Deficits in Transcriptional Regulators of Cortical Parvalbumin Neurons in Schizophrenia
ObjectiveIn schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalb...
Saved in:
Published in | American Journal of Psychiatry Vol. 169; no. 10; pp. 1082 - 1091 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Arlington, VA
American Psychiatric Association
01.10.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-953X 1535-7228 1535-7228 |
DOI | 10.1176/appi.ajp.2012.12030305 |
Cover
Abstract | ObjectiveIn schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalbumin and somatostatin neurons, but not calretinin neurons, and continue to be strongly expressed in this cell type-specific manner in the prefrontal cortex of adult humans. The authors investigated whether Lhx6 and/or Sox6 mRNA levels are deficient in schizophrenia, which may contribute to cell type-specific disturbances in cortical parvalbumin and somatostatin neurons.MethodThe authors used quantitative PCR and in situ hybridization with film and grain counting analyses to quantify mRNA levels in postmortem samples of prefrontal cortex area 9 of 42 schizophrenia subjects and 42 comparison subjects who had no psychiatric diagnoses in life, as well as antipsychotic-exposed monkeys.ResultsIn schizophrenia subjects, the authors observed lower mRNA levels for Lhx6, parvalbumin, somatostatin, and glutamate decarboxylase (GAD67; the principal enzyme in GABA synthesis), but not Sox6 or calretinin. Cluster analysis revealed that a subset of schizophrenia subjects consistently showed the most severe deficits in the affected transcripts. Grain counting analyses revealed that some neurons that normally express Lhx6 were not detectable in schizophrenia subjects. Finally, lower Lhx6 mRNA levels were not attributable to psychotropic medications or illness chronicity.ConclusionsThese data suggest that in a subset of individuals with schizophrenia, Lhx6 deficits may contribute to a failure of some cortical parvalbumin and somatostatin neurons to successfully migrate or develop a detectable GABA-ergic phenotype. |
---|---|
AbstractList | In schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalbumin and somatostatin neurons, but not calretinin neurons, and continue to be strongly expressed in this cell type-specific manner in the prefrontal cortex of adult humans. The authors investigated whether Lhx6 and/or Sox6 mRNA levels are deficient in schizophrenia, which may contribute to cell type-specific disturbances in cortical parvalbumin and somatostatin neurons.
The authors used quantitative PCR and in situ hybridization with film and grain counting analyses to quantify mRNA levels in postmortem samples of prefrontal cortex area 9 of 42 schizophrenia subjects and 42 comparison subjects who had no psychiatric diagnoses in life, as well as antipsychotic-exposed monkeys.
In schizophrenia subjects, the authors observed lower mRNA levels for Lhx6, parvalbumin, somatostatin, and glutamate decarboxylase (GAD67; the principal enzyme in GABA synthesis), but not Sox6 or calretinin. Cluster analysis revealed that a subset of schizophrenia subjects consistently showed the most severe deficits in the affected transcripts. Grain counting analyses revealed that some neurons that normally express Lhx6 were not detectable in schizophrenia subjects. Finally, lower Lhx6 mRNA levels were not attributable to psychotropic medications or illness chronicity.
These data suggest that in a subset of individuals with schizophrenia, Lhx6 deficits may contribute to a failure of some cortical parvalbumin and somatostatin neurons to successfully migrate or develop a detectable GABA-ergic phenotype. In schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalbumin and somatostatin neurons, but not calretinin neurons, and continue to be strongly expressed in this cell type-specific manner in the prefrontal cortex of adult humans. The authors investigated whether Lhx6 and/or Sox6 mRNA levels are deficient in schizophrenia, which may contribute to cell type-specific disturbances in cortical parvalbumin and somatostatin neurons.OBJECTIVEIn schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalbumin and somatostatin neurons, but not calretinin neurons, and continue to be strongly expressed in this cell type-specific manner in the prefrontal cortex of adult humans. The authors investigated whether Lhx6 and/or Sox6 mRNA levels are deficient in schizophrenia, which may contribute to cell type-specific disturbances in cortical parvalbumin and somatostatin neurons.The authors used quantitative PCR and in situ hybridization with film and grain counting analyses to quantify mRNA levels in postmortem samples of prefrontal cortex area 9 of 42 schizophrenia subjects and 42 comparison subjects who had no psychiatric diagnoses in life, as well as antipsychotic-exposed monkeys.METHODThe authors used quantitative PCR and in situ hybridization with film and grain counting analyses to quantify mRNA levels in postmortem samples of prefrontal cortex area 9 of 42 schizophrenia subjects and 42 comparison subjects who had no psychiatric diagnoses in life, as well as antipsychotic-exposed monkeys.In schizophrenia subjects, the authors observed lower mRNA levels for Lhx6, parvalbumin, somatostatin, and glutamate decarboxylase (GAD67; the principal enzyme in GABA synthesis), but not Sox6 or calretinin. Cluster analysis revealed that a subset of schizophrenia subjects consistently showed the most severe deficits in the affected transcripts. Grain counting analyses revealed that some neurons that normally express Lhx6 were not detectable in schizophrenia subjects. Finally, lower Lhx6 mRNA levels were not attributable to psychotropic medications or illness chronicity.RESULTSIn schizophrenia subjects, the authors observed lower mRNA levels for Lhx6, parvalbumin, somatostatin, and glutamate decarboxylase (GAD67; the principal enzyme in GABA synthesis), but not Sox6 or calretinin. Cluster analysis revealed that a subset of schizophrenia subjects consistently showed the most severe deficits in the affected transcripts. Grain counting analyses revealed that some neurons that normally express Lhx6 were not detectable in schizophrenia subjects. Finally, lower Lhx6 mRNA levels were not attributable to psychotropic medications or illness chronicity.These data suggest that in a subset of individuals with schizophrenia, Lhx6 deficits may contribute to a failure of some cortical parvalbumin and somatostatin neurons to successfully migrate or develop a detectable GABA-ergic phenotype.CONCLUSIONSThese data suggest that in a subset of individuals with schizophrenia, Lhx6 deficits may contribute to a failure of some cortical parvalbumin and somatostatin neurons to successfully migrate or develop a detectable GABA-ergic phenotype. ObjectiveIn schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalbumin and somatostatin neurons, but not calretinin neurons, and continue to be strongly expressed in this cell type-specific manner in the prefrontal cortex of adult humans. The authors investigated whether Lhx6 and/or Sox6 mRNA levels are deficient in schizophrenia, which may contribute to cell type-specific disturbances in cortical parvalbumin and somatostatin neurons.MethodThe authors used quantitative PCR and in situ hybridization with film and grain counting analyses to quantify mRNA levels in postmortem samples of prefrontal cortex area 9 of 42 schizophrenia subjects and 42 comparison subjects who had no psychiatric diagnoses in life, as well as antipsychotic-exposed monkeys.ResultsIn schizophrenia subjects, the authors observed lower mRNA levels for Lhx6, parvalbumin, somatostatin, and glutamate decarboxylase (GAD67; the principal enzyme in GABA synthesis), but not Sox6 or calretinin. Cluster analysis revealed that a subset of schizophrenia subjects consistently showed the most severe deficits in the affected transcripts. Grain counting analyses revealed that some neurons that normally express Lhx6 were not detectable in schizophrenia subjects. Finally, lower Lhx6 mRNA levels were not attributable to psychotropic medications or illness chronicity.ConclusionsThese data suggest that in a subset of individuals with schizophrenia, Lhx6 