format Journal Article
LanguageEnglish
Published Arlington, VA American Psychiatric Association 01.10.2012
Subjects
Online AccessGet full text
ISSN0002-953X
1535-7228
1535-7228
DOI10.1176/appi.ajp.2012.12030305

Cover

Abstract ObjectiveIn schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalbumin and somatostatin neurons, but not calretinin neurons, and continue to be strongly expressed in this cell type-specific manner in the prefrontal cortex of adult humans. The authors investigated whether Lhx6 and/or Sox6 mRNA levels are deficient in schizophrenia, which may contribute to cell type-specific disturbances in cortical parvalbumin and somatostatin neurons.MethodThe authors used quantitative PCR and in situ hybridization with film and grain counting analyses to quantify mRNA levels in postmortem samples of prefrontal cortex area 9 of 42 schizophrenia subjects and 42 comparison subjects who had no psychiatric diagnoses in life, as well as antipsychotic-exposed monkeys.ResultsIn schizophrenia subjects, the authors observed lower mRNA levels for Lhx6, parvalbumin, somatostatin, and glutamate decarboxylase (GAD67; the principal enzyme in GABA synthesis), but not Sox6 or calretinin. Cluster analysis revealed that a subset of schizophrenia subjects consistently showed the most severe deficits in the affected transcripts. Grain counting analyses revealed that some neurons that normally express Lhx6 were not detectable in schizophrenia subjects. Finally, lower Lhx6 mRNA levels were not attributable to psychotropic medications or illness chronicity.ConclusionsThese data suggest that in a subset of individuals with schizophrenia, Lhx6 deficits may contribute to a failure of some cortical parvalbumin and somatostatin neurons to successfully migrate or develop a detectable GABA-ergic phenotype.
AbstractList In schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalbumin and somatostatin neurons, but not calretinin neurons, and continue to be strongly expressed in this cell type-specific manner in the prefrontal cortex of adult humans. The authors investigated whether Lhx6 and/or Sox6 mRNA levels are deficient in schizophrenia, which may contribute to cell type-specific disturbances in cortical parvalbumin and somatostatin neurons. The authors used quantitative PCR and in situ hybridization with film and grain counting analyses to quantify mRNA levels in postmortem samples of prefrontal cortex area 9 of 42 schizophrenia subjects and 42 comparison subjects who had no psychiatric diagnoses in life, as well as antipsychotic-exposed monkeys. In schizophrenia subjects, the authors observed lower mRNA levels for Lhx6, parvalbumin, somatostatin, and glutamate decarboxylase (GAD67; the principal enzyme in GABA synthesis), but not Sox6 or calretinin. Cluster analysis revealed that a subset of schizophrenia subjects consistently showed the most severe deficits in the affected transcripts. Grain counting analyses revealed that some neurons that normally express Lhx6 were not detectable in schizophrenia subjects. Finally, lower Lhx6 mRNA levels were not attributable to psychotropic medications or illness chronicity. These data suggest that in a subset of individuals with schizophrenia, Lhx6 deficits may contribute to a failure of some cortical parvalbumin and somatostatin neurons to successfully migrate or develop a detectable GABA-ergic phenotype.
In schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalbumin and somatostatin neurons, but not calretinin neurons, and continue to be strongly expressed in this cell type-specific manner in the prefrontal cortex of adult humans. The authors investigated whether Lhx6 and/or Sox6 mRNA levels are deficient in schizophrenia, which may contribute to cell type-specific disturbances in cortical parvalbumin and somatostatin neurons.OBJECTIVEIn schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalbumin and somatostatin neurons, but not calretinin neurons, and continue to be strongly expressed in this cell type-specific manner in the prefrontal cortex of adult humans. The authors investigated whether Lhx6 and/or Sox6 mRNA levels are deficient in schizophrenia, which may contribute to cell type-specific disturbances in cortical parvalbumin and somatostatin neurons.The authors used quantitative PCR and in situ hybridization with film and grain counting analyses to quantify mRNA levels in postmortem samples of prefrontal cortex area 9 of 42 schizophrenia subjects and 42 comparison subjects who had no psychiatric diagnoses in life, as well as antipsychotic-exposed monkeys.METHODThe authors used quantitative PCR and in situ hybridization with film and grain counting analyses to quantify mRNA levels in postmortem samples of prefrontal cortex area 9 of 42 schizophrenia subjects and 42 comparison subjects who had no psychiatric diagnoses in life, as well as antipsychotic-exposed monkeys.In schizophrenia subjects, the authors observed lower mRNA levels for Lhx6, parvalbumin, somatostatin, and glutamate decarboxylase (GAD67; the principal enzyme in GABA synthesis), but not Sox6 or calretinin. Cluster analysis revealed that a subset of schizophrenia subjects consistently showed the most severe deficits in the affected transcripts. Grain counting analyses revealed that some neurons that normally express Lhx6 were not detectable in schizophrenia subjects. Finally, lower Lhx6 mRNA levels were not attributable to psychotropic medications or illness chronicity.RESULTSIn schizophrenia subjects, the authors observed lower mRNA levels for Lhx6, parvalbumin, somatostatin, and glutamate decarboxylase (GAD67; the principal enzyme in GABA synthesis), but not Sox6 or calretinin. Cluster analysis revealed that a subset of schizophrenia subjects consistently showed the most severe deficits in the affected transcripts. Grain counting analyses revealed that some neurons that normally express Lhx6 were not detectable in schizophrenia subjects. Finally, lower Lhx6 mRNA levels were not attributable to psychotropic medications or illness chronicity.These data suggest that in a subset of individuals with schizophrenia, Lhx6 deficits may contribute to a failure of some cortical parvalbumin and somatostatin neurons to successfully migrate or develop a detectable GABA-ergic phenotype.CONCLUSIONSThese data suggest that in a subset of individuals with schizophrenia, Lhx6 deficits may contribute to a failure of some cortical parvalbumin and somatostatin neurons to successfully migrate or develop a detectable GABA-ergic phenotype.
