Trilevel and Multilevel Optimization using Monotone Operator Theory

We consider rather a general class of multi-level optimization problems, where a convex objective function is to be minimized subject to constraints of optimality of nested convex optimization problems. As a special case, we consider a trilevel optimization problem, where the objective of the two lo...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Shafiei, Allahkaram, Kungurtsev, Vyacheslav, Marecek, Jakub
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 19.10.2023
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2105.09407

Cover

Abstract We consider rather a general class of multi-level optimization problems, where a convex objective function is to be minimized subject to constraints of optimality of nested convex optimization problems. As a special case, we consider a trilevel optimization problem, where the objective of the two lower layers consists of a sum of a smooth and a non-smooth term.~Based on fixed-point theory and related arguments, we present a natural first-order algorithm and analyze its convergence and rates of convergence in several regimes of parameters.
AbstractList Mathematical Methods of Operations Research, 2024 We consider rather a general class of multi-level optimization problems, where a convex objective function is to be minimized subject to constraints of optimality of nested convex optimization problems. As a special case, we consider a trilevel optimization problem, where the objective of the two lower layers consists of a sum of a smooth and a non-smooth term.~Based on fixed-point theory and related arguments, we present a natural first-order algorithm and analyze its convergence and rates of convergence in several regimes of parameters.
We consider rather a general class of multi-level optimization problems, where a convex objective function is to be minimized subject to constraints of optimality of nested convex optimization problems. As a special case, we consider a trilevel optimization problem, where the objective of the two lower layers consists of a sum of a smooth and a non-smooth term.~Based on fixed-point theory and related arguments, we present a natural first-order algorithm and analyze its convergence and rates of convergence in several regimes of parameters.
Author Marecek, Jakub
Kungurtsev, Vyacheslav
Shafiei, Allahkaram
Author_xml – sequence: 1
  givenname: Allahkaram
  surname: Shafiei
  fullname: Shafiei, Allahkaram
– sequence: 2
  givenname: Vyacheslav
  surname: Kungurtsev
  fullname: Kungurtsev, Vyacheslav
– sequence: 3
  givenname: Jakub
  surname: Marecek
  fullname: Marecek, Jakub
BackLink https://doi.org/10.1007/s00186-024-00852-5$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2105.09407$$DView paper in arXiv
BookMark eNotj8FOwzAQRC0EEqX0AzgRiXOCvc4mzhFVUJBa9ZJ75DgOuErt4DgV5esJbQ-j1WhGu_vuyLV1VhPywGiSCkT6LP2POSTAKCa0SGl-RWbAOYtFCnBLFsOwo5RClgMin5Fl6U2nD7qLpG2izdiFi932wezNrwzG2WgcjP2MNs66MF2bMu1lcD4qv7Tzx3ty08pu0IvLnJPy7bVcvsfr7epj-bKOJYKIFQKqVMgCNEfBQAJj2FKRMdoiy9uCaVUXNVdtJuocG43FJGwE8FrVUvE5eTyvPRFWvTd76Y_VP2l1Ip0aT-dG7933qIdQ7dzo7fRTBcgpgMBc8D-kz1hY
ContentType Paper
Journal Article
Copyright 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
GOX
DOI 10.48550/arxiv.2105.09407
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (subscription)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2105_09407
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
GOX
ID FETCH-LOGICAL-a528-c525c48a92e35812a2115f08610f517f91ecb9b3cf68b75de59de55d823bcbac3