deficits may contribute to a failure of some cortical parvalbumin and somatostatin neurons to successfully migrate or develop a detectable GABA-ergic phenotype. Objective In schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but not calretinin. The transcription factors Lhx6 and Sox6 play critical roles in the specification, migration, and maturation of parvalbumin and somatostatin neurons, but not calretinin neurons, and continue to be strongly expressed in this cell type-specific manner in the prefrontal cortex of adult humans. The authors investigated whether Lhx6 and/or Sox6 mRNA levels are deficient in schizophrenia, which may contribute to cell type-specific disturbances in cortical parvalbumin and somatostatin neurons. Method The authors used quantitative PCR and in situ hybridization with film and grain counting analyses to quantify mRNA levels in postmortem samples of prefrontal cortex area 9 of 42 schizophrenia subjects and 42 comparison subjects who had no psychiatric diagnoses in life, as well as antipsychotic-exposed monkeys. Results In schizophrenia subjects, the authors observed lower mRNA levels for Lhx6, parvalbumin, somatostatin, and glutamate decarboxylase (GAD67; the principal enzyme in GABA synthesis), but not Sox6 or calretinin. Cluster analysis revealed that a subset of schizophrenia subjects consistently showed the most severe deficits in the affected transcripts. Grain counting analyses revealed that some neurons that normally express Lhx6 were not detectable in schizophrenia subjects. Finally, lower Lhx6 mRNA levels were not attributable to psychotropic medications or illness chronicity. Conclusions These data suggest that in a subset of individuals with schizophrenia, Lhx6 deficits may contribute to a failure of some cortical parvalbumin and somatostatin neurons to successfully migrate or develop a detectable GABA-ergic phenotype. [PUBLICATION ABSTRACT] |
Author | Volk, David W Matsubara, Takurou Georgiev, Danko Hashimoto, Takanori Li, Siyu Sampson, Allan Lewis, David A Sengupta, Elizabeth J Minabe, Yoshio |
Author_xml | – sequence: 1 givenname: David W surname: Volk fullname: Volk, David W organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan – sequence: 2 givenname: Takurou surname: Matsubara fullname: Matsubara, Takurou organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan – sequence: 3 givenname: Siyu surname: Li fullname: Li, Siyu organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan – sequence: 4 givenname: Elizabeth J surname: Sengupta fullname: Sengupta, Elizabeth J organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan – sequence: 5 givenname: Danko surname: Georgiev fullname: Georgiev, Danko organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan – sequence: 6 givenname: Yoshio surname: Minabe fullname: Minabe, Yoshio organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan – sequence: 7 givenname: Allan surname: Sampson fullname: Sampson, Allan organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan – sequence: 8 givenname: Takanori surname: Hashimoto fullname: Hashimoto, Takanori organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan – sequence: 9 givenname: David A surname: Lewis fullname: Lewis, David A organization: From the Departments of Psychiatry, Neuroscience, and Statistics, University of Pittsburgh, Pittsburgh; and Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, Kanazawa City, Japan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26471555$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22983435$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl-L1DAUxYOsuLOjX2EpiOBLx9zcJp2CCDL-hUVFV_Qt3HbSnQydpCbtgn56053ZXd0HpdCS5ncONyfnhB057wxjp8AXAKV6Rn1vF7TtF4KDWIDgmB55j81AosxLIZZHbMY5F3kl8fsxO4lxm5YcS_GAHQtRLbFAOWPfXpnWNnaImXXZeSAXm2D7wXpHXfbZXIwdDT7EzLfZyofBNun3JwqX1NXjLkk-mDF4d6X-0mzsL99vgnGWHrL7LXXRPDp85-zrm9fnq3f52ce371cvz3KSWAw5YQvQCsVlBUYgtZy4QimoXIqiqGrO17VBTrDmkN4FL6taKAPU1oiqVjhnL_a-_VjvzLoxbgjU6T7YHYWf2pPVf-84u9EX_lKjBFRCJoOnB4Pgf4wmDnpnY2O6jpzxY9QgBCylUgmfs8d30K0fQwoqUQhSFshhMjz9c6KbUa4zT8CTA0Axxdmm0BsbbzlVlMls4tSea4KPMZj2BgGupxLoqQQ6lUBPJdDXJUjC53eE6YJputOUgO3-L8e9_Gr_9oj_Vv0GVULKjQ |
