Identification of Effector Metabolites Using Exometabolite Profiling of Diverse Microalgae

Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of industrial applications. Algal exometabolites are important mediators of algal-algal and algal-bacterial interactions that ultimately affect...

Full description

Saved in:
Bibliographic Details
Published inmSystems Vol. 6; no. 6; p. e0083521
Main Authors Brisson, Vanessa, Mayali, Xavier, Bowen, Benjamin, Golini, Amber, Thelen, Michael, Stuart, Rhona K., Northen, Trent R.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 21.12.2021
Subjects
Online AccessGet full text
ISSN2379-5077
2379-5077
DOI10.1128/mSystems.00835-21

Cover

Abstract Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of industrial applications. Algal exometabolites are important mediators of algal-algal and algal-bacterial interactions that ultimately affect algal growth and physiology. Dissolved exometabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an untargeted metabolomic analysis of nonpolar exometabolites exuded from four phylogenetically and ecologically diverse eukaryotic microalgal strains grown in the laboratory, freshwater Chlamydomonas reinhardtii , brackish Desmodesmus sp., marine Phaeodactylum tricornutum , and marine Microchloropsis salina , to identify released metabolites based on relative enrichment in the exometabolomes compared to cell pellet metabolomes. Exudates from the different taxa were distinct, but we did not observe clear phylogenetic patterns. We used feature-based molecular networking to explore the identities of these metabolites, revealing several distinct di- and tripeptides secreted by each of the algae, lumichrome, a compound that is known to be involved in plant growth and bacterial quorum sensing, and novel prostaglandin-like compounds. We further investigated the impacts of exogenous additions of eight compounds selected based on exometabolome enrichment on algal growth. Of these compounds, five (lumichrome, 5′- S -methyl-5′-thioadenosine, 17-phenyl trinor prostaglandin A2, dodecanedioic acid, and aleuritic acid) impacted growth in at least one of the algal cultures. Two of these compounds (dodecanedioic acid and aleuritic acid) produced contrasting results, increasing growth in some algae and decreasing growth in others. Together, our results reveal new groups of microalgal exometabolites, some of which could alter algal growth when provided exogenously, suggesting potential roles in allelopathy and algal interactions. IMPORTANCE Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of industrial applications. Algal exometabolites are important mediators of algal-algal and algal-bacterial interactions that ultimately affect algal growth and physiology. In this study, we characterize exometabolomes across marine and freshwater algae to gain insights into the diverse metabolites they release into their environments (“exudates”). We observe that while phylogeny can play a role in exometabolome content, environmental conditions or habitat origin (freshwater versus marine) are also important. We also find that several of these compounds can influence algal growth (as measured by chlorophyll production) when provided exogenously, highlighting the importance of characterization of these novel compounds and their role in microalgal ecophysiology.
AbstractList Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of industrial applications. Algal exometabolites are important mediators of algal-algal and algal-bacterial interactions that ultimately affect algal growth and physiology. Dissolved exometabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an untargeted metabolomic analysis of nonpolar exometabolites exuded from four phylogenetically and ecologically diverse eukaryotic microalgal strains grown in the laboratory, freshwater Chlamydomonas reinhardtii , brackish Desmodesmus sp., marine Phaeodactylum tricornutum , and marine Microchloropsis salina , to identify released metabolites based on relative enrichment in the exometabolomes compared to cell pellet metabolomes. Exudates from the different taxa were distinct, but we did not observe clear phylogenetic patterns. We used feature-based molecular networking to explore the identities of these metabolites, revealing several distinct di- and tripeptides secreted by each of the algae, lumichrome, a compound that is known to be involved in plant growth and bacterial quorum sensing, and novel prostaglandin-like compounds. We further investigated the impacts of exogenous additions of eight compounds selected based on exometabolome enrichment on algal growth. Of these compounds, five (lumichrome, 5′- S -methyl-5′-thioadenosine, 17-phenyl trinor prostaglandin A2, dodecanedioic acid, and aleuritic acid) impacted growth in at least one of the algal cultures. Two of these compounds (dodecanedioic acid and aleuritic acid) produced contrasting results, increasing growth in some algae and decreasing growth in others. Together, our results reveal new groups of microalgal exometabolites, some of which could alter algal growth when provided exogenously, suggesting potential roles in allelopathy and algal interactions. IMPORTANCE Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of industrial applications. Algal exometabolites are important mediators of algal-algal and algal-bacterial interactions that ultimately affect algal growth and physiology. In this study, we characterize exometabolomes across marine and freshwater algae to gain insights into the diverse metabolites they release into their environments (“exudates”). We observe that while phylogeny can play a role in exometabolome content, environmental conditions or habitat origin (freshwater versus marine) are also important. We also find that several of these compounds can influence algal growth (as measured by chlorophyll production) when provided exogenously, highlighting the importance of characterization of these novel compounds and their role in microalgal ecophysiology.
Dissolved exometabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an untargeted metabolomic analysis of nonpolar exometabolites exuded from four phylogenetically and ecologically diverse eukaryotic microalgal strains grown in the laboratory, freshwater Chlamydomonas reinhardtii, brackish Desmodesmus sp., marine Phaeodactylum tricornutum, and marine Microchloropsis salina, to identify released metabolites based on relative enrichment in the exometabolomes compared to cell pellet metabolomes. Exudates from the different taxa were distinct, but we did not observe clear phylogenetic patterns. We used feature-based molecular networking to explore the identities of these metabolites, revealing several distinct di- and tripeptides secreted by each of the algae, lumichrome, a compound that is known to be involved in plant growth and bacterial quorum sensing, and novel prostaglandin-like compounds. We further investigated the impacts of exogenous additions of eight compounds selected based on exometabolome enrichment on algal growth. Of these compounds, five (lumichrome, 5′-S-methyl-5′-thioadenosine, 17-phenyl trinor prostaglandin A2, dodecanedioic acid, and aleuritic acid) impacted growth in at least one of the algal cultures. Two of these compounds (dodecanedioic acid and aleuritic acid) produced contrasting results, increasing growth in some algae and decreasing growth in others. Together, our results reveal new groups of microalgal exometabolites, some of which could alter algal growth when provided exogenously, suggesting potential roles in allelopathy and algal interactions. IMPORTANCE Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of industrial applications. Algal exometabolites are important mediators of algal-algal and algal-bacterial interactions that ultimately affect algal growth and physiology. In this study, we characterize exometabolomes across marine and freshwater algae to gain insights into the diverse metabolites they release into their environments (“exudates”). We observe that while phylogeny can play a role in exometabolome content, environmental conditions or habitat origin (freshwater versus marine) are also important. We also find that several of these compounds can influence algal growth (as measured by chlorophyll production) when provided exogenously, highlighting the importance of characterization of these novel compounds and their role in microalgal ecophysiology.
Dissolved exometabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an untargeted metabolomic analysis of nonpolar exometabolites exuded from four phylogenetically and ecologically diverse eukaryotic microalgal strains grown in the laboratory, freshwater Chlamydomonas reinhardtii , brackish Desmodesmus sp., marine Phaeodactylum tricornutum , and marine Microchloropsis salina , to identify released metabolites based on relative enrichment in the exometabolomes compared to cell pellet metabolomes. Exudates from the different taxa were distinct, but we did not observe clear phylogenetic patterns. We used feature-based molecular networking to explore the identities of these metabolites, revealing several distinct di- and tripeptides secreted by each of the algae, lumichrome, a compound that is known to be involved in plant growth and bacterial quorum sensing, and novel prostaglandin-like compounds. We further investigated the impacts of exogenous additions of eight compounds selected based on exometabolome enrichment on algal growth. Of these compounds, five (lumichrome, 5′- S -methyl-5′-thioadenosine, 17-phenyl trinor prostaglandin A2, dodecanedioic acid, and aleuritic acid) impacted growth in at least one of the algal cultures. Two of these compounds (dodecanedioic acid and aleuritic acid) produced contrasting results, increasing growth in some algae and decreasing growth in others. Together, our results reveal new groups of microalgal exometabolites, some of which could alter algal growth when provided exogenously, suggesting potential roles in allelopathy and algal interactions. IMPORTANCE Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of industrial applications. Algal exometabolites are important mediators of algal-algal and algal-bacterial interactions that ultimately affect algal growth and physiology. In this study, we characterize exometabolomes across marine and freshwater algae to gain insights into the diverse metabolites they release into their environments (“exudates”). We observe that while phylogeny can play a role in exometabolome content, environmental conditions or habitat origin (freshwater versus marine) are also important. We also find that several of these compounds can influence algal growth (as measured by chlorophyll production) when provided exogenously, highlighting the importance of characterization of these novel compounds and their role in microalgal ecophysiology.