ObjectiveIn schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalbumin and somatostatin neurons, but not calretinin neurons, and continue to be strongly expressed in this cell type-specific manner in the prefrontal cortex of adult humans. The authors investigated whether Lhx6 and/or Sox6 mRNA levels are deficient in schizophrenia, which may contribute to cell type-specific disturbances in cortical parvalbumin and somatostatin neurons.MethodThe authors used quantitative PCR and in situ hybridization with film and grain counting analyses to quantify mRNA levels in postmortem samples of prefrontal cortex area 9 of 42 schizophrenia subjects and 42 comparison subjects who had no psychiatric diagnoses in life, as well as antipsychotic-exposed monkeys.ResultsIn schizophrenia subjects, the authors observed lower mRNA levels for Lhx6, parvalbumin, somatostatin, and glutamate decarboxylase (GAD67; the principal enzyme in GABA synthesis), but not Sox6 or calretinin. Cluster analysis revealed that a subset of schizophrenia subjects consistently showed the most severe deficits in the affected transcripts. Grain counting analyses revealed that some neurons that normally express Lhx6 were not detectable in schizophrenia subjects. Finally, lower Lhx6 mRNA levels were not attributable to psychotropic medications or illness chronicity.ConclusionsThese data suggest that in a subset of individuals with schizophrenia, Lhx6 deficits may contribute to a failure of some cortical parvalbumin and somatostatin neurons to successfully migrate or develop a detectable GABA-ergic phenotype.
Objective In schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalbumin and somatostatin neurons, but not calretinin neurons, and continue to be strongly expressed in this cell type-specific manner in the prefrontal cortex of adult humans. The authors investigated whether Lhx6 and/or Sox6 mRNA levels are deficient in schizophrenia, which may contribute to cell type-specific disturbances in cortical parvalbumin and somatostatin neurons. Method The authors used quantitative PCR and in situ hybridization with film and grain counting analyses to quantify mRNA levels in postmortem samples of prefrontal cortex area 9 of 42 schizophrenia subjects and 42 comparison subjects who had no psychiatric diagnoses in life, as well as antipsychotic-exposed monkeys. Results In schizophrenia subjects, the authors observed lower mRNA levels for Lhx6, parvalbumin, somatostatin, and glutamate decarboxylase (GAD67; the principal enzyme in GABA synthesis), but not Sox6 or calretinin. Cluster analysis revealed that a subset of schizophrenia subjects consistently showed the most severe deficits in the affected transcripts. Grain counting analyses revealed that some neurons that normally express Lhx6 were not detectable in schizophrenia subjects. Finally, lower Lhx6 mRNA levels were not attributable to psychotropic medications or illness chronicity. Conclusions These data suggest that in a subset of individuals with schizophrenia, Lhx6 deficits may contribute to a failure of some cortical parvalbumin and somatostatin neurons to successfully migrate or develop a detectable GABA-ergic phenotype. [PUBLICATION ABSTRACT]
Author Volk, David W
Matsubara, Takurou
Georgiev, Danko
Hashimoto, Takanori
Li, Siyu
Sampson, Allan
Lewis, David A
Sengupta, Elizabeth J
Minabe, Yoshio
Author_xml – sequence: 1
  givenname: David W
  surname: Volk
  fullname: Volk, David W
  organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan
– sequence: 2
  givenname: Takurou
  surname: Matsubara
  fullname: Matsubara, Takurou
  organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan
– sequence: 3
  givenname: Siyu
  surname: Li
  fullname: Li, Siyu
  organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan
– sequence: 4
  givenname: Elizabeth J
  surname: Sengupta
  fullname: Sengupta, Elizabeth J
  organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan
– sequence: 5
  givenname: Danko
  surname: Georgiev
  fullname: Georgiev, Danko
  organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan
– sequence: 6
  givenname: Yoshio
  surname: Minabe
  fullname: Minabe, Yoshio
  organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan
– sequence: 7
  givenname: Allan
  surname: Sampson
  fullname: Sampson, Allan
  organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan
– sequence: 8
  givenname: Takanori
  surname: Hashimoto
  fullname: Hashimoto, Takanori
  organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan
– sequence: 9
  givenname: David A
  surname: Lewis
  fullname: Lewis, David A
  organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26471555$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22983435$$D View this record in MEDLINE/PubMed
BookMark eNqFkl-L1DAUxYOsuLOjX2EpiOBLx9zcJp2CCDL-hUVFV_Qt3HbSnQydpCbtgn56053ZXd0HpdCS5ncONyfnhB057wxjp8AXAKV6Rn1vF7TtF4KDWIDgmB55j81AosxLIZZHbMY5F3kl8fsxO4lxm5YcS_GAHQtRLbFAOWPfXpnWNnaImXXZeSAXm2D7wXpHXfbZXIwdDT7EzLfZyofBNun3JwqX1NXjLkk-mDF4d6X-0mzsL99vgnGWHrL7LXXRPDp85-zrm9fnq3f52ce371cvz3KSWAw5YQvQCsVlBUYgtZy4QimoXIqiqGrO17VBTrDmkN4FL6taKAPU1oiqVjhnL_a-_VjvzLoxbgjU6T7YHYWf2pPVf-84u9EX_lKjBFRCJoOnB4Pgf4wmDnpnY2O6jpzxY9QgBCylUgmfs8d30K0fQwoqUQhSFshhMjz9c6KbUa4zT8CTA0Axxdmm0BsbbzlVlMls4tSea4KPMZj2BgGupxLoqQQ6lUBPJdDXJUjC53eE6YJputOUgO3-L8e9_Gr_9oj_Vv0GVULKjQ
CODEN AJPSAO
CitedBy_id crossref_primary_10_3389_fncel_2024_1440834
crossref_primary_10_1016_j_biopsych_2021_02_009
crossref_primary_10_1016_j_nbd_2012_10_018
crossref_primary_10_1007_s40473_014_0007_0
crossref_primary_10_1016_j_biopsych_2015_03_030
crossref_primary_10_1176_appi_ajp_2014_14010004
crossref_primary_10_1093_schbul_sbaa184
crossref_primary_10_1002_acn3_641
crossref_primary_10_1016_j_neuroscience_2014_12_013
crossref_primary_10_1038_s41386_018_0169_7
crossref_primary_10_1093_nar_gkv1304
crossref_primary_10_1038_mp_2016_254
crossref_primary_10_1111_cns_12118
crossref_primary_10_1176_appi_ajp_2013_12101339
crossref_primary_10_1080_15592294_2018_1475980
crossref_primary_10_1177_0004867414533012
crossref_primary_10_1016_j_xhgg_2023_100203
crossref_primary_10_3902_jnns_28_93
crossref_primary_10_1017_S1461145713000436
crossref_primary_10_1038_mp_2015_222
crossref_primary_10_3389_fpsyt_2022_913550
crossref_primary_10_1016_j_neures_2019_10_002
crossref_primary_10_1515_revneuro_2020_0134
crossref_primary_10_1038_npp_2014_95
crossref_primary_10_1017_neu_2018_6
crossref_primary_10_3390_cells10020352
crossref_primary_10_1093_schbul_sbv139
crossref_primary_10_1016_j_schres_2020_04_027
crossref_primary_10_1016_j_jchemneu_2015_10_008
crossref_primary_10_3389_fncel_2017_00158
crossref_primary_10_1016_j_semcdb_2021_08_015
crossref_primary_10_1038_tp_2014_147
crossref_primary_10_1016_j_biopsych_2014_06_026
crossref_primary_10_1016_j_schres_2014_10_019
crossref_primary_10_1016_j_nlm_2015_03_005
crossref_primary_10_1242_dev_132852
crossref_primary_10_1016_j_pneurobio_2015_10_002
crossref_primary_10_1371_journal_pone_0232200
crossref_primary_10_1016_j_biopsych_2014_05_010
crossref_primary_10_1093_schbul_sbv184
crossref_primary_10_1176_appi_ajp_2012_12081017
crossref_primary_10_1016_j_bbih_2024_100761
crossref_primary_10_1038_mp_2017_230
crossref_primary_10_1016_j_neuroscience_2012_11_030
crossref_primary_10_1016_j_neuroscience_2013_06_008
crossref_primary_10_1038_s41398_019_0472_z
crossref_primary_10_1002_brb3_2415
crossref_primary_10_1016_j_schres_2014_10_020
crossref_primary_10_1038_mp_2014_171