CODEN | AJPSAO |
CitedBy_id | crossref_primary_10_3389_fncel_2024_1440834 crossref_primary_10_1016_j_biopsych_2021_02_009 crossref_primary_10_1016_j_nbd_2012_10_018 crossref_primary_10_1007_s40473_014_0007_0 crossref_primary_10_1016_j_biopsych_2015_03_030 crossref_primary_10_1176_appi_ajp_2014_14010004 crossref_primary_10_1093_schbul_sbaa184 crossref_primary_10_1002_acn3_641 crossref_primary_10_1016_j_neuroscience_2014_12_013 crossref_primary_10_1038_s41386_018_0169_7 crossref_primary_10_1093_nar_gkv1304 crossref_primary_10_1038_mp_2016_254 crossref_primary_10_1111_cns_12118 crossref_primary_10_1176_appi_ajp_2013_12101339 crossref_primary_10_1080_15592294_2018_1475980 crossref_primary_10_1177_0004867414533012 crossref_primary_10_1016_j_xhgg_2023_100203 crossref_primary_10_3902_jnns_28_93 crossref_primary_10_1017_S1461145713000436 crossref_primary_10_1038_mp_2015_222 crossref_primary_10_3389_fpsyt_2022_913550 crossref_primary_10_1016_j_neures_2019_10_002 crossref_primary_10_1515_revneuro_2020_0134 crossref_primary_10_1038_npp_2014_95 crossref_primary_10_1017_neu_2018_6 crossref_primary_10_3390_cells10020352 crossref_primary_10_1093_schbul_sbv139 crossref_primary_10_1016_j_schres_2020_04_027 crossref_primary_10_1016_j_jchemneu_2015_10_008 crossref_primary_10_3389_fncel_2017_00158 crossref_primary_10_1016_j_semcdb_2021_08_015 crossref_primary_10_1038_tp_2014_147 crossref_primary_10_1016_j_biopsych_2014_06_026 crossref_primary_10_1016_j_schres_2014_10_019 crossref_primary_10_1016_j_nlm_2015_03_005 crossref_primary_10_1242_dev_132852 crossref_primary_10_1016_j_pneurobio_2015_10_002 crossref_primary_10_1371_journal_pone_0232200 crossref_primary_10_1016_j_biopsych_2014_05_010 crossref_primary_10_1093_schbul_sbv184 crossref_primary_10_1176_appi_ajp_2012_12081017 crossref_primary_10_1016_j_bbih_2024_100761 crossref_primary_10_1038_mp_2017_230 crossref_primary_10_1016_j_neuroscience_2012_11_030 crossref_primary_10_1016_j_neuroscience_2013_06_008 crossref_primary_10_1038_s41398_019_0472_z crossref_primary_10_1002_brb3_2415 crossref_primary_10_1016_j_schres_2014_10_020 crossref_primary_10_1038_mp_2014_171 crossref_primary_10_1038_srep37580 crossref_primary_10_1176_appi_ajp_2015_15020150 crossref_primary_10_1016_j_mcn_2018_02_001 crossref_primary_10_1093_schbul_sbt178 crossref_primary_10_1016_j_biopsych_2013_09_019 crossref_primary_10_1038_nrn_2016_53 crossref_primary_10_1016_j_schres_2016_03_001 crossref_primary_10_1093_cercor_bhy227 crossref_primary_10_1093_cercor_bhy063 crossref_primary_10_1016_j_schres_2014_10_031 crossref_primary_10_1016_j_biopsych_2015_07_005 crossref_primary_10_1016_j_schres_2014_12_040 crossref_primary_10_1093_schbul_sbu111 crossref_primary_10_1016_j_biopsych_2016_09_017 crossref_primary_10_1016_j_conb_2013_11_003 crossref_primary_10_1162_CPSY_a_00023 crossref_primary_10_1038_s41398_023_02455_w crossref_primary_10_1016_j_bpsc_2020_02_004 crossref_primary_10_1016_j_tins_2016_10_009 crossref_primary_10_1155_2016_7931693 crossref_primary_10_3389_fnins_2022_843794 crossref_primary_10_3390_genes8060152 crossref_primary_10_1016_j_neuropharm_2013_03_004 crossref_primary_10_1016_j_schres_2024_03_032 crossref_primary_10_1038_mp_2015_141 crossref_primary_10_3934_Neuroscience_2015_4_294 crossref_primary_10_1176_appi_ajp_2015_15010019 crossref_primary_10_1016_j_schres_2013_02_038 crossref_primary_10_1016_j_neubiorev_2023_105488 crossref_primary_10_1016_j_pneurobio_2015_03_004 crossref_primary_10_1038_mp_2017_25 crossref_primary_10_1016_j_biopsych_2016_05_022 crossref_primary_10_1111_ejn_14404 crossref_primary_10_1016_j_biopsych_2021_06_007 crossref_primary_10_3389_fnbeh_2016_00059 crossref_primary_10_1093_schbul_sbae083 crossref_primary_10_1016_j_pscychresns_2013_11_001 crossref_primary_10_1038_tp_2017_124 crossref_primary_10_1016_j_neuroscience_2017_07_016 crossref_primary_10_1523_ENEURO_0300_18_2019 crossref_primary_10_1017_S0033291716001446 crossref_primary_10_1038_s41386_020_0778_9 crossref_primary_10_1080_24750573_2019_1589175 crossref_primary_10_1002_jdn_10141 