ABSTRACT Dissolved exometabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an untargeted metabolomic analysis of nonpolar exometabolites exuded from four phylogenetically and ecologically diverse eukaryotic microalgal strains grown in the laboratory, freshwater Chlamydomonas reinhardtii, brackish Desmodesmus sp., marine Phaeodactylum tricornutum, and marine Microchloropsis salina, to identify released metabolites based on relative enrichment in the exometabolomes compared to cell pellet metabolomes. Exudates from the different taxa were distinct, but we did not observe clear phylogenetic patterns. We used feature-based molecular networking to explore the identities of these metabolites, revealing several distinct di- and tripeptides secreted by each of the algae, lumichrome, a compound that is known to be involved in plant growth and bacterial quorum sensing, and novel prostaglandin-like compounds. We further investigated the impacts of exogenous additions of eight compounds selected based on exometabolome enrichment on algal growth. Of these compounds, five (lumichrome, 5′-S-methyl-5′-thioadenosine, 17-phenyl trinor prostaglandin A2, dodecanedioic acid, and aleuritic acid) impacted growth in at least one of the algal cultures. Two of these compounds (dodecanedioic acid and aleuritic acid) produced contrasting results, increasing growth in some algae and decreasing growth in others. Together, our results reveal new groups of microalgal exometabolites, some of which could alter algal growth when provided exogenously, suggesting potential roles in allelopathy and algal interactions. IMPORTANCE Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of industrial applications. Algal exometabolites are important mediators of algal-algal and algal-bacterial interactions that ultimately affect algal growth and physiology. In this study, we characterize exometabolomes across marine and freshwater algae to gain insights into the diverse metabolites they release into their environments (“exudates”). We observe that while phylogeny can play a role in exometabolome content, environmental conditions or habitat origin (freshwater versus marine) are also important. We also find that several of these compounds can influence algal growth (as measured by chlorophyll production) when provided exogenously, highlighting the importance of characterization of these novel compounds and their role in microalgal ecophysiology.
Dissolved exometabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an untargeted metabolomic analysis of nonpolar exometabolites exuded from four phylogenetically and ecologically diverse eukaryotic microalgal strains grown in the laboratory, freshwater Chlamydomonas reinhardtii, brackish Desmodesmus sp., marine Phaeodactylum tricornutum, and marine Microchloropsis salina, to identify released metabolites based on relative enrichment in the exometabolomes compared to cell pellet metabolomes. Exudates from the different taxa were distinct, but we did not observe clear phylogenetic patterns. We used feature-based molecular networking to explore the identities of these metabolites, revealing several distinct di- and tripeptides secreted by each of the algae, lumichrome, a compound that is known to be involved in plant growth and bacterial quorum sensing, and novel prostaglandin-like compounds. We further investigated the impacts of exogenous additions of eight compounds selected based on exometabolome enrichment on algal growth. Of these compounds, five (lumichrome, 5'-S-methyl-5'-thioadenosine, 17-phenyl trinor prostaglandin A2, dodecanedioic acid, and aleuritic acid) impacted growth in at least one of the algal cultures. Two of these compounds (dodecanedioic acid and aleuritic acid) produced contrasting results, increasing growth in some algae and decreasing growth in others. Together, our results reveal new groups of microalgal exometabolites, some of which could alter algal growth when provided exogenously, suggesting potential roles in allelopathy and algal interactions.
Dissolved exometabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an untargeted metabolomic analysis of nonpolar exometabolites exuded from four phylogenetically and ecologically diverse eukaryotic microalgal strains grown in the laboratory, freshwater Chlamydomonas reinhardtii, brackish sp., marine Phaeodactylum tricornutum, and marine Microchloropsis salina, to identify released metabolites based on relative enrichment in the exometabolomes compared to cell pellet metabolomes. Exudates from the different taxa were distinct, but we did not observe clear phylogenetic patterns. We used feature-based molecular networking to explore the identities of these metabolites, revealing several distinct di- and tripeptides secreted by each of the algae, lumichrome, a compound that is known to be involved in plant growth and bacterial quorum sensing, and novel prostaglandin-like compounds. We further investigated the impacts of exogenous additions of eight compounds selected based on exometabolome enrichment on algal growth. Of these compounds, five (lumichrome, 5'- -methyl-5'-thioadenosine, 17-phenyl trinor prostaglandin A2, dodecanedioic acid, and aleuritic acid) impacted growth in at least one of the algal cultures. Two of these compounds (dodecanedioic acid and aleuritic acid) produced contrasting results, increasing growth in some algae and decreasing growth in others. Together, our results reveal new groups of microalgal exometabolites, some of which could alter algal growth when provided exogenously, suggesting potential roles in allelopathy and algal interactions. Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of industrial applications. Algal exometabolites are important mediators of algal-algal and algal-bacterial interactions that ultimately affect algal growth and physiology. In this study, we characterize exometabolomes across marine and freshwater algae to gain insights into the diverse metabolites they release into their environments ("exudates"). We observe that while phylogeny can play a role in exometabolome content, environmental conditions or habitat origin (freshwater versus marine) are also important. We also find that several of these compounds can influence algal growth (as measured by chlorophyll production) when provided exogenously, highlighting the importance of characterization of these novel compounds and their role in microalgal ecophysiology.
Dissolved exometabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an untargeted metabolomic analysis of nonpolar exometabolites exuded from four phylogenetically and ecologically diverse eukaryotic microalgal strains grown in the laboratory, freshwater Chlamydomonas reinhardtii, brackish Desmodesmus sp., marine Phaeodactylum tricornutum, and marine Microchloropsis salina, to identify released metabolites based on relative enrichment in the exometabolomes compared to cell pellet metabolomes. Exudates from the different taxa were distinct, but we did not observe clear phylogenetic patterns. We used feature-based molecular networking to explore the identities of these metabolites, revealing several distinct di- and tripeptides secreted by each of the algae, lumichrome, a compound that is known to be involved in plant growth and bacterial quorum sensing, and novel prostaglandin-like compounds. We further investigated the impacts of exogenous additions of eight compounds selected based on exometabolome enrichment on algal growth. Of these compounds, five (lumichrome, 5'-S-methyl-5'-thioadenosine, 17-phenyl trinor prostaglandin A2, dodecanedioic acid, and aleuritic acid) impacted growth in at least one of the algal cultures. Two of these compounds (dodecanedioic acid and aleuritic acid) produced contrasting results, increasing growth in some algae and decreasing growth in others. Together, our results reveal new groups of microalgal exometabolites, some of which could alter algal growth when provided exogenously, suggesting potential roles in allelopathy and algal interactions. IMPORTANCE Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of industrial applications. Algal exometabolites are important mediators of algal-algal and algal-bacterial interactions that ultimately affect algal growth and physiology. In this study, we characterize exometabolomes across marine and freshwater algae to gain insights into the diverse metabolites they release into their environments ("exudates"). We observe that while phylogeny can play a role in exometabolome content, environmental conditions or habitat origin (freshwater versus marine) are also important. We also find that several of these compounds can influence algal growth (as measured by chlorophyll production) when provided exogenously, highlighting the importance of characterization of these novel compounds and their role in microalgal ecophysiology.Dissolved exometabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an untargeted metabolomic analysis of nonpolar exometabolites exuded from four phylogenetically and ecologically diverse eukaryotic microalgal strains grown in the laboratory, freshwater Chlamydomonas reinhardtii, brackish Desmodesmus sp., marine Phaeodactylum tricornutum, and marine Microchloropsis salina, to identify released metabolites based on relative enrichment in the exometabolomes compared to cell pellet metabolomes. Exudates from the different taxa were distinct, but we did not observe clear phylogenetic patterns. We used feature-based molecular networking to explore the identities of these metabolites, revealing several distinct di- and tripeptides secreted by each of the algae, lumichrome, a compound that is known to be involved in plant growth and bacterial quorum sensing, and novel prostaglandin-like compounds. We further investigated the impacts of exogenous additions of eight compounds selected based on exometabolome enrichment on algal growth. Of these compounds, five (lumichrome, 5'-S-methyl-5'-thioadenosine, 17-phenyl trinor prostaglandin A2, dodecanedioic acid, and aleuritic acid) impacted growth in at least one of the algal cultures. Two of these compounds (dodecanedioic acid and aleuritic acid) produced contrasting results, increasing growth in some algae and decreasing growth in others. Together, our results reveal new groups of microalgal exometabolites, some of which could alter algal growth when provided exogenously, suggesting potential roles in allelopathy and algal interactions. IMPORTANCE Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of industrial applications. Algal exometabolites are important mediators of algal-algal and algal-bacterial interactions that ultimately affect algal growth and physiology. In this study, we characterize exometabolomes across marine and freshwater algae to gain insights into the diverse metabolites they release into their environments ("exudates"). We observe that while phylogeny can play a role in exometabolome content, environmental conditions or habitat origin (freshwater versus marine) are also important. We also find that several of these compounds can influence algal growth (as measured by chlorophyll production) when provided exogenously, highlighting the importance of characterization of these novel compounds and their role in microalgal ecophysiology.
