Wind Effects on Cable-Supported Bridges

As an in-depth guide to understanding wind effects on cable-supported bridges, this book uses analytical, numerical and experimental methods to give readers a fundamental and practical understanding of the subject matter. It is structured to systemically move from introductory areas through to advan...

Full description

Saved in:
Bibliographic Details
Main Author Xu, You-Lin
Format eBook
LanguageEnglish
Published Newark Wiley 2013
John Wiley & Sons, Incorporated
Wiley-Blackwell
Edition1. Aufl.
Subjects
Online AccessGet full text
ISBN9781118188286
1118188284
9781118188316
1118188314
DOI10.1002/9781118188293

Cover

Table of Contents:
  • 2.5.3 Amplification Factor and Speed-up Ratio -- 2.5.4 Funneling Effect -- 2.6 Design Wind Speeds -- 2.6.1 Exceedance Probability and Return Period -- 2.6.2 Probability Distribution Function -- 2.6.3 Generalized Extreme Value Distribution -- 2.6.4 Extreme Wind Estimation by the Gumbel Distribution -- 2.6.5 Extreme Wind Estimation by the Method of Moments -- 2.6.6 Design Lifespan and Risk -- 2.6.7 Parent Wind Distribution -- 2.7 Directional Preference of High Winds -- 2.8 Case Study: Tsing Ma Bridge Site -- 2.8.1 Anemometers in WASHMS -- 2.8.2 Typhoon Wind Characteristics -- 2.8.3 Monsoon Wind and Joint Probability Density Function -- 2.9 Notations -- References -- 3 Mean Wind Load and Aerostatic Instability -- 3.1 Preview -- 3.2 Mean Wind Load and Force Coefficients -- 3.2.1 Bernoulli's Equation and Wind Pressure -- 3.2.2 Mean Wind Load -- 3.2.3 Wind Force Coefficients -- 3.3 Torsional Divergence -- 3.4 3-D Aerostatic Instability Analysis -- 3.5 Finite Element Modeling of Long-Span Cable-Supported Bridges -- 3.5.1 Theoretical Background -- 3.5.2 Spine Beam Model -- 3.5.3 Multi-Scale Model -- 3.5.4 Modeling of Cables -- 3.6 Mean Wind Response Analysis -- 3.6.1 Determination of Reference Position -- 3.6.2 Mean Wind Response Analysis -- 3.7 Case Study: Stonecutters Bridge -- 3.7.1 Main Features of Stonecutters Bridge -- 3.7.2 Finite Element Modeling of Stonecutters Bridge -- 3.7.3 Aerodynamic Coefficients of Bridge Components -- 3.7.4 Mean Wind Response Analysis -- 3.8 Notations -- References -- 4 Wind-Induced Vibration and Aerodynamic Instability -- 4.1 Preview -- 4.2 Vortex-Induced Vibration -- 4.2.1 Reynolds Number and Vortex Shedding -- 4.2.2 Strouhal Number and Lock-In -- 4.2.3 Vortex-Induced Vibration -- 4.3 Galloping Instability -- 4.3.1 Galloping Mechanism -- 4.3.2 Criterion for Galloping Instability -- 4.3.3 Wake Galloping
  • 5.6.1 Joint Probability Density Function (JPDF) of Wind Speed and Direction -- 5.6.2 Probability Density Function of Rainfall Intensity -- 5.6.3 Occurrence Range of Rain-Wind-Induced Cable Vibration -- 5.6.4 Occurrence Probability of Rain-Wind-Induced Cable Vibration -- 5.7 Case Study: Stonecutters Bridge -- 5.7.1 Statistical Analysis of Wind Data -- 5.7.2 Joint Probability Density Function of Wind Speed and Wind Direction -- 5.7.3 Statistical Analysis of Rainfall Data -- 5.7.4 Probability Density Function of Rainfall Intensity -- 5.7.5 Occurrence Range of Rain-Wind-Induced Cable Vibration -- 5.7.6 Hourly Occurrence Probability and Annual Risk -- 5.8 Notations -- References -- 6 Wind-Vehicle-Bridge Interaction -- 6.1 Preview -- 6.2 Wind-Road Vehicle Interaction -- 6.2.1 