crossref_primary_10_1016_j_neubiorev_2024_105897 crossref_primary_10_1016_j_biopsych_2015_06_015 crossref_primary_10_1016_j_nbd_2016_12_019 crossref_primary_10_1016_j_neulet_2018_06_050 crossref_primary_10_1016_j_biopsych_2022_12_004 crossref_primary_10_1038_s41380_020_00958_2 crossref_primary_10_1016_j_neuro_2016_12_002 crossref_primary_10_1093_toxsci_kfy175 crossref_primary_10_1176_appi_ajp_2013_13040468 crossref_primary_10_1176_appi_ajp_20220676 crossref_primary_10_1016_j_neuron_2017_07_034 crossref_primary_10_1176_appi_ajp_2014_14010123 crossref_primary_10_2108_zs140073 crossref_primary_10_1016_j_schres_2014_07_017 crossref_primary_10_1002_syn_21924 crossref_primary_10_1093_schbul_sbu068 crossref_primary_10_1177_0004867417728805 crossref_primary_10_1016_j_neuroscience_2025_01_055 crossref_primary_10_1080_09553002_2019_1564081 crossref_primary_10_1038_s41380_023_02241_6 |
Cites_doi | 10.1093/cercor/bhp009 10.1038/nrn1648 10.1038/sj.mp.4001988 10.1016/j.neuron.2009.08.005 10.1001/archpsyc.1995.03950160008002 10.1016/j.neuron.2005.09.034 10.1038/npp.2008.104 10.1176/appi.ajp.2007.07081223 10.1001/archpsyc.65.7.772 10.1016/j.biopsych.2010.09.052 10.1038/sj.npp.1300710 10.1371/journal.pone.0043904 10.1016/j.schres.2009.04.026 10.1002/cne.21772 10.1038/sj.mp.4002011 10.1176/appi.ajp.2010.09060784 10.1523/JNEUROSCI.3055-06.2007 10.1523/JNEUROSCI.3272-07.2007 10.1038/nature00779 10.1176/appi.ajp.2010.10030318 10.1001/archpsyc.57.11.1061 10.1001/archpsyc.57.3.237 10.1523/JNEUROSCI.23-15-06315.2003 10.1016/j.biopsych.2010.05.016 10.1523/JNEUROSCI.5667-03.2004 10.1093/cercor/bhk003 10.1002/dneu.20812 10.1016/j.biopsych.2010.08.020 10.1093/cercor/bhq245 10.1523/JNEUROSCI.6158-09.2010 10.1176/appi.ajp.2009.09040574 10.1093/cercor/bhg084 10.1073/pnas.0609440103 10.1176/appi.ajp.2011.11010052 10.1038/npp.2010.150 10.1093/cercor/bhr202 10.1002/cne.20714 10.1186/gb-2002-3-7-research0034 10.1093/cercor/bhm186 10.1016/j.schres.2010.01.029 10.1016/j.biopsych.2008.11.019 10.1176/appi.ajp.2008.08030395 10.1038/nature07991 10.1038/nn.2387 |
ContentType | Journal Article |
Copyright | Copyright © 2012 by the American Psychiatric Association 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2012 by the American Psychiatric Association – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 5PM |
DOI | 10.1176/appi.ajp.2012.12030305 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1535-7228 |
EndPage | 1091 |
ExternalDocumentID | PMC3513625 2912785991 22983435 26471555 10_1176_appi_ajp_2012_12030305 10.1176/appi.ajp.2012.12030305 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH043784 – fundername: NIMH NIH HHS grantid: R37 MH043784 – fundername: NIMH NIH HHS grantid: K08 MH084016 – fundername: NIMH NIH HHS grantid: MH-084016 – fundername: NIMH NIH HHS grantid: P50 MH084053 – fundername: NIMH NIH HHS grantid: MH-084053 – fundername: NIMH NIH HHS grantid: MH-043784 – fundername: National Institute of Mental Health : NIMH grantid: K08 MH084016 || MH – fundername: National Institute of Mental Health : NIMH grantid: R01 MH043784 || MH – fundername: National Institute of Mental Health : NIMH grantid: P50 MH084053 || MH |
GroupedDBID | 1QT BAJDF G0H RAY RYA X4V --- --Z -DZ -~X .55 .GJ 08P 0WA 1CY 1HT 1KJ 23M 2QL 2WC 354 3O- 4.4 41~ 53G 5GY 5RE 6J9 6TJ 7K8 85S 8F7 8R4 8R5 AAAHA AAIKC AAJMC AAKAS AAMNW AAQQT AAWTL AAWTO AAYJJ AAYXX ABDPE ABIVO ABPPZ ABZEH ACBMB ACGFO ACGOD ACHQT ACNCT ADBBV ADCOW ADGHP ADMHG ADZCM AENEX AERZD AETEA AFAZI AFFNX AFOSN AGHSJ AGNAY AHJKT AHMBA AI. ALMA_UNASSIGNED_HOLDINGS ASUFR BAWUL BCR BKOMP BLC CITATION CS3 DIK E3Z EBS EJD EX3 F5P F8P FA8 FJW GOZPB GRPMH H13 HF~ HZ~ J5H L7B LPU LXL LXN MVM N4W N9A NEJ NHB OHT OK1 OVD P-O P2P PEA PQQKQ Q.- Q2X RWL RXW S10 SJN SKT TAE TEORI TR2 TWZ UBC UHB UKR ULE UPT UQL VH1 VVN WH7 WHG WOQ WOW X6Y X7M XJT XOL XSW XZL YFH YOC YQI YQJ YRY YSK YWH YXB YYQ YZZ ZCA ZGI ZHY ZKB ZRR ZXP ZY1 ~A~ ~X8 08R AAJWC AAPBV AAUGY ABPTK AFFDN AFMIJ AKALU BENPR F20 G8K IQODW YCJ ZA5 ~G0 CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 ADXHL 5PM |
ID | FETCH-LOGICAL-a534t-a3f11f260591e23af0a06352a782449b00dbe30a1d010a14079b26e1afb336b63 |