Author Bowen, Benjamin
Golini, Amber
Thelen, Michael
Stuart, Rhona K.
Mayali, Xavier
Brisson, Vanessa
Northen, Trent R.
Author_xml – sequence: 1
  givenname: Vanessa
  surname: Brisson
  fullname: Brisson, Vanessa
  organization: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
– sequence: 2
  givenname: Xavier
  orcidid: 0000-0002-2170-0773
  surname: Mayali
  fullname: Mayali, Xavier
  organization: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
– sequence: 3
  givenname: Benjamin
  surname: Bowen
  fullname: Bowen, Benjamin
  organization: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
– sequence: 4
  givenname: Amber
  surname: Golini
  fullname: Golini, Amber
  organization: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
– sequence: 5
  givenname: Michael
  orcidid: 0000-0002-2479-5480
  surname: Thelen
  fullname: Thelen, Michael
  organization: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
– sequence: 6
  givenname: Rhona K.
  surname: Stuart
  fullname: Stuart, Rhona K.
  organization: Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
– sequence: 7
  givenname: Trent R.
  surname: Northen
  fullname: Northen, Trent R.
  organization: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA, The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34726483$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1842430$$D View this record in Osti.gov
BookMark eNp9Uk1vEzEUtFARLaU_gAtaceKS4M_1-oKE2gCRWoEEvXCxHO9z6mjXLrZT0X-Pm22jlkNPtp5n5vnNm9foIMQACL0leE4I7T6OP29zgTHPMe6YmFHyAh1RJtVMYCkPHt0P0UnOG4wxaZkkVL1Ch4xL2vKOHaHfyx5C8c5bU3wMTXTNwjmwJabmAopZxcEXyM1l9mHdLP7GcV9sfqTo_HBXr6wzfwMpQ3PhbYpmWBt4g146M2Q4uT-P0eWXxa_Tb7Pz71-Xp5_PZ0YwUmayo9JBC7xvDTCiRKu46rDgloK0quVUKIl76RSVUlkhiGldJ6XkQgGVnB2j5aTbR7PR18mPJt3qaLzeFWJaa5OKtwNogOoBF8QR63jLQHHprGGKrFbG9ExUrU-T1vV2NUJvqzfJDE9En74Ef6XX8UZ3oqVcqirwfhKIuXidbfXJXtkYQrVUk45TznAFfbjvkuKfLeSiR58tDIMJELdZ14kpI5gJWaHzCWrySPUmblOoXmqC9V0I9EMI9C4EmpJKePd4gv3XH1ZeAWQC1D3lnMDtIc-Jyv84dbBdYKoJfniG-Q_xNdRc
CitedBy_id crossref_primary_10_1016_j_envres_2024_119439
crossref_primary_10_1016_j_biteb_2022_101321
crossref_primary_10_1038_s42003_025_07608_9
crossref_primary_10_1080_10408398_2024_2431208
crossref_primary_10_1111_nph_19051
crossref_primary_10_1016_j_envres_2024_118135
crossref_primary_10_1007_s10811_024_03330_x
crossref_primary_10_1016_j_algal_2025_103904
crossref_primary_10_3390_plants13233415
crossref_primary_10_1016_j_plaphy_2023_03_012
crossref_primary_10_3390_microorganisms11082003
crossref_primary_10_3390_fermentation10070341
crossref_primary_10_1128_msphere_00231_22
crossref_primary_10_1016_j_orggeochem_2024_104880
crossref_primary_10_3389_fmicb_2022_914472
Cites_doi 10.3390/microorganisms9020311
10.3389/fmicb.2014.00111
10.3389/fnins.2017.00183
10.1016/0304-4203(87)90065-X
10.1038/nmicrobiol.2017.65
10.1038/nature07410
10.1038/483S17a
10.1007/s10811-015-0666-6
10.3389/fpls.2014.00436
10.1046/j.1365-2958.1999.01577.x
10.1111/j.1529-8817.1980.tb00724.x
10.1104/pp.105.071589
10.1002/lom3.10181
10.1016/j.algal.2019.101696
10.1038/s41396-020-00811-y
10.3389/fpls.2015.00700
10.1038/s41592-020-0933-6
10.1038/nbt.3597
10.1021/acs.analchem.0c04795
10.1016/j.algal.2018.08.012
10.3389/fmicb.2016.00828
10.1038/s41598-018-28627-z
10.1093/bioinformatics/bts252
10.1094/MPMI-21-9-1184
10.1016/j.trac.2009.12.004
10.1104/pp.18.00925
10.1111/nph.15765
10.1038/s41564-018-0129-3
10.1016/j.biortech.2016.07.022
10.1021/acs.analchem.7b04400
10.1186/1471-2105-11-395
10.1073/pnas.2012088117
10.1007/s11306-007-0082-2
10.1111/lam.12034
10.1007/BF02857948
10.4319/lom.2008.6.230
10.1016/j.algal.2020.102156
10.1016/j.biotechadv.2007.02.001
10.1007/s11306-007-0070-6
10.1021/ja508782y
10.1046/j.1529-8817.2001.01052.x
10.3390/md17070428
10.1126/sciadv.abd4210
10.1007/s12010-013-0386-9
10.1016/j.algal.2018.12.003
10.1139/m62-029
10.1016/j.rser.2009.07.020
10.1186/s13068-018-1343-1
10.1016/j.algal.2018.101390
10.1038/ismej.2017.27
10.1039/c1mb05196b
10.1016/j.ijpharm.2004.05.020
10.1073/pnas.2019855118
10.1038/s41396-020-0683-6
10.1126/science.1143609
10.1093/bioinformatics/btk039
10.1038/s41598-020-79320-z
10.1111/j.1462-2920.2008.01569.x
10.1073/pnas.1917265117
ContentType Journal Article
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – sequence: 0
  name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
– sequence: 0
  name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1128/mSystems.00835-21
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef




PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Environmental Sciences
EISSN 2379-5077
Editor Alegado, Rosie
Editor_xml – sequence: 1
  givenname: Rosie
  surname: Alegado
  fullname: Alegado, Rosie
ExternalDocumentID oai_doaj_org_article_ee163451f1cf463e947fca391bbaad35
PMC8562479
1842430
mSystems00835-21
34726483
10_1128_mSystems_00835_21
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Energy (DOE)
  grantid: FWP SCW1039
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-AC52-07NA27344
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-AC52-07NA27344
  funderid: https://doi.org/10.13039/100000015
– fundername: U.S. Department of Energy (DOE)
  grantid: FWP SCW1039
  funderid: https://doi.org/10.13039/100000015
– fundername: ;
  grantid: FWP SCW1039
– fundername: ;
  grantid: DE-AC52-07NA27344
GroupedDBID 0R~
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAGFI
AAUOK
AAYXX
ABUWG
ACPRK
ADBBV
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
EBS
FRP
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
KQ8
LK8
M48
M7P
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RHI
RPM
RSF
UKHRP
NPM
PQGLB
0R
3V.