crossref_primary_10_1038_srep37580
crossref_primary_10_1176_appi_ajp_2015_15020150
crossref_primary_10_1016_j_mcn_2018_02_001
crossref_primary_10_1093_schbul_sbt178
crossref_primary_10_1016_j_biopsych_2013_09_019
crossref_primary_10_1038_nrn_2016_53
crossref_primary_10_1016_j_schres_2016_03_001
crossref_primary_10_1093_cercor_bhy227
crossref_primary_10_1093_cercor_bhy063
crossref_primary_10_1016_j_schres_2014_10_031
crossref_primary_10_1016_j_biopsych_2015_07_005
crossref_primary_10_1016_j_schres_2014_12_040
crossref_primary_10_1093_schbul_sbu111
crossref_primary_10_1016_j_biopsych_2016_09_017
crossref_primary_10_1016_j_conb_2013_11_003
crossref_primary_10_1162_CPSY_a_00023
crossref_primary_10_1038_s41398_023_02455_w
crossref_primary_10_1016_j_bpsc_2020_02_004
crossref_primary_10_1016_j_tins_2016_10_009
crossref_primary_10_1155_2016_7931693
crossref_primary_10_3389_fnins_2022_843794
crossref_primary_10_3390_genes8060152
crossref_primary_10_1016_j_neuropharm_2013_03_004
crossref_primary_10_1016_j_schres_2024_03_032
crossref_primary_10_1038_mp_2015_141
crossref_primary_10_3934_Neuroscience_2015_4_294
crossref_primary_10_1176_appi_ajp_2015_15010019
crossref_primary_10_1016_j_schres_2013_02_038
crossref_primary_10_1016_j_neubiorev_2023_105488
crossref_primary_10_1016_j_pneurobio_2015_03_004
crossref_primary_10_1038_mp_2017_25
crossref_primary_10_1016_j_biopsych_2016_05_022
crossref_primary_10_1111_ejn_14404
crossref_primary_10_1016_j_biopsych_2021_06_007
crossref_primary_10_3389_fnbeh_2016_00059
crossref_primary_10_1093_schbul_sbae083
crossref_primary_10_1016_j_pscychresns_2013_11_001
crossref_primary_10_1038_tp_2017_124
crossref_primary_10_1016_j_neuroscience_2017_07_016
crossref_primary_10_1523_ENEURO_0300_18_2019
crossref_primary_10_1017_S0033291716001446
crossref_primary_10_1038_s41386_020_0778_9
crossref_primary_10_1080_24750573_2019_1589175
crossref_primary_10_1002_jdn_10141
crossref_primary_10_1016_j_neubiorev_2024_105897
crossref_primary_10_1016_j_biopsych_2015_06_015
crossref_primary_10_1016_j_nbd_2016_12_019
crossref_primary_10_1016_j_neulet_2018_06_050
crossref_primary_10_1016_j_biopsych_2022_12_004
crossref_primary_10_1038_s41380_020_00958_2
crossref_primary_10_1016_j_neuro_2016_12_002
crossref_primary_10_1093_toxsci_kfy175
crossref_primary_10_1176_appi_ajp_2013_13040468
crossref_primary_10_1176_appi_ajp_20220676
crossref_primary_10_1016_j_neuron_2017_07_034
crossref_primary_10_1176_appi_ajp_2014_14010123
crossref_primary_10_2108_zs140073
crossref_primary_10_1016_j_schres_2014_07_017
crossref_primary_10_1002_syn_21924
crossref_primary_10_1093_schbul_sbu068
crossref_primary_10_1177_0004867417728805
crossref_primary_10_1016_j_neuroscience_2025_01_055
crossref_primary_10_1080_09553002_2019_1564081
crossref_primary_10_1038_s41380_023_02241_6
Cites_doi 10.1093/cercor/bhp009
10.1038/nrn1648
10.1038/sj.mp.4001988
10.1016/j.neuron.2009.08.005
10.1001/archpsyc.1995.03950160008002
10.1016/j.neuron.2005.09.034
10.1038/npp.2008.104
10.1176/appi.ajp.2007.07081223
10.1001/archpsyc.65.7.772
10.1016/j.biopsych.2010.09.052
10.1038/sj.npp.1300710
10.1371/journal.pone.0043904
10.1016/j.schres.2009.04.026
10.1002/cne.21772
10.1038/sj.mp.4002011
10.1176/appi.ajp.2010.09060784
10.1523/JNEUROSCI.3055-06.2007
10.1523/JNEUROSCI.3272-07.2007
10.1038/nature00779
10.1176/appi.ajp.2010.10030318
10.1001/archpsyc.57.11.1061
10.1001/archpsyc.57.3.237
10.1523/JNEUROSCI.23-15-06315.2003
10.1016/j.biopsych.2010.05.016
10.1523/JNEUROSCI.5667-03.2004
10.1093/cercor/bhk003
10.1002/dneu.20812
10.1016/j.biopsych.2010.08.020
10.1093/cercor/bhq245
10.1523/JNEUROSCI.6158-09.2010
10.1176/appi.ajp.2009.09040574
10.1093/cercor/bhg084
10.1073/pnas.0609440103
10.1176/appi.ajp.2011.11010052