ISSN | 0002-953X 1535-7228 |
IngestDate | Thu Aug 21 13:39:14 EDT 2025 Thu Sep 04 23:11:42 EDT 2025 Mon Jun 30 04:57:30 EDT 2025 Thu Apr 03 06:59:51 EDT 2025 Sun Oct 22 16:06:10 EDT 2023 Tue Jul 01 01:51:39 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Sun Apr 21 10:10:10 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Psychosis Binding protein Neuron Calcium Schizophrenia Parvalbumin Inorganic element |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a534t-a3f11f260591e23af0a06352a782449b00dbe30a1d010a14079b26e1afb336b63 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22983435 |
PQID | 1315543015 |
PQPubID | 40661 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3513625 proquest_miscellaneous_1221856651 proquest_journals_1315543015 pubmed_primary_22983435 pascalfrancis_primary_26471555 crossref_primary_10_1176_appi_ajp_2012_12030305 crossref_citationtrail_10_1176_appi_ajp_2012_12030305 appi_journals_10_1176_appi_ajp_2012_12030305 |
ProviderPackageCode | RAY RYA X4V 1QT BAJDF G0H CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-01 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Arlington, VA |
PublicationPlace_xml | – name: Arlington, VA – name: United States – name: Washington |
PublicationTitle | American Journal of Psychiatry |
PublicationTitleAlternate | Am J Psychiatry |
PublicationYear | 2012 |
Publisher | American Psychiatric Association |
Publisher_xml | – name: American Psychiatric Association |
References | B20 B42 B21 B43 B22 B44 B23 B45 B24 B26 B27 B28 B29 American Psychiatric Association (B25) 1994 B30 B31 B10 B32 B11 B33 B12 B34 B13 B35 B14 B36 B15 B37 B16 B38 B17 B39 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 20598290 - Biol Psychiatry. 2010 Oct 1;68(7):667-70 21632647 - Am J Psychiatry. 2011 Sep;168(9):921-9 21810780 - Cereb Cortex. 2012 May;22(5):1215-23 19396159 - Nature. 2009 Jun 4;459(7247):698-702 20181463 - Schizophr Res. 2010 May;118(1-3):41-7 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 17767149 - Mol Psychiatry. 2007 Sep;12(9):854-69 21041246 - Am J Psychiatry. 2010 Dec;167(12):1479-88 11074872 - Arch Gen Psychiatry. 2000 Nov;57(11):1061-9 7702443 - Arch Gen Psychiatry. 1995 Apr;52(4):258-66 12050665 - Nature. 2002 Jun 6;417(6889):645-9 20889653 - Am J Psychiatry. 2010 Dec;167(12):1489-98 15028753 - J Neurosci. 2004 Mar 17;24(11):2612-22 15803162 - Nat Rev Neurosci. 2005 Apr;6(4):312-24 18281411 - Am J Psychiatry. 2008 Apr;165(4):479-89 20827271 - Neuropsychopharmacology. 2010 Dec;35(13):2590-9 10711910 - Arch Gen Psychiatry. 2000 Mar;57(3):237-45 20220012 - J Neurosci. 2010 Mar 10;30(10):3777-81 18615011 - Neuropsychopharmacology. 2009 Feb;34(3):624-33 16766712 - Cereb Cortex. 2006 Jul;16 Suppl 1:i82-8 18613121 - J Comp Neurol. 2008 Sep 1;510(1):79-99 12867516 - J Neurosci. 2003 Jul 16;23(15):6315-26 19709629 - Neuron. 2009 Aug 27;63(4):466-81 21139075 - Cereb Cortex. 2011 Aug;21(8):1771-82 17376969 - J Neurosci. 2007 Mar 21;27(12):3078-89 16127688 - J Comp Neurol. 2005 Oct 17;491(2):109-22 18923067 - Am J Psychiatry. 2008 Dec;165(12):1585-93 19121517 - Biol Psychiatry. 2009 Jun 15;65(12):1006-14 22937123 - PLoS One. 2012;7(8):e43904 18203698 - Cereb Cortex. 2008 Jul;18(7):1575-87 17942719 - J Neurosci. 2007 Oct 17;27(42):11254-62 15756305 - Neuropsychopharmacology. 2005 Sep;30(9):1649-61 21154907 - Dev Neurobiol. 2011 Jan 1;71(1):18-33 20974464 - Biol Psychiatry. 2011 Jan 1;69(1):63-70 18606950 - Arch Gen Psychiatry. 2008 Jul;65(7):772-84 19464152 - Schizophr Res. 2009 Jul;112(1-3):192-3 21145041 - Biol Psychiatry. 2011 Mar 1;69(5):442-9 16301176 - Neuron. 2005 Nov 23;48(4):591-604 17170134 - Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19878-83 19657336 - Nat Neurosci. 2009 Oct;12(10):1238-47 17471287 - Mol Psychiatry. 2008 Feb;13(2):147-61 19234067 - Cereb Cortex. 2009 Sep;19(9):2196-207 14615302 - Cereb Cortex. 2003 Dec;13(12):1369-74 20048021 - Am J Psychiatry. 2010 Feb;167(2):160-9 |