ADACO
BBAFP
BXI
PQEST
PQUKI
PRINS
7X8
PUEGO
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-a531t-7827fe6e4d6ae319569498054c2e7c96425970d7f92779c551a6f8777459e2743
IEDL.DBID M48
ISSN 2379-5077
IngestDate Wed Aug 27 01:26:05 EDT 2025
Thu Aug 21 14:05:21 EDT 2025
Thu Dec 05 06:26:23 EST 2024
Fri Sep 05 02:45:03 EDT 2025
Tue Dec 28 13:57:58 EST 2021
Mon Jul 21 05:58:19 EDT 2025
Tue Jul 01 02:58:58 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords lumichrome
Microchloropsis salina
Chlamydomonas reinhardtii
Phaeodactylum tricornutum
microalgae
Desmodesmus
effector metabolites
Chlamydononas reinhardtii
exometabolome
Language English
License This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a531t-7827fe6e4d6ae319569498054c2e7c96425970d7f92779c551a6f8777459e2743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC52-07NA27344; AC02-05CH11231
LLNL-JRNL-823908
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Citation Brisson V, Mayali X, Bowen B, Golini A, Thelen M, Stuart RK, Northen TR. 2021. Identification of effector metabolites using exometabolite profiling of diverse microalgae. mSystems 6:e00835-21. https://doi.org/10.1128/mSystems.00835-21.
ORCID 0000-0002-2170-0773
0000-0002-2479-5480
0000000224795480
0000000221700773
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mSystems.00835-21
PMID 34726483
PQID 2592310357
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_ee163451f1cf463e947fca391bbaad35
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8562479
osti_scitechconnect_1842430
proquest_miscellaneous_2592310357
asm2_journals_10_1128_mSystems_00835_21
pubmed_primary_34726483
crossref_primary_10_1128_mSystems_00835_21
crossref_citationtrail_10_1128_mSystems_00835_21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Dec-21
PublicationDateYYYYMMDD 2021-12-21
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mSystems
PublicationTitleAbbrev mSystems
PublicationTitleAlternate mSystems
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – sequence: 0
  name: American Society for Microbiology
– name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
Katajamaa, M, Miettinen, J, Oresic, M (B57) 2006; 22
Pluskal, T, Castillo, S, Villar-Briones, A, Oresic, M (B58) 2010; 11
Cirri, E, Pohnert, G (B4) 2019; 223
Dakora, FD, Matiru, VN, Kanu, A (B32) 2015; 6
Pruesse, E, Peplies, J, Glockner, FO (B59) 2012; 28
Chung, TY, Kuo, CY, Lin, WJ, Wang, WL, Chou, JY (B46) 2018; 8
Seymour, JR, Amin, SA, Raina, JB, Stocker, R (B8) 2017; 2
Verbeke, F, De Craemer, S, Debunne, N, Janssens, Y, Wynendaele, E, Van de Wiele, C, De Spiegeleer, B (B42) 2017; 11
Mills, GL, McFadden, E, Quinn, JG (B47) 1987; 20
Remmers, IM, D’Adamo, S, Martens, DE, de Vos, RCH, Mumm, R, America, AHP, Cordewener, JHG, Bakker, LV, Peters, SA, Wijffels, RH, Lamers, PP (B13) 2018; 35
Bolling, C, Fiehn, O (B14) 2005; 139
Groenewald, EG, van der Westhuizen, AJ (B39) 1997; 63
Sumner, LW, Amberg, A, Barrett, D, Beale, MH, Beger, R, Daykin, CA, Fan, TWM, Fiehn, O, Goodacre, R, Griffin, JL, Hankemeier, T, Hardy, N, Harnly, J, Higashi, R, Kopka, J, Lane, AN, Lindon, JC, Marriott, P, Nicholls, AW, Reily, MD, Thaden, JJ, Viant, MR (B23) 2007; 3
Nothias, LF, Petras, D, Schmid, R, Duhrkop, K, Rainer, J, Sarvepalli, A, Protsyuk, I, Ernst, M, Tsugawa, H, Fleischauer, M, Aicheler, F, Aksenov, AA, Alka, O, Allard, PM, Barsch, A, Cachet, X, Caraballo-Rodriguez, AM, Da Silva, RR, Dang, T, Garg, N, Gauglitz, JM, Gurevich, A, Isaac, G, Jarmusch, AK, Kamenik, Z, Kang, KB, Kessler, N, Koester, I, Korf, A, Le Gouellec, A, Ludwig, M, Martin, HC, McCall, LI, McSayles, J, Meyer, SW, Mohimani, H, Morsy, M, Moyne, O, Neumann, S, Neuweger, H, Nguyen, NH, Nothias-Esposito, M, Paolini, J, Phelan, VV, Pluskal, T, Quinn, RA, Rogers, S, Shrestha, B, Tripathi, A, van der Hooft, JJJ (B20) 2020; 17
Ahmad, I, Fasihullah, Q, Noor, A, Ansari, IA, Ali, QNM (B36) 2004; 280
Murphy, KM, Edwards, J, Louie, KB, Bowen, BP, Sundaresan, V, Northen, TR, Zerbe, P (B56) 2021; 11
Mata, TM, Martins, AA, Caetano, NS (B3) 2010; 14
Leflaive, J, Lacroix, G, Nicaise, Y, Ten-Hage, L (B7) 2008; 10
Lupette, J, Jaussaud, A, Vigor, C, Oger, C, Galano, JM, Reversat, G, Vercauteren, J, Jouhet, J, Durand, T, Marechal, E (B40) 2018; 178
Fu, H, Uchimiya, M, Gore, J, Moran, MA (B10) 2020; 117
Di Dato, V, Orefice, I, Amato, A, Fontanarosa, C, Amoresano, A, Cutignano, A, Ianora, A, Romano, G (B38) 2017; 11
Naik, DN, Wahidullah, S, Meena, RM (B45) 2013; 56
Malik, AA, Swenson, T, Weihe, C, Morrison, EW, Martiny, JBH, Brodie, EL, Northen, TR, Allison, SD (B54) 2020; 14
Baran, R, Bowen, BP, Northen, TR (B17) 2011; 7
BenMoussa-Dahmen, I, Chtourou, H, Rezgui, F, Sayadi, S, Dhouib, A (B29) 2016; 218
Wang, M, Carver, JJ, Phelan, VV, Sanchez, LM, Garg, N, Peng, Y, Nguyen, DD, Watrous, J, Kapono, CA, Luzzatto-Knaan, T, Porto, C, Bouslimani, A, Melnik, AV, Meehan, MJ, Liu, W-T, Crüsemann, M, Boudreau, PD, Esquenazi, E, Sandoval-Calderón, M, Kersten, RD, Pace, LA, Quinn, RA, Duncan, KR, Hsu, C-C, Floros, DJ, Gavilan, RG, Kleigrewe, K, Northen, T, Dutton, RJ, Parrot, D, Carlson, EE, Aigle, B, Michelsen, CF, Jelsbak, L, Sohlenkamp, C, Pevzner, P, Edlund, A, McLean, J, Piel, J, Murphy, BT, Gerwick, L, Liaw, C-C, Yang, Y-L, Humpf, H-U, Maansson, M, Keyzers, RA, Sims, AC, Johnson, AR, Sidebottom, AM, Sedio, BE (B21) 2016; 34
Boysen, AK, Heal, KR, Carlson, LT, Ingalls, AE (B55) 2018; 90
Ferrer-González, FX, Widner, B, Holderman, NR, Glushka, J, Edison, AS, Kujawinski, EB, Moran, MA (B15) 2021; 15
Di Costanzo, F, Di Dato, V, Ianora, A, Romano, G (B37) 2019; 17
Johnson, WM, Soule, MCK, Kujawinski, EB (B49) 2017; 15
Park, WK, Yoo, G, Moon, M, Kim, C, Choi, YE, Yang, JW (B5) 2013; 171
Alvarez-Sanchez, B, Priego-Capote, F, de Castro, MDL (B24) 2010; 29
Belmondo, S, Fiorilli, V, Perez-Tienda, J, Ferrol, N, Marmeisse, R, Lanfranco, L (B43) 2014; 5
Hughes, AH, Magot, F, Tawfike, AF, Rad-Menendez, C, Thomas, N, Young, LC, Stucchi, L, Carettoni, D, Stanley, MS, Edrada-Ebel, R, Duncan, KR (B26) 2021; 9
Zhalnina, K, Louie, KB, Hao, Z, Mansoori, N, da Rocha, UN, Shi, SJ, Cho, HJ, Karaoz, U, Loque, D, Bowen, BP, Firestone, MK, Northen, TR, Brodie, EL (B9) 2018; 3
Seyedsayamdost, MR, Wang, RR, Kolter, R, Clardy, J (B12) 2014; 136