10.1038/npp.2010.150
10.1093/cercor/bhr202
10.1002/cne.20714
10.1186/gb-2002-3-7-research0034
10.1093/cercor/bhm186
10.1016/j.schres.2010.01.029
10.1016/j.biopsych.2008.11.019
10.1176/appi.ajp.2008.08030395
10.1038/nature07991
10.1038/nn.2387
ContentType Journal Article
Copyright Copyright © 2012 by the American Psychiatric Association
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 by the American Psychiatric Association
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
5PM
DOI 10.1176/appi.ajp.2012.12030305
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1535-7228
EndPage 1091
ExternalDocumentID PMC3513625
2912785991
22983435
26471555
10_1176_appi_ajp_2012_12030305
10.1176/appi.ajp.2012.12030305
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH043784
– fundername: NIMH NIH HHS
  grantid: R37 MH043784
– fundername: NIMH NIH HHS
  grantid: K08 MH084016
– fundername: NIMH NIH HHS
  grantid: MH-084016
– fundername: NIMH NIH HHS
  grantid: P50 MH084053
– fundername: NIMH NIH HHS
  grantid: MH-084053
– fundername: NIMH NIH HHS
  grantid: MH-043784
– fundername: National Institute of Mental Health : NIMH
  grantid: K08 MH084016 || MH
– fundername: National Institute of Mental Health : NIMH
  grantid: R01 MH043784 || MH
– fundername: National Institute of Mental Health : NIMH
  grantid: P50 MH084053 || MH
GroupedDBID 1QT
BAJDF
G0H
RAY
RYA
X4V
---
--Z
-DZ
-~X
.55
.GJ
08P
0WA
1CY
1HT
1KJ
23M
2QL
2WC
354
3O-
4.4
41~
53G
5GY
5RE
6J9
6TJ
7K8
85S
8F7
8R4
8R5
AAAHA
AAIKC
AAJMC
AAKAS
AAMNW
AAQQT
AAWTL
AAWTO
AAYJJ
AAYXX
ABDPE
ABIVO
ABPPZ
ABZEH
ACBMB
ACGFO
ACGOD
ACHQT
ACNCT
ADBBV
ADCOW
ADGHP
ADMHG
ADZCM
AENEX
AERZD
AETEA
AFAZI
AFFNX
AFOSN
AGHSJ
AGNAY
AHJKT
AHMBA
AI.
ALMA_UNASSIGNED_HOLDINGS
ASUFR
BAWUL
BCR
BKOMP
BLC
CITATION
CS3
DIK
E3Z
EBS
EJD
EX3
F5P
F8P
FA8
FJW
GOZPB
GRPMH
H13
HF~
HZ~
J5H
L7B
LPU
LXL
LXN
MVM
N4W
N9A
NEJ
NHB
OHT
OK1
OVD
P-O
P2P
PEA
PQQKQ
Q.-
Q2X
RWL
RXW
S10
SJN
SKT
TAE
TEORI
TR2
TWZ
UBC
UHB
UKR
ULE
UPT
UQL
VH1
VVN
WH7
WHG
WOQ
WOW
X6Y
X7M
XJT
XOL
XSW
XZL
YFH
YOC
YQI
YQJ
YRY
YSK
YWH
YXB
YYQ
YZZ
ZCA
ZGI
ZHY
ZKB
ZRR
ZXP
ZY1
~A~
~X8
08R
AAJWC
AAPBV
AAUGY
ABPTK
AFFDN
AFMIJ
AKALU
BENPR
F20
G8K
IQODW
YCJ
ZA5
~G0
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
ADXHL
5PM
ID FETCH-LOGICAL-a534t-a3f11f260591e23af0a06352a782449b00dbe30a1d010a14079b26e1afb336b63
ISSN 0002-953X
1535-7228
IngestDate Thu Aug 21 13:39:14 EDT 2025
Thu Sep 04 23:11:42 EDT 2025
Mon Jun 30 04:57:30 EDT 2025
Thu Apr 03 06:59:51 EDT 2025
Sun Oct 22 16:06:10 EDT 2023
Tue Jul 01 01:51:39 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Sun Apr 21 10:10:10 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Psychosis
Binding protein
Neuron
Calcium
Schizophrenia
Parvalbumin
Inorganic element
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a534t-a3f11f260591e23af0a06352a782449b00dbe30a1d010a14079b26e1afb336b63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22983435
PQID 1315543015
PQPubID 40661
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3513625
proquest_miscellaneous_1221856651
proquest_journals_1315543015
pubmed_primary_22983435
pascalfrancis_primary_26471555
crossref_primary_10_1176_appi_ajp_2012_12030305
crossref_citationtrail_10_1176_appi_ajp_2012_12030305
appi_journals_10_1176_appi_ajp_2012_12030305
ProviderPackageCode RAY
RYA
X4V
1QT
BAJDF
G0H
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Arlington, VA
PublicationPlace_xml – name: Arlington, VA
– name: United States
– name: Washington
PublicationTitle American Journal of Psychiatry
PublicationTitleAlternate Am J Psychiatry
PublicationYear 2012
Publisher American Psychiatric Association
Publisher_xml – name: American Psychiatric Association
References B20
B42
B21
B43
B22
B44
B23