References_xml | – ident: B14 doi: 10.1093/cercor/bhp009 – ident: B38 doi: 10.1038/nrn1648 – ident: B4 doi: 10.1038/sj.mp.4001988 – ident: B22 doi: 10.1016/j.neuron.2009.08.005 – ident: B1 doi: 10.1001/archpsyc.1995.03950160008002 – ident: B12 doi: 10.1016/j.neuron.2005.09.034 – ident: B39 doi: 10.1038/npp.2008.104 – ident: B8 doi: 10.1176/appi.ajp.2007.07081223 – ident: B30 doi: 10.1001/archpsyc.65.7.772 – ident: B45 doi: 10.1016/j.biopsych.2010.09.052 – ident: B31 doi: 10.1038/sj.npp.1300710 – ident: B24 doi: 10.1371/journal.pone.0043904 – ident: B40 doi: 10.1016/j.schres.2009.04.026 – ident: B20 doi: 10.1002/cne.21772 – ident: B28 doi: 10.1038/sj.mp.4002011 – ident: B5 doi: 10.1176/appi.ajp.2010.09060784 – ident: B19 doi: 10.1523/JNEUROSCI.3055-06.2007 – ident: B43 doi: 10.1523/JNEUROSCI.3272-07.2007 – ident: B17 doi: 10.1038/nature00779 – ident: B26 doi: 10.1176/appi.ajp.2010.10030318 – ident: B3 doi: 10.1001/archpsyc.57.11.1061 – ident: B2 doi: 10.1001/archpsyc.57.3.237 – ident: B7 doi: 10.1523/JNEUROSCI.23-15-06315.2003 – ident: B41 doi: 10.1016/j.biopsych.2010.05.016 – ident: B11 doi: 10.1523/JNEUROSCI.5667-03.2004 – ident: B13 doi: 10.1093/cercor/bhk003 – ident: B15 doi: 10.1002/dneu.20812 – ident: B23 doi: 10.1016/j.biopsych.2010.08.020 – ident: B16 doi: 10.1093/cercor/bhq245 – ident: B42 doi: 10.1523/JNEUROSCI.6158-09.2010 – ident: B32 doi: 10.1176/appi.ajp.2009.09040574 – ident: B37 doi: 10.1093/cercor/bhg084 – ident: B34 doi: 10.1073/pnas.0609440103 – ident: B6 doi: 10.1176/appi.ajp.2011.11010052 – ident: B35 doi: 10.1038/npp.2010.150 – ident: B27 doi: 10.1093/cercor/bhr202 – ident: B18 doi: 10.1002/cne.20714 – ident: B29 doi: 10.1186/gb-2002-3-7-research0034 – ident: B9 doi: 10.1093/cercor/bhm186 – ident: B33 doi: 10.1016/j.schres.2010.01.029 – ident: B10 doi: 10.1016/j.biopsych.2008.11.019 – volume-title: DSM-IV. Diagnostic and Statistical Manual of Mental Disorders year: 1994 ident: B25 – ident: B44 doi: 10.1176/appi.ajp.2008.08030395 – ident: B36 doi: 10.1038/nature07991 – ident: B21 doi: 10.1038/nn.2387 – reference: 16301176 - Neuron. 2005 Nov 23;48(4):591-604 – reference: 20048021 - Am J Psychiatry. 2010 Feb;167(2):160-9 – reference: 17170134 - Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19878-83 – reference: 19657336 - Nat Neurosci. 2009 Oct;12(10):1238-47 – reference: 20598290 - Biol Psychiatry. 2010 Oct 1;68(7):667-70 – reference: 17471287 - Mol Psychiatry. 2008 Feb;13(2):147-61 – reference: 18606950 - Arch Gen Psychiatry. 2008 Jul;65(7):772-84 – reference: 19234067 - Cereb Cortex. 2009 Sep;19(9):2196-207 – reference: 19121517 - Biol Psychiatry. 2009 Jun 15;65(12):1006-14 – reference: 17942719 - J Neurosci. 2007 Oct 17;27(42):11254-62 – reference: 16127688 - J Comp Neurol. 2005 Oct 17;491(2):109-22 – reference: 22937123 - PLoS One. 2012;7(8):e43904 – reference: 11074872 - Arch Gen Psychiatry. 2000 Nov;57(11):1061-9 – reference: 21154907 - Dev Neurobiol. 2011 Jan 1;71(1):18-33 – reference: 7702443 - Arch Gen Psychiatry. 1995 Apr;52(4):258-66 – reference: 15803162 - Nat Rev Neurosci. 2005 Apr;6(4):312-24 – reference: 21810780 - Cereb Cortex. 2012 May;22(5):1215-23 – reference: 20974464 - Biol Psychiatry. 2011 Jan 1;69(1):63-70 – reference: 18203698 - Cereb Cortex. 2008 Jul;18(7):1575-87 – reference: 12050665 - Nature. 2002 Jun 6;417(6889):645-9 – reference: 14615302 - Cereb Cortex. 2003 Dec;13(12):1369-74 – reference: 18613121 - J Comp Neurol. 2008 Sep 1;510(1):79-99 – reference: 15756305 - Neuropsychopharmacology. 2005 Sep;30(9):1649-61 – reference: 20827271 - Neuropsychopharmacology. 2010 Dec;35(13):2590-9 – reference: 19396159 - Nature. 2009 Jun 4;459(7247):698-702 – reference: 12867516 - J Neurosci. 2003 Jul 16;23(15):6315-26 – reference: 16766712 - Cereb Cortex. 2006 Jul;16 Suppl 1:i82-8 – reference: 18615011 - Neuropsychopharmacology. 2009 Feb;34(3):624-33 – reference: 10711910 - Arch Gen Psychiatry. 2000 Mar;57(3):237-45 – reference: 20220012 - J Neurosci. 2010 Mar 10;30(10):3777-81 – reference: 18281411 - Am J Psychiatry. 2008 Apr;165(4):479-89 – reference: 17767149 - Mol Psychiatry. 2007 Sep;12(9):854-69 – reference: 20181463 - Schizophr Res. 2010 May;118(1-3):41-7 – reference: 21139075 - Cereb Cortex. 2011 Aug;21(8):1771-82 – reference: 15028753 - J Neurosci. 2004 Mar 17;24(11):2612-22 – reference: 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 – reference: 21041246 - Am J Psychiatry. 2010 Dec;167(12):1479-88 – reference: 19464152 - Schizophr Res. 2009 Jul;112(1-3):192-3 – reference: 19709629 - Neuron. 2009 Aug 27;63(4):466-81 – reference: 21632647 - Am J Psychiatry. 2011 Sep;168(9):921-9 – reference: 21145041 - Biol Psychiatry. 2011 Mar 1;69(5):442-9 – reference: 20889653 - Am J Psychiatry. 2010 Dec;167(12):1489-98 – reference: 17376969 - J Neurosci. 2007 Mar 21;27(12):3078-89 – reference: 18923067 - Am J Psychiatry. 2008 Dec;165(12):1585-93 |