Fiehn, O, Robertson, D, Griffin, J, van der Werf, M, Nikolau, B, Morrison, N, Sumner, LW, Goodacre, R, Hardy, NW, Taylor, C, Fostel, J, Kristal, B, Kaddurah-Daouk, R, Mendes, P, van Ommen, B, Lindon, JC, Sansone, SA (B22) 2007; 3
Becker, JW, Berube, PM, Follett, CL, Waterbury, JB, Chisholm, SW, DeLong, EF, Repeta, DJ (B16) 2014; 5
Labeeuw, L, Khey, J, Bramucci, AR, Atwal, H, de la Mata, AP, Harynuk, J, Case, RJ (B6) 2016; 7
Arora, N, Laurens, LML, Sweeney, N, Pruthi, V, Poluri, KM, Pienkos, PT (B28) 2019; 37
Lopez, BR, Palacios, OA, Bashan, Y, Hernandez-Sandoval, FE, de-Bashan, LE (B33) 2019; 44
Dittmar, T, Koch, B, Hertkorn, N, Kattner, G (B48) 2008; 6
B50
Heo, J, Kim, S, Cho, DH, Song, GC, Kim, HS, Ryu, CM (B35) 2019; 38
Williams, A, Chiles, EN, Conetta, D, Pathmanathan, JS, Cleves, PA, Putnam, HM, Su, XY, Bhattacharya, D (B41) 2021; 7
B51
Peng, HX, de-Bashan, LE, Higgins, BT (B34) 2021; 53
von Alvensleben, N, Magnusson, M, Heimann, K (B30) 2016; 28
Bowler, C, Allen, AE, Badger, JH, Grimwood, J, Jabbari, K, Kuo, A, Maheswari, U, Martens, C, Maumus, F, Otillar, RP, Rayko, E, Salamov, A, Vandepoele, K, Beszteri, B, Gruber, A, Heijde, M, Katinka, M, Mock, T, Valentin, K, Verret, F, Berges, JA, Brownlee, C, Cadoret, JP, Chiovitti, A, Choi, CJ, Coesel, S, De Martino, A, Detter, JC, Durkin, C, Falciatore, A, Fournet, J, Haruta, M, Huysman, MJJ, Jenkins, BD, Jiroutova, K, Jorgensen, RE, Joubert, Y, Kaplan, A, Kroger, N, Kroth, PG, La Roche, J, Lindquist, E, Lommer, M, Martin-Jezequel, V, Lopez, PJ, Lucas, S, Mangogna, M, McGinnis, K, Medlin, LK, Montsant, A (B19) 2008; 456
Shibl, AA, Isaac, A, Ochsenkuhn, MA, Cardenas, A, Fei, C, Behringer, G, Arnoux, M, Drou, N, Santos, MP, Gunsalus, KC, Voolstra, CR, Amin, SA (B11) 2020; 117
Swift, CL, Louie, KB, Bowen, BP, Olson, HM, Purvine, SO, Salamov, A, Mondo, SJ, Solomon, KV, Wright, AT, Northen, TR, Grigoriev, IV, Keller, NP, O’Malley, MA (B53) 2021; 118
Pontrelli, S, Sauer, U (B25) 2021; 93
Rajamani, S, Bauer, WD, Robinson, JB, Farrow, JM, Pesci, EC, Teplitski, M, Gao, MS, Sayre, RT, Phillips, DA (B31) 2008; 21
Chisti, Y (B2) 2007; 25
Guillard, RR, Ryther, JH (B52) 1962; 8
Falkowski, P (B1) 2012; 483
Merchant, SS, Prochnik, SE, Vallon, O, Harris, EH, Karpowicz, SJ, Witman, GB, Terry, A, Salamov, A, Fritz-Laylin, LK, Marechal-Drouard, L, Marshall, WF, Qu, LH, Nelson, DR, Sanderfoot, AA, Spalding, MH, Kapitonov, VV, Ren, QH, Ferris, P, Lindquist, E, Shapiro, H, Lucas, SM, Grimwood, J, Schmutz, J, Cardol, P, Cerutti, H, Chanfreau, G, Chen, CL, Cognat, V, Croft, MT, Dent, R, Dutcher, S, Fernandez, E, Fukuzawa, H, Gonzalez-Ballester, D, Gonzalez-Halphen, D, Hallmann, A, Hanikenne, M, Hippler, M, Inwood, W, Jabbari, K, Kalanon, M, Kuras, R, Lefebvre, PA, Lemaire, SD, Lobanov, AV, Lohr, M, Manuell, A, Meir, I, Mets, L, Mittag, M (B18) 2007; 318
Holden, MTG, Chhabra, SR, de Nys, R, Stead, P, Bainton, NJ, Hill, PJ, Manefield, M, Kumar, N, Labatte, M, England, D, Rice, S, Givskov, M, Salmond, GPC, Stewart, G, Bycroft, BW, Kjelleberg, SA, Williams, P (B44) 1999; 33
Arora, N, Kumari, P, Kumar, A, Gangwar, R, Gulati, K, Pruthi, PA, Prasad, R, Kumar, D, Pruthi, V, Poluri, KM (B27) 2019; 12
References_xml – ident: e_1_3_2_27_2
  doi: 10.3390/microorganisms9020311
– ident: e_1_3_2_17_2
  doi: 10.3389/fmicb.2014.00111
– ident: e_1_3_2_43_2
  doi: 10.3389/fnins.2017.00183
– ident: e_1_3_2_48_2
  doi: 10.1016/0304-4203(87)90065-X
– ident: e_1_3_2_9_2
  doi: 10.1038/nmicrobiol.2017.65
– ident: e_1_3_2_20_2
  doi: 10.1038/nature07410
– ident: e_1_3_2_2_2
  doi: 10.1038/483S17a
– ident: e_1_3_2_31_2
  doi: 10.1007/s10811-015-0666-6
– ident: e_1_3_2_44_2
  doi: 10.3389/fpls.2014.00436
– ident: e_1_3_2_45_2
  doi: 10.1046/j.1365-2958.1999.01577.x
– ident: e_1_3_2_52_2
  doi: 10.1111/j.1529-8817.1980.tb00724.x
– ident: e_1_3_2_15_2
  doi: 10.1104/pp.105.071589
– ident: e_1_3_2_50_2
  doi: 10.1002/lom3.10181
– ident: e_1_3_2_34_2
  doi: 10.1016/j.algal.2019.101696
– ident: e_1_3_2_16_2
  doi: 10.1038/s41396-020-00811-y
– ident: e_1_3_2_33_2
  doi: 10.3389/fpls.2015.00700
– ident: e_1_3_2_21_2
  doi: 10.1038/s41592-020-0933-6
– ident: e_1_3_2_22_2
  doi: 10.1038/nbt.3597
– ident: e_1_3_2_26_2
  doi: 10.1021/acs.analchem.0c04795
– ident: e_1_3_2_14_2
  doi: 10.1016/j.algal.2018.08.012
– ident: e_1_3_2_7_2
  doi: 10.3389/fmicb.2016.00828
– ident: e_1_3_2_47_2
  doi: 10.1038/s41598-018-28627-z
– ident: e_1_3_2_60_2
  doi: 10.1093/bioinformatics/bts252
– ident: e_1_3_2_32_2
  doi: 10.1094/MPMI-21-9-1184
– ident: e_1_3_2_25_2
  doi: 10.1016/j.trac.2009.12.004
– ident: e_1_3_2_41_2
  doi: 10.1104/pp.18.00925
– ident: e_1_3_2_5_2
  doi: 10.1111/nph.15765
– ident: e_1_3_2_10_2
  doi: 10.1038/s41564-018-0129-3
– ident: e_1_3_2_30_2
  doi: 10.1016/j.biortech.2016.07.022
– ident: e_1_3_2_56_2
  doi: 10.1021/acs.analchem.7b04400
– ident: e_1_3_2_59_2
  doi: 10.1186/1471-2105-11-395
– ident: e_1_3_2_12_2
  doi: 10.1073/pnas.2012088117
– ident: e_1_3_2_24_2
  doi: 10.1007/s11306-007-0082-2
– ident: e_1_3_2_46_2
  doi: 10.1111/lam.12034
– ident: e_1_3_2_40_2
  doi: 10.1007/BF02857948
– ident: e_1_3_2_49_2
  doi: 10.4319/lom.2008.6.230
– ident: e_1_3_2_35_2
  doi: 10.1016/j.algal.2020.102156
– ident: e_1_3_2_3_2
  doi: 10.1016/j.biotechadv.2007.02.001
– ident: e_1_3_2_23_2
  doi: 10.1007/s11306-007-0070-6
– ident: e_1_3_2_13_2
  doi: 10.1021/ja508782y
– ident: e_1_3_2_51_2
  doi: 10.1046/j.1529-8817.2001.01052.x
– ident: e_1_3_2_38_2
  doi: 10.3390/md17070428
– ident: e_1_3_2_42_2
  doi: 10.1126/sciadv.abd4210
– ident: e_1_3_2_6_2
  doi: 10.1007/s12010-013-0386-9
– ident: e_1_3_2_29_2
  doi: 10.1016/j.algal.2018.12.003
– ident: e_1_3_2_53_2
  doi: 10.1139/m62-029
– ident: e_1_3_2_4_2
  doi: 10.1016/j.rser.2009.07.020
– ident: e_1_3_2_28_2
  doi: 10.1186/s13068-018-1343-1
– ident: e_1_3_2_36_2
  doi: 10.1016/j.algal.2018.101390
– ident: e_1_3_2_39_2
  doi: 10.1038/ismej.2017.27
– ident: e_1_3_2_18_2
  doi: 10.1039/c1mb05196b
– ident: e_1_3_2_37_2
  doi: 10.1016/j.ijpharm.2004.05.020
– ident: e_1_3_2_54_2
  doi: 10.1073/pnas.2019855118
– ident: e_1_3_2_55_2
  doi: 10.1038/s41396-020-0683-6
– ident: e_1_3_2_19_2
  doi: 10.1126/science.1143609
– ident: e_1_3_2_58_2
  doi: 10.1093/bioinformatics/btk039
– ident: e_1_3_2_57_2