B45
B24
B26
B27
B28
B29
American Psychiatric Association (B25) 1994
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
20598290 - Biol Psychiatry. 2010 Oct 1;68(7):667-70
21632647 - Am J Psychiatry. 2011 Sep;168(9):921-9
21810780 - Cereb Cortex. 2012 May;22(5):1215-23
19396159 - Nature. 2009 Jun 4;459(7247):698-702
20181463 - Schizophr Res. 2010 May;118(1-3):41-7
12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
17767149 - Mol Psychiatry. 2007 Sep;12(9):854-69
21041246 - Am J Psychiatry. 2010 Dec;167(12):1479-88
11074872 - Arch Gen Psychiatry. 2000 Nov;57(11):1061-9
7702443 - Arch Gen Psychiatry. 1995 Apr;52(4):258-66
12050665 - Nature. 2002 Jun 6;417(6889):645-9
20889653 - Am J Psychiatry. 2010 Dec;167(12):1489-98
15028753 - J Neurosci. 2004 Mar 17;24(11):2612-22
15803162 - Nat Rev Neurosci. 2005 Apr;6(4):312-24
18281411 - Am J Psychiatry. 2008 Apr;165(4):479-89
20827271 - Neuropsychopharmacology. 2010 Dec;35(13):2590-9
10711910 - Arch Gen Psychiatry. 2000 Mar;57(3):237-45
20220012 - J Neurosci. 2010 Mar 10;30(10):3777-81
18615011 - Neuropsychopharmacology. 2009 Feb;34(3):624-33
16766712 - Cereb Cortex. 2006 Jul;16 Suppl 1:i82-8
18613121 - J Comp Neurol. 2008 Sep 1;510(1):79-99
12867516 - J Neurosci. 2003 Jul 16;23(15):6315-26
19709629 - Neuron. 2009 Aug 27;63(4):466-81
21139075 - Cereb Cortex. 2011 Aug;21(8):1771-82
17376969 - J Neurosci. 2007 Mar 21;27(12):3078-89
16127688 - J Comp Neurol. 2005 Oct 17;491(2):109-22
18923067 - Am J Psychiatry. 2008 Dec;165(12):1585-93
19121517 - Biol Psychiatry. 2009 Jun 15;65(12):1006-14
22937123 - PLoS One. 2012;7(8):e43904
18203698 - Cereb Cortex. 2008 Jul;18(7):1575-87
17942719 - J Neurosci. 2007 Oct 17;27(42):11254-62
15756305 - Neuropsychopharmacology. 2005 Sep;30(9):1649-61
21154907 - Dev Neurobiol. 2011 Jan 1;71(1):18-33
20974464 - Biol Psychiatry. 2011 Jan 1;69(1):63-70
18606950 - Arch Gen Psychiatry. 2008 Jul;65(7):772-84
19464152 - Schizophr Res. 2009 Jul;112(1-3):192-3
21145041 - Biol Psychiatry. 2011 Mar 1;69(5):442-9
16301176 - Neuron. 2005 Nov 23;48(4):591-604
17170134 - Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19878-83
19657336 - Nat Neurosci. 2009 Oct;12(10):1238-47
17471287 - Mol Psychiatry. 2008 Feb;13(2):147-61
19234067 - Cereb Cortex. 2009 Sep;19(9):2196-207
14615302 - Cereb Cortex. 2003 Dec;13(12):1369-74
20048021 - Am J Psychiatry. 2010 Feb;167(2):160-9
References_xml – ident: B14
  doi: 10.1093/cercor/bhp009
– ident: B38
  doi: 10.1038/nrn1648
– ident: B4
  doi: 10.1038/sj.mp.4001988
– ident: B22
  doi: 10.1016/j.neuron.2009.08.005
– ident: B1
  doi: 10.1001/archpsyc.1995.03950160008002
– ident: B12
  doi: 10.1016/j.neuron.2005.09.034
– ident: B39
  doi: 10.1038/npp.2008.104
– ident: B8
  doi: 10.1176/appi.ajp.2007.07081223
– ident: B30
  doi: 10.1001/archpsyc.65.7.772
– ident: B45
  doi: 10.1016/j.biopsych.2010.09.052
– ident: B31
  doi: 10.1038/sj.npp.1300710
– ident: B24
  doi: 10.1371/journal.pone.0043904
– ident: B40
  doi: 10.1016/j.schres.2009.04.026
– ident: B20
  doi: 10.1002/cne.21772
– ident: B28
  doi: 10.1038/sj.mp.4002011
– ident: B5
  doi: 10.1176/appi.ajp.2010.09060784
– ident: B19
  doi: 10.1523/JNEUROSCI.3055-06.2007
– ident: B43
  doi: 10.1523/JNEUROSCI.3272-07.2007
– ident: B17
  doi: 10.1038/nature00779
– ident: B26
  doi: 10.1176/appi.ajp.2010.10030318
– ident: B3
  doi: 10.1001/archpsyc.57.11.1061
– ident: B2
  doi: 10.1001/archpsyc.57.3.237
– ident: B7
  doi: 10.1523/JNEUROSCI.23-15-06315.2003
– ident: B41
  doi: 10.1016/j.biopsych.2010.05.016
– ident: B11
  doi: 10.1523/JNEUROSCI.5667-03.2004
– ident: B13
  doi: 10.1093/cercor/bhk003
– ident: B15
  doi: 10.1002/dneu.20812
– ident: B23
  doi: 10.1016/j.biopsych.2010.08.020
– ident: B16
  doi: 10.1093/cercor/bhq245