SSID | ssj0000372 |
Score | 2.4451714 |
Snippet | ObjectiveIn schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or... In schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or somatostatin but... Objective In schizophrenia, alterations within the prefrontal cortical GABA system appear to be most prominent in neurons that contain parvalbumin or... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref appi |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1082 |
SubjectTerms | Adult and adolescent clinical studies Animals Antipsychotic Agents - pharmacology Biological and medical sciences Calbindin 2 Genotype & phenotype Humans LIM-Homeodomain Proteins - deficiency LIM-Homeodomain Proteins - genetics Macaca fascicularis Male Medical sciences Middle Aged Nerve Tissue Proteins - deficiency Nerve Tissue Proteins - genetics Neurons Neurons - metabolism Parvalbumins - genetics Parvalbumins - metabolism Prefrontal Cortex - metabolism Prefrontal Cortex - pathology Psychiatry Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Psychoses RNA, Messenger - antagonists & inhibitors S100 Calcium Binding Protein G - genetics S100 Calcium Binding Protein G - metabolism Schizophrenia Schizophrenia - genetics Schizophrenia - metabolism Schizophrenia - pathology Somatostatin - genetics Somatostatin - metabolism SOXD Transcription Factors - genetics SOXD Transcription Factors - metabolism Transcription Factors - deficiency Transcription Factors - genetics |
Title | Deficits in Transcriptional Regulators of Cortical Parvalbumin Neurons in Schizophrenia |
URI | http://dx.doi.org/10.1176/appi.ajp.2012.12030305 https://www.ncbi.nlm.nih.gov/pubmed/22983435 https://www.proquest.com/docview/1315543015 https://www.proquest.com/docview/1221856651 https://pubmed.ncbi.nlm.nih.gov/PMC3513625 |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1535-7228 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0000372 issn: 0002-953X databaseCode: DIK dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkBDShPimMKYg8QbZYjuJk0fEQANUXtaJvUVO40DZSKM1eRh_PXeO7SSlaMBLVPmzyv1i39l3vyPkZVkKUUagudEiYmCgJIGfp_HCZwrv4FIwKbTL_-xzfHwafjyLziaTdhhd0uQHi59b40r-R6pQBnLFKNl_kKwbFArgN8gXniBheP6VjI8U8j802qW1wU3HLgGarV8nmcdcOtpz_LI7tK4xFxAey0MXzWXZOZKvh753Q4V13keeVEOaibGXtE7Ztbo4d17yr9zRzUw26xavNDQy5DlM2TovIO1KcLK8ciUnqvra1p1G6zzOzNWVOZugzHm5wdZi11PMlmviv-2C2yVnscgKBusnDbpURL8v7EIzGtcY4PcdeUYpO6AMViiuo7abgbTrH1rcjKUJDzsulA1KbVt1g9xkIo4x8cXRh0_9Bs4FM8HkMO3h9kmRRdoMA7s5thlpNru1XINUyy47yjbzZdMLd6DWzO-SO8Ye8d504LpHJqq6T27NjMfFA_LFYsxbVt4GxrweY96q9CzGvAHGPIMx7D3C2ENy-v7d_O2xb5Jx-DLiYeNLXlJaovWbUsW4LAMJ2m3EJKiYYYjMmkWueCBpARa-BLNdpDmLFZVlznmcx_wR2alWlXpCvIAmRSGgcaGSMMcdIuYsXeQczRcRJFPyGt9nZkC9zrShKuJMl4IkMpREZiUxJZF979nCENtjfpWLa_sdun51R-1ybY_9kVhdN7AqBCjm0GDPynnw7znq7LCRQvULVw2rOF7NyUqtWmjDQNUGyyqiU_K4g0U_uIHZlIgRYFwDZIgf11TLb5opnkcUFNTo6R_HfEZu99_tHtlpLlv1HLTsJt_X38QvVe7SXw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deficits+in+transcriptional+regulators+of+cortical+parvalbumin+neurons+in+schizophrenia&rft.jtitle=The+American+journal+of+psychiatry&rft.au=Volk%2C+David+W&rft.au=Matsubara%2C+Takurou&rft.au=Li%2C+Siyu&rft.au=Sengupta%2C+Elizabeth+J&rft.date=2012-10-01&rft.eissn=1535-7228&rft.volume=169&rft.issue=10&rft.spage=1082&rft_id=info:doi/10.1176%2Fappi.ajp.2012.12030305&rft_id=info%3Apmid%2F22983435&rft.externalDocID=22983435 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-953X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-953X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-953X&client=summon |