  doi: 10.1038/s41598-020-79320-z
– ident: e_1_3_2_8_2
  doi: 10.1111/j.1462-2920.2008.01569.x
– ident: e_1_3_2_11_2
  doi: 10.1073/pnas.1917265117
– volume: 178
  start-page: 1344
  year: 2018
  end-page: 1357
  ident: B40
  article-title: Non-enzymatic synthesis of bioactive isoprostanoids in the diatom Phaeodactylum following oxidative stress
  publication-title: Plant Physiol
  doi: 10.1104/pp.18.00925
– volume: 8
  start-page: 229
  year: 1962
  end-page: 239
  ident: B52
  article-title: Studies of marine planktonic diatoms.1. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran
  publication-title: Can J Microbiol
  doi: 10.1139/m62-029
– volume: 21
  start-page: 1184
  year: 2008
  end-page: 1192
  ident: B31
  article-title: The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-21-9-1184
– volume: 12
  start-page: 2
  year: 2019
  ident: B27
  article-title: Delineating the molecular responses of a halotolerant microalga using integrated omics approach to identify genetic engineering targets for enhanced TAG production
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-018-1343-1
– volume: 33
  start-page: 1254
  year: 1999
  end-page: 1266
  ident: B44
  article-title: Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.1999.01577.x
– volume: 22
  start-page: 634
  year: 2006
  end-page: 636
  ident: B57
  article-title: MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btk039
– volume: 90
  start-page: 1363
  year: 2018
  end-page: 1369
  ident: B55
  article-title: Best-matched internal standard normalization in liquid chromatography-mass spectrometry metabolomics applied to environmental samples
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.7b04400
– volume: 14
  start-page: 217
  year: 2010
  end-page: 232
  ident: B3
  article-title: Microalgae for biodiesel production and other applications: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2009.07.020
– volume: 5
  start-page: 111
  year: 2014
  ident: B16
  article-title: Closely related phytoplankton species produce similar suites of dissolved organic matter
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2014.00111
– volume: 9
  start-page: 311
  year: 2021
  ident: B26
  article-title: Exploring the chemical space of macro- and micro-algae using comparative metabolomics
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9020311
– volume: 7
  start-page: 828
  year: 2016
  ident: B6
  article-title: Indole-3-acetic acid is produced by Emiliania huxleyi coccolith-bearing cells and triggers a physiological response in bald cells
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.00828
– volume: 7
  start-page: 3200
  year: 2011
  end-page: 3206
  ident: B17
  article-title: Untargeted metabolic footprinting reveals a surprising breadth of metabolite uptake and release by Synechococcus sp. PCC 7002
  publication-title: Mol Biosyst
  doi: 10.1039/c1mb05196b
– volume: 11
  start-page: 395
  year: 2010
  ident: B58
  article-title: MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-395
– volume: 117
  start-page: 27445
  year: 2020
  end-page: 27455
  ident: B11
  article-title: Diatom modulation of select bacteria through use of two unique secondary metabolites
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2012088117
– volume: 15
  start-page: 417
  year: 2017
  end-page: 428
  ident: B49
  article-title: Extraction efficiency and quantification of dissolved metabolites in targeted marine metabolomics
  publication-title: Limnol Oceanogr Methods
  doi: 10.1002/lom3.10181
– volume: 118
  year: 2021
  ident: B53
  article-title: Anaerobic gut fungi are an untapped reservoir of natural products
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2019855118
– volume: 17
  start-page: 428
  year: 2019
  ident: B37
  article-title: Prostaglandins in marine organisms: a review
  publication-title: Marine Drugs
  doi: 10.3390/md17070428
– volume: 11
  start-page: 1722
  year: 2017
  end-page: 1726
  ident: B38
  article-title: Animal-like prostaglandins in marine microalgae
  publication-title: ISME J
  doi: 10.1038/ismej.2017.27
– ident: B50
  article-title: Berges JA, Franklin DJ, Harrison PJ. 2001. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J Phycol 37:1138–1145. doi: 10.1046/j.1529-8817.2001.01052.x .
– volume: 53
  start-page: 102156
  year: 2021
  ident: B34
  article-title: Comparison of algae growth and symbiotic mechanisms in the presence of plant growth promoting bacteria and non-plant growth promoting bacteria
  publication-title: Algal Res
  doi: 10.1016/j.algal.2020.102156
– volume: 63
  start-page: 199
  year: 1997
  end-page: 220
  ident: B39
  article-title: Prostaglandins and related substances in plants
  publication-title: Bot Rev
  doi: 10.1007/BF02857948
– volume: 223
  start-page: 100
  year: 2019
  end-page: 106
  ident: B4
  article-title: Algae-bacteria interactions that balance the planktonic microbiome
  publication-title: New Phytol
  doi: 10.1111/nph.15765
– volume: 15
  start-page: 762
  year: 2021
  end-page: 773
  ident: B15
  article-title: Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy
  publication-title: ISME J
  doi: 10.1038/s41396-020-00811-y
– volume: 3
  start-page: 175
  year: 2007
  end-page: 178
  ident: B22
  article-title: The metabolomics standards initiative (MSI)
  publication-title: Metabolomics
  doi: 10.1007/s11306-007-0070-6
– volume: 17
  start-page: 905
  year: 2020
  end-page: 908
  ident: B20
  article-title: Feature-based molecular networking in the GNPS analysis environment
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-0933-6
– volume: 11
  start-page: 183
  year: 2017
  end-page: 118
  ident: B42
  article-title: Peptides as quorum sensing molecules: measurement techniques and obtained levels in vitro and in vivo
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2017.00183
– volume: 5
  start-page: 436
  year: 2014
  ident: B43
  article-title: A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2014.00436
– ident: B51
  article-title: Harrison PJ, Waters RE, Taylor FJR. 1980. A broad-spectrum artificial seawater medium for coastal and open ocean phytoplankton. J Phycol 16:28–35. doi: 10.1111/j.0022-3646.1980.00028.x .