IEDL.DBID 8FG
IngestDate Wed Jul 23 00:22:49 EDT 2025
Mon Jun 30 09:13:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a528-c525c48a92e35812a2115f08610f517f91ecb9b3cf68b75de59de55d823bcbac3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2530228578?pq-origsite=%requestingapplication%
PQID 2530228578
PQPubID 2050157
ParticipantIDs arxiv_primary_2105_09407
proquest_journals_2530228578
PublicationCentury 2000
PublicationDate 20231019
PublicationDateYYYYMMDD 2023-10-19
PublicationDate_xml – month: 10
  year: 2023
  text: 20231019
  day: 19
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2023
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8525447
SecondaryResourceType preprint
Snippet We consider rather a general class of multi-level optimization problems, where a convex objective function is to be minimized subject to constraints of...
Mathematical Methods of Operations Research, 2024 We consider rather a general class of multi-level optimization problems, where a convex objective function is...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Computational geometry
Computer Science - Artificial Intelligence
Convergence
Convexity
First order algorithms
Fixed points (mathematics)
Mathematics - Optimization and Control
Optimization
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NSwMxEB1qT15EUWm1Sg5eo5uk2U2OUqxF0F5W6G3Jpwhapa3Fn-8ku8WDeMhhs1mWvGSSGZL3BuDKMO5FGQW1wjk6dppRZaqKll4UyjHLXExs5MencvY8fljIRQ_IjgtjVt-v21Yf2K5vMB6R10nhrdpLXMU0a-_ni_ZwMktxde1_26GPmav-LK15v5gewkHn6JHbdmSOoBeWxzCpV2iF2_BGMIAnmfzaPs7Rct87SiRJd9FfCFrbR1LKxnchn4WTlkd_AvX0rp7MaJfGgBrJFXWSSzdWRvOQtMa4wZBLRowkWBElq6JmwVmNUMVS2Ur6IDUW6RUX1lnjxCn0l_i3AZAiMm-00ugVoCPBEFhdFF546bUTpYlDGOTON5-tUkWTcGkyLkMY7fBoulm6bnhKGcQVGu3Z_1-ew35KsZ7Wa6ZH0N-svsIFbsQbe5lH4wfCJ4i_
  priority: 102
  providerName: Cornell University
Title Trilevel and Multilevel Optimization using Monotone Operator Theory
URI https://www.proquest.com/docview/2530228578
https://arxiv.org/abs/2105.09407
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1LS8MwOOiK4M0nm87Rg9dsTbK0yUlw7IGwBzJht5ImqQi6zW4OT_52v6SdHgQPLSQ5lH7PfG-EbhWhhsU5wxnTGne1JFioJMGxYZHQJCM6d9XI40k8euo-LPiicrhtqrTKvUz0gtqstPORd6gbb0MFENjd-h27qVEuulqN0DhEAaFASa5SfDD88bHQOIEbMyuDmb51V0cVny-7Ntg5vO06x4FSCvzWH1Hs9cvgBAUztbbFKTqwyzN05NMy9eYc9eYFcO3OvoZg8Ie-WLZcToHT36oSytDlrj-HwJ0r11kbzqyPnYdl3f0Fmg_6894IV2MPsOJUYM0p112hJLWuNxlVYKLxHCwPEuWcJLkkVmcSQJvHIku4sVzCw42gLNOZ0uwS1ZbwtToKo5wYJYWEWwRcPAggQkaRYYYbqVms8gaq-59P12Vni9TBJfVwaaDmHh5pRdWb9BcHV_8fX6NjN5bdyXgim6i2LT7sDSjvbdbyGGqh4L4_mT3CajhdwHv81f8GDB2dPg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VVgg2nuJRIAOMgdiuk3iokCitWloKQkViixzbQUhQSlsK_Dj-G2cnhQGJjSFDYsmRz-d7-O67AziUhGoWZsxPmVJ-TQnixzKK_FCzIFYkJSqzaOTLfti-rV3c8bsSfM6xMDatci4TnaDWz8rekZ9Q296Gxshgp6MX33aNstHVeQsNWbRW0HVXYqwAdnTNxxu6cJN65xz3-4jSVnPQaPtFlwFfchr7ilOuarEU1NhSYFSiR8QzNPRJkHESZYIYlQpcSRbGacS14QIfrmPKUpVKxXDaBaig1cHwUFXOmv3rm-9LHhpGaLKzPJrqaoedyPH7w-wYHS1-bEvXoVasuE-_dIFTcK0VqFzLkRmvQskM12DR5YWqyTo0BmMUGzPz6Mmh9hxaN3-9QlHzVGA4PZs8f--heHi2pb1xzLjgvZcD_zdg8B8U2YTyEP-2BV6QES1FLNCMQcuHICeIINBMcy0UC2W2DVtu8ckoL62RWLokji7bUJ3TIymO1ST5YYKdv4cPYKk9uOwlvU6_uwvLtke8VThEVKE8Hb-aPbQkpul-sV8eJP_MIV8LAdwm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trilevel+and+Multilevel+Optimization+using+Monotone+Operator+Theory&rft.jtitle=arXiv.org&rft.au=Shafiei%2C+Allahkaram&rft.au=Kungurtsev%2C+Vyacheslav&rft.au=Marecek%2C+Jakub&rft.date=2023-10-19&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2105.09407