Wind-Induced Vehicle Accidents -- 6.2.2 Modeling of Road Vehicle -- 6.2.3 Modeling of Road Surface Roughness -- 6.2.4 Aerodynamic Forces and Moments on Road Vehicle -- 6.2.5 Governing Equations of Motion of Road Vehicle -- 6.2.6 Case Study -- 6.2.7 Effects of Road Surface Roughness -- 6.2.8 Effects of Vehicle Suspension System -- 6.2.9 Accident Vehicle Speed -- 6.3 Formulation of Wind-Road Vehicle-Bridge Interaction -- 6.3.1 Equations of Motion of Coupled Road Vehicle-Bridge System -- 6.3.2 Equations of Motion of Coupled Wind-Road Vehicle-Bridge System -- 6.4 Safety Analysis of Road Vehicles on Ting Kau Bridge under Crosswind -- 6.4.1 Ting Kau Bridge -- 6.4.2 Wind Forces on Bridge -- 6.4.3 Scenario for Extreme Case Study -- 6.4.4 Dynamic Response of High-Sided Road Vehicle -- 6.4.5 Accident Vehicle Speed -- 6.4.6 Comparison of Safety of Road Vehicle Running on Bridge and Ground -- 6.5 Formulation of Wind-Railway Vehicle Interaction -- 6.5.1 Modeling of Vehicle Subsystem -- 6.5.2 Modeling of Track Subsystem -- 6.5.3 Wheel and Rail Interaction -- 6.5.4 Rail Irregularity
  • 4.4 Flutter Analysis -- 4.4.1 Introduction -- 4.4.2 Self-Excited Forces and Aerodynamic Derivatives -- 4.4.3 Theodorsen Circulatory Function -- 4.4.4 1-D Flutter Analysis -- 4.4.5 2-D Flutter Analysis -- 4.4.6 3-D Flutter Analysis in the Frequency Domain -- 4.4.7 Flutter Analysis in the Time Domain -- 4.5 Buffeting Analysis in the Frequency Domain -- 4.5.1 Background -- 4.5.2 Buffeting Forces and Aerodynamic Admittances -- 4.5.3 3-D Buffeting Analysis in the Frequency Domain -- 4.6 Simulation of Stationary Wind Field -- 4.7 Buffeting Analysis in the Time Domain -- 4.8 Effective Static Loading Distributions -- 4.8.1 Gust Response Factor and Peak Factor -- 4.8.2 Effective Static Loading Distributions -- 4.9 Case Study: Stonecutters Bridge -- 4.9.1 Dynamic and Aerodynamic Characteristics of Stonecutters Bridge -- 4.9.2 Flutter Analysis of Stonecutters Bridge -- 4.9.3 Buffeting Analysis of Stonecutters Bridge -- 4.10 Notations -- References -- 5 Wind-Induced Vibration of Stay Cables -- 5.1 Preview -- 5.2 Fundamentals of Cable Dynamics -- 5.2.1 Vibration of a Taut String -- 5.2.2 Vibration of an Inclined Cable with Sag -- 5.3 Wind-Induced Cable Vibrations -- 5.3.1 Buffeting by Wind Turbulence -- 5.3.2 Vortex-Induced Vibration -- 5.3.3 Galloping of Dry Inclined Cables -- 5.3.4 Wake Galloping for Groups of Cables -- 5.4 Mechanism of Rain-Wind-Induced Cable Vibration -- 5.4.1 Background -- 5.4.2 Analytical Model of SDOF -- 5.4.3 Horizontal Cylinder with Fixed Rivulet -- 5.4.4 Inclined Cylinder with Moving Rivulet -- 5.4.5 Analytical Model of 2DOF -- 5.5 Prediction of Rain-Wind-Induced Cable Vibration -- 5.5.1 Analytical Model for Full-Scale Stay Cables -- 5.5.2 Prediction of Rain-Wind-Induced Vibration of Full-Scale Stay Cable -- 5.5.3 Parameter Studies -- 5.6 Occurrence Probability of Rain-Wind-Induced Cable Vibration
