Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning

Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity thre...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Masuyama, Naoki, Amako, Narito, Yamada, Yuna, Nojima, Yusuke, Ishibuchi, Hisao
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 07.07.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2201.10713

Cover

Abstract Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.
AbstractList IEEE Access, vol. 10, pp. 68042-68056, June 2022 Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.
Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.
Author Masuyama, Naoki
Ishibuchi, Hisao
Nojima, Yusuke
Amako, Narito
Yamada, Yuna
Author_xml – sequence: 1
  givenname: Naoki
  surname: Masuyama
  fullname: Masuyama, Naoki
– sequence: 2
  givenname: Narito
  surname: Amako
  fullname: Amako, Narito
– sequence: 3
  givenname: Yuna
  surname: Yamada
  fullname: Yamada, Yuna
– sequence: 4
  givenname: Yusuke
  surname: Nojima
  fullname: Nojima, Yusuke
– sequence: 5
  givenname: Hisao
  surname: Ishibuchi
  fullname: Ishibuchi, Hisao
BackLink https://doi.org/10.1109/ACCESS.2022.3186479$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2201.10713$$DView paper in arXiv
BookMark eNotkMtOwzAQRS0EEqX0A1hhiXWKH7WTLKtAKVIlJMg-ctxx6yrYwU4KFT9P2rKaxZx7NXNu0KXzDhC6o2Q6y4Qgjyr82P2UMUKnlKSUX6AR45wm2YyxazSJcUcIYTJlQvAR-p2vVdvZPeB3iN4ppwGXW_DhkNQqwhqXvvWN31itGlw0fewgWLfB37bbYoWf7N7GY3ppIaigtyfuowu97voAuFCtqhvA3uDCu866flivQAU3lNyiK6OaCJP_OUbl4rkslsnq7eW1mK8SJViWZEYbI4nMgWgDIGvGU25qwwkVJhfDW0LqtcprqoWowcy0kZwyBpQZDanmY3R_rj2ZqdpgP1U4VEdD1cnQQDyciTb4rx5iV-18H9xwU8Uk4zTP0jzjf8tsbYg
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/licenses/by-nc-nd/4.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2201.10713
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2201_10713
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a528-8fcff6069e0cfee6b2373fbf3015f9584256cda9b1c55bef4cf63122e12fce7c3
IEDL.DBID BENPR
IngestDate Tue Jul 22 21:56:26 EDT 2025
Mon Jun 30 09:18:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a528-8fcff6069e0cfee6b2373fbf3015f9584256cda9b1c55bef4cf63122e12fce7c3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2623198798?pq-origsite=%requestingapplication%&accountid=15518
PQID 2623198798
PQPubID 2050157
ParticipantIDs arxiv_primary_2201_10713
proquest_journals_2623198798
PublicationCentury 2000
PublicationDate 20220707
PublicationDateYYYYMMDD 2022-07-07
PublicationDate_xml – month: 07
  year: 2022
  text: 20220707
  day: 07
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8027093
SecondaryResourceType preprint
Snippet Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the...