– volume: 38
  start-page: 101390
  year: 2019
  ident: B35
  article-title: Genome-wide exploration of Escherichia coli genes to promote Chlorella vulgaris growth
  publication-title: Algal Res
  doi: 10.1016/j.algal.2018.101390
– volume: 280
  start-page: 199
  year: 2004
  end-page: 208
  ident: B36
  article-title: Photolysis of riboflavin in aqueous solution: a kinetic study
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2004.05.020
– volume: 3
  start-page: 470
  year: 2018
  end-page: 480
  ident: B9
  article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-018-0129-3
– volume: 29
  start-page: 120
  year: 2010
  end-page: 127
  ident: B24
  article-title: Metabolomics analysis II. Preparation of biological samples prior to detection
  publication-title: TrAC Trends Anal Chem
  doi: 10.1016/j.trac.2009.12.004
– volume: 37
  start-page: 260
  year: 2019
  end-page: 268
  ident: B28
  article-title: Elucidating the unique physiological responses of halotolerant Scenedesmus sp. cultivated in sea water for biofuel production
  publication-title: Algal Res
  doi: 10.1016/j.algal.2018.12.003
– volume: 318
  start-page: 245
  year: 2007
  end-page: 251
  ident: B18
  article-title: The Chlamydomonas genome reveals the evolution of key animal and plant functions
  publication-title: Science
  doi: 10.1126/science.1143609
– volume: 483
  start-page: S17
  year: 2012
  end-page: S20
  ident: B1
  article-title: Ocean science: the power of plankton
  publication-title: Nature
  doi: 10.1038/483S17a
– volume: 28
  start-page: 1823
  year: 2012
  end-page: 1829
  ident: B59
  article-title: SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts252
– volume: 2
  start-page: 12
  year: 2017
  ident: B8
  article-title: Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2017.65
– volume: 171
  start-page: 1128
  year: 2013
  end-page: 1142
  ident: B5
  article-title: Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/s12010-013-0386-9
– volume: 218
  start-page: 816
  year: 2016
  end-page: 825
  ident: B29
  article-title: Salinity stress increases lipid, secondary metabolites and enzyme activity in Amphora subtropica and Dunaliella sp. for biodiesel production
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.07.022
– volume: 136
  start-page: 15150
  year: 2014
  end-page: 15153
  ident: B12
  article-title: Hybrid biosynthesis of roseobacticides from algal and bacterial precursor molecules
  publication-title: J Am Chem Soc
  doi: 10.1021/ja508782y
– volume: 56
  start-page: 197
  year: 2013
  end-page: 207
  ident: B45
  article-title: Attenuation of Pseudomonas aeruginosa virulence by marine invertebrate derived Streptomyces sp
  publication-title: Lett Appl Microbiol
  doi: 10.1111/lam.12034
– volume: 25
  start-page: 294
  year: 2007
  end-page: 306
  ident: B2
  article-title: Biodiesel from microalgae
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2007.02.001
– volume: 34
  start-page: 828
  year: 2016
  end-page: 837
  ident: B21
  article-title: Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3597
– volume: 28
  start-page: 861
  year: 2016
  end-page: 876
  ident: B30
  article-title: Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles
  publication-title: J Appl Phycol
  doi: 10.1007/s10811-015-0666-6
– volume: 93
  start-page: 7164
  year: 2021
  end-page: 7171
  ident: B25
  article-title: Salt-tolerant metabolomics for exometabolomic measurements of marine bacterial isolates
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.0c04795
– volume: 139
  start-page: 1995
  year: 2005
  end-page: 2005
  ident: B14
  article-title: Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation
  publication-title: Plant Physiol
  doi: 10.1104/pp.105.071589
– volume: 35
  start-page: 33
  year: 2018
  end-page: 49
  ident: B13
  article-title: Orchestration of transcriptome, proteome and metabolome in the diatom Phaeodactylum tricornutum during nitrogen limitation
  publication-title: Algal Res
  doi: 10.1016/j.algal.2018.08.012
– volume: 44
  start-page: 101696
  year: 2019
  ident: B33
  article-title: Riboflavin and lumichrome exuded by the bacterium Azospirillum brasilense promote growth and changes in metabolites in Chlorella sorokiniana under autotrophic conditions
  publication-title: Algal Res
  doi: 10.1016/j.algal.2019.101696
– volume: 10
  start-page: 1536
  year: 2008
  end-page: 1546
  ident: B7
  article-title: Colony induction and growth inhibition in Desmodesmus quadrispina (Chlorococcales) by allelochemicals released from the filamentous alga Uronema confervicolum (Ulotrichales)
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2008.01569.x
– volume: 8
  start-page: 13
  year: 2018
  ident: B46
  article-title: Indole-3-acetic-acid-induced phenotypic plasticity in Desmodesmus algae
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-28627-z
– volume: 7
  start-page: 9
  year: 2021
  ident: B41
  article-title: Metabolomic shifts associated with heat stress in coral holobionts
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abd4210
– volume: 6
  start-page: 11
  year: 2015
  ident: B32
  article-title: Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.00700
– volume: 14
  start-page: 2236
  year: 2020
  end-page: 2247
  ident: B54
  article-title: Drought and plant litter chemistry alter microbial gene expression and metabolite production
  publication-title: ISME J
  doi: 10.1038/s41396-020-0683-6
– volume: 11
  start-page: 13
  year: 2021
  ident: B56
  article-title: Bioactive diterpenoids impact the composition of the root-associated microbiome in maize (Zea mays)
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79320-z
– volume: 117
  start-page: 3656
  year: 2020
  end-page: 3662
  ident: B10
  article-title: Ecological drivers of bacterial community assembly in synthetic phycospheres
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1917265117
– volume: 3
  start-page: 211
  year: 2007
  end-page: 221
  ident: B23
  article-title: Proposed minimum reporting standards for chemical analysis
  publication-title: Metabolomics
  doi: 10.1007/s11306-007-0082-2
– volume: 20
  start-page: 313
  year: 1987
  end-page: 325
  ident: B47
  article-title: Chromatographic studies of dissolved organic-matter and copper organic-complexes isolated from estuarine waters
  publication-title: Marine Chem
  doi: 10.1016/0304-4203(87)90065-X
– volume: 456
  start-page: 239
  year: 2008
  end-page: 244
  ident: B19
  article-title: The Phaeodactylum genome reveals the evolutionary history of diatom genomes
  publication-title: Nature
  doi: 10.1038/nature07410
– volume: 6
  start-page: 230
  year: 2008
  end-page: 235
  ident: B48
  article-title: A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater
  publication-title: Limnol Oceanogr Methods
  doi: 10.4319/lom.2008.6.230
SSID ssj0001637129
Score 2.3369565
Snippet Microalgae are responsible for nearly half of primary production on earth and play an important role in global biogeochemical cycling as well as in a range of...
Dissolved exometabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an untargeted...
ABSTRACT Dissolved exometabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an...