  • Wind Effects on Cable-Supported Bridges -- Contents -- Foreword by Ahsan Kareem -- Foreword by Hai-Fan Xiang -- Preface -- Acknowledgements -- 1 Wind Storms and Cable-Supported Bridges -- 1.1 Preview -- 1.2 Basic Notions of Meteorology -- 1.2.1 Global Wind Circulations -- 1.2.2 Pressure Gradient Force -- 1.2.3 Coriolis Force -- 1.2.4 Geostrophic Wind -- 1.2.5 Gradient Wind -- 1.2.6 Frictional Effects -- 1.3 Basic Types of Wind Storms -- 1.3.1 Gales from Large Depressions -- 1.3.2 Monsoons -- 1.3.3 Tropical Cyclones (Hurricanes or Typhoons) -- 1.3.4 Thunderstorms -- 1.3.5 Downbursts -- 1.3.6 Tornadoes -- 1.3.7 Downslope Winds -- 1.4 Basic Types of Cable-Supported Bridges -- 1.4.1 Main Features of Cable-Supported Bridges -- 1.4.2 Suspension Bridges -- 1.4.3 Cable-Stayed Bridges -- 1.4.4 Hybrid Cable-Supported Bridges -- 1.5 Wind Damage to Cable-Supported Bridges -- 1.5.1 Suspension Bridges -- 1.5.2 Cable-Stayed Bridges -- 1.5.3 Stay Cables -- 1.5.4 Road Vehicles Running on Bridge -- 1.6 History of Bridge Aerodynamics -- 1.7 Organization of this Book -- 1.8 Notations -- References -- 2 Wind Characteristics in Atmospheric Boundary Layer -- 2.1 Preview -- 2.2 TurbulentWinds in Atmospheric Boundary Layer -- 2.3 Mean Wind Speed Profiles -- 2.3.1 The "Logarithmic Law" -- 2.3.2 The "Power Law" -- 2.3.3 Mean Wind Speed Profile Over Ocean -- 2.3.4 Mean Wind Speed Profile in Tropical Cyclone -- 2.4 Wind Turbulence -- 2.4.1 Standard Deviations -- 2.4.2 Turbulence Intensities -- 2.4.3 Time Scales and Integral Length Scales -- 2.4.4 Probability Density Functions -- 2.4.5 Power Spectral Density Functions -- 2.4.6 Covariance and Correlation -- 2.4.7 Cross-Spectrum and Coherence -- 2.4.8 Gust Wind Speed and Gust Factor -- 2.5 Terrain and Topographic Effects -- 2.5.1 Change of Surface Roughness -- 2.5.2 Amplification of Wind by Hills
  • 6.5.5 Wind Forces on Ground Railway Vehicles -- 6.5.6 Numerical Solution -- 6.6 Safety and Ride Comfort of Ground Railway Vehicle under Crosswind -- 6.6.1 Vehicle and Track Models -- 6.6.2 Wind Forces on Railway Vehicle -- 6.6.3 Rail Irregularity -- 6.6.4 Response of Coupled Vehicle-Track System in Crosswind -- 6.6.5 Safety and Ride Comfort Performance -- 6.7 Wind-Railway Vehicle-Bridge Interaction -- 6.7.1 Formulation of Wind-Railway Vehicle-Bridge Interaction -- 6.7.2 Engineering Approach for Determining Wind Forces on Moving Vehicle -- 6.7.3 Case Study -- 6.8 Notations -- References -- 7 Wind Tunnel Studies -- 7.1 Preview -- 7.2 Boundary Layer Wind Tunnels -- 7.2.1 Open-Circuit Wind Tunnel -- 7.2.2 Closed-Circuit Wind Tunnel -- 7.2.3 Actively Controlled Wind Tunnel -- 7.3 Model Scaling Requirements -- 7.3.1 General Model Scaling Requirements -- 7.3.2 Notes on Model Scaling Requirements -- 7.3.3 Blockage Consideration -- 7.4 Boundary Wind Simulation -- 7.4.1 Natural Growth Method -- 7.4.2 Augmented Method -- 7.4.3 Actively Controlled Grids and Spires -- 7.4.4 Actively Controlled Multiple Fans -- 7.4.5 Topographic Models -- 7.4.6 Instrumentation for Wind Measurement in Wind Tunnel -- 7.5 Section Model Tests -- 7.5.1 Models and Scaling -- 7.5.2 Section Model Tests for Force Coefficients -- 7.5.3 Section Model Tests for Flutter Derivatives and Vortex-Induced Vibration -- 7.5.4 Section Model Tests with Pressure Measurements -- 7.5.5 Section Model Tests for Aerodynamic Admittance -- 7.6 Taut Strip Model Tests -- 7.7 Full Aeroelastic Model Tests -- 7.8 Identification of Flutter Derivatives -- 7.8.1 Free Vibration Test of Section Model -- 7.8.2 Forced Vibration Test of Section Model -- 7.8.3 Free Vibration Test of Taut Strip Model and Full Aeroelastic Model -- 7.9 Identification of Aerodynamic Admittance -- 7.10 Cable Model Tests
  • 7.10.1 Inclined Dry Cable Tests