IEEE Access, vol. 10, pp. 68042-68056, June 2022 Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Cluster analysis
Clustering
Computer Science - Learning
Computer Science - Neural and Evolutionary Computing
Data points
Information retrieval
Machine learning
Resonance
Similarity
Structural hierarchy
Topology
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09SwNBEF1iKhtRVBKNMoXtYW7v9j7KEA1BUAsjpDv2a-QgJCExEvDPO7N3wUJsl91m9uO9meW9EeLO5QUWGk1k0owSlNipqFB5GVlWOtIR0Cp0nnt-yabv6dNczTsCDloYvdnXX40_sNneS4Inyi9zbkt7RESBxbyv8-ZzMlhxtfN_5xHHDEN_ntaAF5NTcdISPRg1O3MmOn55Lr5HTq_5gQEum7PXhYdGHR8xnDiYNT0LOHIwXuzYxYCwBbhaChoeapaC0-ppzbrh0MZkAW_BAna38TAm5DMLDysEdp2q2W4UWgfVjwsxmzzOxtOobX8QaSWLqECLSOlF6YcWvc-MTPIEDdKNVFgq_j7LrNOlia1SxmNqMUtiKX0s0frcJpeiu1wtfU9ASSRLWiJXmTWpHSoTG3SptamLaRhlX_RC0Kp143BRcTyrEM--GBziWLWne1tJ4kxcrCiLq_9XXotjyVKBUAodiC7Fwt8QgH-a27CLP_yEnXA
  priority: 102
  providerName: Cornell University
Title Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning
URI https://www.proquest.com/docview/2623198798
https://arxiv.org/abs/2201.10713
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfDmk1ZrycHrqpvd7OMgorW1CFbRCr0teUqhtLW1Igj-dmfSrR4ELwubZS-TZF7J930AxybNXCadClScYIESGhFkIs0DTUhHXAJSeOW5u17SfY5vB2KwBr0VFoauVa58onfUZqKpR37KMU5TgZxnF9PXgFSj6HR1JaEhS2kFc-4pxtahyokZqwLVq3bv4fGn68KTFHPoaHm86cm8TuXsY_h-wjEQYiWbksxB1Q_9cc4-4nS2oPogp3a2DWt2vAMb_qKmnu_C56WRU3JRjBrvxJZh2RJfH1BAMqy_VD0g27PWaEE8CBidGPVbmWTXQwKT49_dISGPvRDKiD15EtnFzLIWxk41smziGPFWDYmwlJUcrC970O-0-61uUAooBFLwLMicdg4LlNyeaWdtoniURk453NPC5YIO4BJtZK5CLYSyLtYuiULObcidtqmO9qEynoxtDViOaRrXmJ4lWsX6TKhQORNrHZsQhx2vQ80brZguOTIKsmfh7VmHxsqORbk_5sXvbB78__kQNjkBDnxDtQEVtIc9wjTgTTVhPevcNMsZxreb-wE-777a39SOt_g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BKwQ3VrHjAxwDxImzHBCCFlS2CkGRuEVeUaWqLS2r-Db-jRk3hQMSN66OksN4Mpv93gPYNmnmMulUoOIEG5TQiCATaR5oQjqiC0jhleeumknjLj6_F_cT8DnGwtC1ynFM9IHa9DTNyPc45mlqkPPssP8YkGoUna6OJTRkKa1gDjzFWAnsuLDvr9jCDQ_O6rjfO5yfnrRqjaBUGQik4FmQOe0cVvG53dfO2kTxKI2ccuj4wuWCTqkSbWSuQi2Esi7WLolCzm3InbapjvCzk1CNozjH3q96fNK8vvke8vAkxZI9Gp2meu6wPTl4a7_scsy72DinpKpQ9Uu_coFPcKezUL2WfTuYgwnbnYcpfy9UDxfg48jIPkVERnN-IuewbATnDyj_GdYaiSzQVrNa55loFzAZMhrvMsnqbcKu49uNNgGdve5Kh916ztrngWU1TNWqY1nPMaLJahM_KispXx8WofUfllyCSrfXtcvAcqwKucZqMNEq1vtChcqZWOvYhLjs-Aose6MV_RElR0H2LLw9V2B9bMei_B2HxY_zrP79eAumG62ry-LyrHmxBjOcsA5-lrsOFbSN3cAK5EltlvvMoPhnz_oCO17ymg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Resonance+Theory-based+Topological+Clustering+with+a+Divisive+Hierarchical+Structure+Capable+of+Continual+Learning&rft.jtitle=arXiv.org&rft.au=Masuyama%2C+Naoki&rft.au=Amako%2C+Narito&rft.au=Yamada%2C+Yuna&rft.au=Nojima%2C+Yusuke&rft.date=2022-07-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2201.10713