SourceID doaj
pubmedcentral
osti
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0083521
SubjectTerms BASIC BIOLOGICAL SCIENCES
biological and medical sciences
biomass
Chlamydomonas reinhardtii
Desmodesmus
effector metabolites
energy
Environmental Microbiology
environmental sciences
exometabolome
lumichrome
microalgae
Research Article
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9UwFA9jQ_BF3PyqmyOCIAidbT6a5vGqG0O56oMXhi8hTRMmeFvZ7UD_e89J0-qVMXwqTRMaTs5Jfic55xdCXhShbm3byNxZmAKFVSzX3mKMWFuFoHRdWExwXn6szlfi_YW82CHVlAuTJLg5sZt1PMifLZvVr9eJxfskAocc88f3JEB-cLr2FovVpw9_dlcqrmAlS8eYN7aFORj-wbbWo0jbD48ezOsmyPlv5ORfS9HZfXIvYUi6GAd9n-z47oDcGW-V_PWAfB2Tb0PajaN9oCNHcX9Fl36AUce84w2N0QL09Ge_ngvp53iFN5ZDq3cxZsPTJQbtYc6Hf0hWZ6df3p7n6QqF3IJxDTms_yr4you2sp5jbqAWIH8pHPPKaXA-wKEoWhU0U0o7gE-2CkgRKKT24LDyR2S36zv_hFDtFJO25q1HVrNW27q2yAVTNpwreM_IS5SnmUbQRPeC1WaSvImSN6zMSDGJ3LjERI4XYny_rcmrucmPkYbjtspvcBznisigHQtAn0wySOM96IiQZShdEBX3WqjgLNdl01jbcpmRQ9QCA0AE2XQdhh25wYBDzAQvMvJ8Ug4D9oiHLLbz_fXGgEARMnOpMvJ4VJa5I1woDCjkGVFbarTV0-0v3bfLyPldA04VSj_9byEfkrsMw29KBrp-RHaHq2v_DPDT0BwnY_kNbKcZUg
  priority: 102
  providerName: American Society for Microbiology
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEB5kQfBF_G29UyIIglCvTdKmefTHHYew4oMHhy8hTScouO1x2wP9728m7S67IueLT6XZBrLTmeab9ptvAF4Vsel811Z58PQI1N7I3KJnjlhXx2hsU3gucF5-rk_P9Kfz6nyn1RdzwiZ54MlwR4iEGHRVxjJEXSu02sTglS3b1vtOJfXSwhY7yVR6u1IrQzvZ_BmTnsFHq1kB_G0CHTlrgy78eiX39qMk20-HgcLrb5DzT-bkzlZ0cg_uzhhSvJvWfh9uYf8Abk9dJX8_hG9T8W2c38aJIYpJo3i4FEsc6a5z3fFaJLaAOP41rLaD4ktq4c3jNOtj4mygWDJpj2s-8BGcnRx__XCazy0Uck_BNea0_5uINequ9qi4NtBqsn-lg0QTLCUflFAUnYlWGmMDwSdfR5YI1JVFSljVY1j0Q49PQdhgZOUb1SGrmnXWN41nLZiyVcrQeQav2Z5ujoG1S-mFbNzG8i5Z3skyg2JjchdmJXJuiPHzpilvtlMuJhmOmy5-z_dxeyEraKcB8is3-5X7l19lcMBe4AiIsJpuYNpRGB0lxFKrIoOXG-dwFI_8kcX3OFytHRmUIbOqTAZPJmfZLkRpw4RClYHZc6O9le7_0v_4njS_G8Kp2thn_-OvHcAdycycUlIYHMJivLzC5wStxvZFiqJrIHUitA
  priority: 102
  providerName: Directory of Open Access Journals
Title Identification of Effector Metabolites Using Exometabolite Profiling of Diverse Microalgae
URI https://www.ncbi.nlm.nih.gov/pubmed/34726483
https://journals.asm.org/doi/10.1128/mSystems.00835-21
https://www.proquest.com/docview/2592310357
https://www.osti.gov/servlets/purl/1842430
https://pubmed.ncbi.nlm.nih.gov/PMC8562479
https://doaj.org/article/ee163451f1cf463e947fca391bbaad35
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB5qi-CL-LuxekQQBCE12d1ksw8i13qlKFeLeHD4smySXRV6id6l0P73zmySoydHwaeQTTaE2Zndb3ZnvgF4Hbu8MlWRRqXBKVAYySJlDcWIVZlzUuWxoQTn6Vl2OhOf5ul8B4byVr0AV1tdO6onNVteHF79uf6ABv--S4DJ3y16cu9DjyciSivf88dFFMnXo32_5ZJxmfi6ZYxLFSESkv0559av4CRtVgu2sWB5Xn-8NGh_2zDpv6GVN9aqkwdwvweZ4bjTioewY-tHcLcrO3n9GL532bmu364LGxd2JMbNMpzaFtWCEpNXoQ8nCCdXzWLdGJ77Gt_Ujr0--qAOG04pqo-SQuwTmJ1Mvh2fRn2Nhcig9bURAgTpbGZFlRnLKXlQCRygVJTMylKhd4IeR1xJp5iUqkR8ZTJHHIIiVRY9Wv4UduumtvsQqlKy1OS8skR7VimT54bIYpKCc4n3AbwheephjLX3P1iuB8lrL3nNkgDiQeS67KnKqWLGxW1d3q67_O54Om57-YjGcf0iUWz7hmb5Q_cWq61FfRFp4pLSiYxbJaQrDVdJURhT8TSAA9ICjUiF6HZLiksqW40eMxM8DuDVoBwaDZZOYUxtm8uVRoESpuapDOBZpyzrH-FCUsQhD0BuqNHGn24-qX_99KTgOQJZIdXz_5HDAdxjFKKTMFT3F7DbLi_tS8RYbTGCO3IuR7A3Hs--fMbr0eTs_OvI71iMvFX9BYM3KcA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9UwFA-yIfoynJ91fkQQBKGzTdKmebzOjavbnT7swvAlpGmCym471g62_95z0tyrV8bwqTRtaDg5p_md5JzfIeRt5qvGNHWRWgO_QGEkS5UzGCPWlN5LVWUGE5xnx-V0Lr6cFqcxqhJzYX5hXd6zftf0i3COj4aNG9GxHmH1YRGZvHcDeEgxh3yzYCoDHd-cTOZfD__ssJRcwmoWjzJv7Av_YfgQW1uTAnU_XDowsZtg57_Rk38tRwcPyFbEkXQyTvw2uePah-TuWFny-hH5Pibg-rgjRztPR57i7oLO3AAzj7nHPQ0RA3T_qlusGum3UMYb26HXpxC34egMA_cw78M9JvOD_ZO9aRrLKKQGDGxIAQNI70onmtI4jvmBSsAcFMIyJ60CBwSciqyRXjEplQUIZUqPNIGiUA6cVv6EbLRd654Rqqxkhal445DZrFGmqgzyweQ15xLuE_IO5amjHfQ6uBis0kvJ6yB5zfKEZEuRaxvZyLEoxtltXd6vupyPVBy3vfwR53H1IrJohwZQKh2NUjsHOiKK3OfWi5I7JaS3hqu8ro1peJGQHdQCDWAEGXUthh7ZQYNTzATPEvJmqRwabBIPWkzrusteg0ARNvNCJuTpqCyrgXAhMaiQJ0SuqdHaSNeftD9_BN7vCrCqkOr5fwv5Nbk3PZkd6aPPx4c75D7DcJycgd6_IBvDxaV7CXhqqF9Fw_kN3u0dow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB9kD8UX8fvq-VFBEISebZI2zePq3XJ67nkPLhy-hDRNUHDb47YH-t87k2ZXV47Dp9K0oWU-mpnmN78BeJX7ujVtU2bW4CdQGMky5QxhxNrKe6nq3FCB8_ykOlqIj2flWURVUi1MlOBq36yWYSOfPPu89bEfYf12GZm890PwkFEN-U5Ju2UT2JlOF5-P__xhqbjE1SxuZV45F7_D-By2tSYF6n489OhiV4Wd_6In_1qOZnfhTowj0-mo-Htww3X34ebYWfLXA_g6FuD6-Ecu7X068hT3F-ncDah5qj1epQExkB7-7JebwfQ0tPGmcZx1EHAbLp0TcI_qPtxDWMwOv7w_ymIbhcyggw0ZxgDSu8qJtjKOU32gEqiDUljmpFWYgGBSkbfSKyalshhCmcoTTaAolcOklT-CSdd3bhdSZSUrTc1bR8xmrTJ1bYgPpmg4l3iewGuSp15rUYcUg9V6LXkdJK9ZkUC-Frm2kY2cmmL8uG7Km82U85GK47qb35EeNzcSi3YYQJvS0Sm1c2gjoix8Yb2ouFNCemu4KprGmJaXCeyRFWgMRohR1xL0yA4ak2ImeJ7Ay7VxaPRJ2mgxnesvVxoFSmEzL2UCj0dj2bwIF5JAhTwBuWVGW2-6faX7_i3wftcYqwqpnvy3kF_ArdODmf704eR4D24zQuMUDM3-KUyGi0v3DMOpoXke_eY3wB8dSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Effector+Metabolites+Using+Exometabolite+Profiling+of+Diverse+Microalgae&rft.jtitle=mSystems&rft.au=Brisson%2C+Vanessa&rft.au=Mayali%2C+Xavier&rft.au=Bowen%2C+Benjamin&rft.au=Golini%2C+Amber&rft.date=2021-12-21&rft.issn=2379-5077&rft.eissn=2379-5077&rft.volume=6&rft.issue=6&rft_id=info:doi/10.1128%2FmSystems.00835-21&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mSystems_00835_21
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5077&client=summon