– ident: B42
  doi: 10.1523/JNEUROSCI.6158-09.2010
– ident: B32
  doi: 10.1176/appi.ajp.2009.09040574
– ident: B37
  doi: 10.1093/cercor/bhg084
– ident: B34
  doi: 10.1073/pnas.0609440103
– ident: B6
  doi: 10.1176/appi.ajp.2011.11010052
– ident: B35
  doi: 10.1038/npp.2010.150
– ident: B27
  doi: 10.1093/cercor/bhr202
– ident: B18
  doi: 10.1002/cne.20714
– ident: B29
  doi: 10.1186/gb-2002-3-7-research0034
– ident: B9
  doi: 10.1093/cercor/bhm186
– ident: B33
  doi: 10.1016/j.schres.2010.01.029
– ident: B10
  doi: 10.1016/j.biopsych.2008.11.019
– volume-title: DSM-IV. Diagnostic and Statistical Manual of Mental Disorders
  year: 1994
  ident: B25
– ident: B44
  doi: 10.1176/appi.ajp.2008.08030395
– ident: B36
  doi: 10.1038/nature07991
– ident: B21
  doi: 10.1038/nn.2387
– reference: 16301176 - Neuron. 2005 Nov 23;48(4):591-604
– reference: 20048021 - Am J Psychiatry. 2010 Feb;167(2):160-9
– reference: 17170134 - Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19878-83
– reference: 19657336 - Nat Neurosci. 2009 Oct;12(10):1238-47
– reference: 20598290 - Biol Psychiatry. 2010 Oct 1;68(7):667-70
– reference: 17471287 - Mol Psychiatry. 2008 Feb;13(2):147-61
– reference: 18606950 - Arch Gen Psychiatry. 2008 Jul;65(7):772-84
– reference: 19234067 - Cereb Cortex. 2009 Sep;19(9):2196-207
– reference: 19121517 - Biol Psychiatry. 2009 Jun 15;65(12):1006-14
– reference: 17942719 - J Neurosci. 2007 Oct 17;27(42):11254-62
– reference: 16127688 - J Comp Neurol. 2005 Oct 17;491(2):109-22
– reference: 22937123 - PLoS One. 2012;7(8):e43904
– reference: 11074872 - Arch Gen Psychiatry. 2000 Nov;57(11):1061-9
– reference: 21154907 - Dev Neurobiol. 2011 Jan 1;71(1):18-33
– reference: 7702443 - Arch Gen Psychiatry. 1995 Apr;52(4):258-66
– reference: 15803162 - Nat Rev Neurosci. 2005 Apr;6(4):312-24
– reference: 21810780 - Cereb Cortex. 2012 May;22(5):1215-23
– reference: 20974464 - Biol Psychiatry. 2011 Jan 1;69(1):63-70
– reference: 18203698 - Cereb Cortex. 2008 Jul;18(7):1575-87
– reference: 12050665 - Nature. 2002 Jun 6;417(6889):645-9
– reference: 14615302 - Cereb Cortex. 2003 Dec;13(12):1369-74
– reference: 18613121 - J Comp Neurol. 2008 Sep 1;510(1):79-99
– reference: 15756305 - Neuropsychopharmacology. 2005 Sep;30(9):1649-61
– reference: 20827271 - Neuropsychopharmacology. 2010 Dec;35(13):2590-9
– reference: 19396159 - Nature. 2009 Jun 4;459(7247):698-702
– reference: 12867516 - J Neurosci. 2003 Jul 16;23(15):6315-26
– reference: 16766712 - Cereb Cortex. 2006 Jul;16 Suppl 1:i82-8
– reference: 18615011 - Neuropsychopharmacology. 2009 Feb;34(3):624-33
– reference: 10711910 - Arch Gen Psychiatry. 2000 Mar;57(3):237-45
– reference: 20220012 - J Neurosci. 2010 Mar 10;30(10):3777-81
– reference: 18281411 - Am J Psychiatry. 2008 Apr;165(4):479-89
– reference: 17767149 - Mol Psychiatry. 2007 Sep;12(9):854-69
– reference: 20181463 - Schizophr Res. 2010 May;118(1-3):41-7
– reference: 21139075 - Cereb Cortex. 2011 Aug;21(8):1771-82
– reference: 15028753 - J Neurosci. 2004 Mar 17;24(11):2612-22
– reference: 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
– reference: 21041246 - Am J Psychiatry. 2010 Dec;167(12):1479-88
– reference: 19464152 - Schizophr Res. 2009 Jul;112(1-3):192-3
– reference: 19709629 - Neuron. 2009 Aug 27;63(4):466-81
– reference: 21632647 - Am J Psychiatry. 2011 Sep;168(9):921-9
– reference: 21145041 - Biol Psychiatry. 2011 Mar 1;69(5):442-9
– reference: 20889653 - Am J Psychiatry. 2010 Dec;167(12):1489-98
– reference: 17376969 - J Neurosci. 2007 Mar 21;27(12):3078-89
– reference: 18923067 - Am J Psychiatry. 2008 Dec;165(12):1585-93
SSID ssj0000372
Score 2.4451714
Snippet ObjectiveIn schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or...
In schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but...
Objective In schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
appi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1082
SubjectTerms Adult and adolescent clinical studies
Animals
Antipsychotic Agents - pharmacology
Biological and medical sciences
Calbindin 2
Genotype & phenotype
Humans
LIM-Homeodomain Proteins - deficiency
LIM-Homeodomain Proteins - genetics
Macaca fascicularis
Male
Medical sciences
Middle Aged
Nerve Tissue Proteins - deficiency
Nerve Tissue Proteins - genetics
Neurons
Neurons - metabolism
Parvalbumins - genetics
Parvalbumins - metabolism
Prefrontal Cortex - metabolism
Prefrontal Cortex - pathology
Psychiatry
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Psychoses
RNA, Messenger - antagonists & inhibitors
S100 Calcium Binding Protein G - genetics
S100 Calcium Binding Protein G - metabolism
Schizophrenia
Schizophrenia - genetics
Schizophrenia - metabolism
Schizophrenia - pathology
Somatostatin - genetics
Somatostatin - metabolism
SOXD Transcription Factors - genetics
SOXD Transcription Factors - metabolism
Transcription Factors - deficiency
Transcription Factors - genetics
Title Deficits in Transcriptional Regulators of Cortical Parvalbumin Neurons in Schizophrenia
URI http://dx.doi.org/10.1176/appi.ajp.2012.12030305
https://www.ncbi.nlm.nih.gov/pubmed/22983435
https://www.proquest.com/docview/1315543015
https://www.proquest.com/docview/1221856651
https://pubmed.ncbi.nlm.nih.gov/PMC3513625
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1535-7228
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0000372
  issn: 0002-953X
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBDShPimMKYg8QbZYjuJk0fEQANUXtaJvUVO40DZSKM1eRh_PXeO7SSlaMBLVPmzyv1i39l3vyPkZVkKUUagudEiYmCgJIGfp_HCZwrv4FIwKbTL_-xzfHwafjyLziaTdhhd0uQHi59b40r-R6pQBnLFKNl_kKwbFArgN8gXniBheP6VjI8U8j802qW1wU3HLgGarV8nmcdcOtpz_LI7tK4xFxAey0MXzWXZOZKvh753Q4V13keeVEOaibGXtE7Ztbo4d17yr9zRzUw26xavNDQy5DlM2TovIO1KcLK8ciUnqvra1p1G6zzOzNWVOZugzHm5wdZi11PMlmviv-2C2yVnscgKBusnDbpURL8v7EIzGtcY4PcdeUYpO6AMViiuo7abgbTrH1rcjKUJDzsulA1KbVt1g9xkIo4x8cXRh0_9Bs4FM8HkMO3h9kmRRdoMA7s5thlpNru1XINUyy47yjbzZdMLd6DWzO-SO8Ye8d504LpHJqq6T27NjMfFA_LFYsxbVt4GxrweY96q9CzGvAHGPIMx7D3C2ENy-v7d_O2xb5Jx-DLiYeNLXlJaovWbUsW4LAMJ2m3EJKiYYYjMmkWueCBpARa-BLNdpDmLFZVlznmcx_wR2alWlXpCvIAmRSGgcaGSMMcdIuYsXeQczRcRJFPyGt9nZkC9zrShKuJMl4IkMpREZiUxJZF979nCENtjfpWLa_sdun51R-1ybY_9kVhdN7AqBCjm0GDPynnw7znq7LCRQvULVw2rOF7NyUqtWmjDQNUGyyqiU_K4g0U_uIHZlIgRYFwDZIgf11TLb5opnkcUFNTo6R_HfEZu99_tHtlpLlv1HLTsJt_X38QvVe7SXw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deficits+in+transcriptional+regulators+of+cortical+parvalbumin+neurons+in+schizophrenia&rft.jtitle=The+American+journal+of+psychiatry&rft.au=Volk%2C+David+W&rft.au=Matsubara%2C+Takurou&rft.au=Li%2C+Siyu&rft.au=Sengupta%2C+Elizabeth+J&rft.date=2012-10-01&rft.eissn=1535-7228&rft.volume=169&rft.issue=10&rft.spage=1082&rft_id=info:doi/10.1176%2Fappi.ajp.2012.12030305&rft_id=info%3Apmid%2F22983435&rft.externalDocID=22983435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-953X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-953X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-953X&client=summon