Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning
Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity thre...
Saved in:
| Published in | arXiv.org |
|---|---|
| Main Authors | , , , , |
| Format | Paper Journal Article |
| Language | English |
| Published |
Ithaca
Cornell University Library, arXiv.org
07.07.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2331-8422 |
| DOI | 10.48550/arxiv.2201.10713 |
Cover
| Abstract | Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms. |
|---|---|
| AbstractList | IEEE Access, vol. 10, pp. 68042-68056, June 2022 Adaptive Resonance Theory (ART) is considered as an effective approach for
realizing continual learning thanks to its ability to handle the
plasticity-stability dilemma. In general, however, the clustering performance
of ART-based algorithms strongly depends on the specification of a similarity
threshold, i.e., a vigilance parameter, which is data-dependent and specified
by hand. This paper proposes an ART-based topological clustering algorithm with
a mechanism that automatically estimates a similarity threshold from the
distribution of data points. In addition, for improving information extraction
performance, a divisive hierarchical clustering algorithm capable of continual
learning is proposed by introducing a hierarchical structure to the proposed
algorithm. Experimental results demonstrate that the proposed algorithm has
high clustering performance comparable with recently-proposed state-of-the-art
hierarchical clustering algorithms. Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms. |
| Author | Masuyama, Naoki Ishibuchi, Hisao Nojima, Yusuke Amako, Narito Yamada, Yuna |
| Author_xml | – sequence: 1 givenname: Naoki surname: Masuyama fullname: Masuyama, Naoki – sequence: 2 givenname: Narito surname: Amako fullname: Amako, Narito – sequence: 3 givenname: Yuna surname: Yamada fullname: Yamada, Yuna – sequence: 4 givenname: Yusuke surname: Nojima fullname: Nojima, Yusuke – sequence: 5 givenname: Hisao surname: Ishibuchi fullname: Ishibuchi, Hisao |
| BackLink | https://doi.org/10.1109/ACCESS.2022.3186479$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.2201.10713$$DView paper in arXiv |
| BookMark | eNotkMtOwzAQRS0EEqX0A1hhiXWKH7WTLKtAKVIlJMg-ctxx6yrYwU4KFT9P2rKaxZx7NXNu0KXzDhC6o2Q6y4Qgjyr82P2UMUKnlKSUX6AR45wm2YyxazSJcUcIYTJlQvAR-p2vVdvZPeB3iN4ppwGXW_DhkNQqwhqXvvWN31itGlw0fewgWLfB37bbYoWf7N7GY3ppIaigtyfuowu97voAuFCtqhvA3uDCu866flivQAU3lNyiK6OaCJP_OUbl4rkslsnq7eW1mK8SJViWZEYbI4nMgWgDIGvGU25qwwkVJhfDW0LqtcprqoWowcy0kZwyBpQZDanmY3R_rj2ZqdpgP1U4VEdD1cnQQDyciTb4rx5iV-18H9xwU8Uk4zTP0jzjf8tsbYg |
| ContentType | Paper Journal Article |
| Copyright | 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by-nc-nd/4.0 |
| Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://creativecommons.org/licenses/by-nc-nd/4.0 |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY GOX |
| DOI | 10.48550/arxiv.2201.10713 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection arXiv Computer Science arXiv.org |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| ExternalDocumentID | 2201_10713 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY GOX |
| ID | FETCH-LOGICAL-a528-8fcff6069e0cfee6b2373fbf3015f9584256cda9b1c55bef4cf63122e12fce7c3 |
| IEDL.DBID | BENPR |
| IngestDate | Tue Jul 22 21:56:26 EDT 2025 Mon Jun 30 09:18:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a528-8fcff6069e0cfee6b2373fbf3015f9584256cda9b1c55bef4cf63122e12fce7c3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2623198798?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2623198798 |
| PQPubID | 2050157 |
| ParticipantIDs | arxiv_primary_2201_10713 proquest_journals_2623198798 |
| PublicationCentury | 2000 |
| PublicationDate | 20220707 |
| PublicationDateYYYYMMDD | 2022-07-07 |
| PublicationDate_xml | – month: 07 year: 2022 text: 20220707 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.8027093 |
| SecondaryResourceType | preprint |
| Snippet | Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the... IEEE Access, vol. 10, pp. 68042-68056, June 2022 Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks... |
| SourceID | arxiv proquest |
| SourceType | Open Access Repository Aggregation Database |
| SubjectTerms | Algorithms Cluster analysis Clustering Computer Science - Learning Computer Science - Neural and Evolutionary Computing Data points Information retrieval Machine learning Resonance Similarity Structural hierarchy Topology |
| SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09SwNBEF1iKhtRVBKNMoXtYW7v9j7KEA1BUAsjpDv2a-QgJCExEvDPO7N3wUJsl91m9uO9meW9EeLO5QUWGk1k0owSlNipqFB5GVlWOtIR0Cp0nnt-yabv6dNczTsCDloYvdnXX40_sNneS4Inyi9zbkt7RESBxbyv8-ZzMlhxtfN_5xHHDEN_ntaAF5NTcdISPRg1O3MmOn55Lr5HTq_5gQEum7PXhYdGHR8xnDiYNT0LOHIwXuzYxYCwBbhaChoeapaC0-ppzbrh0MZkAW_BAna38TAm5DMLDysEdp2q2W4UWgfVjwsxmzzOxtOobX8QaSWLqECLSOlF6YcWvc-MTPIEDdKNVFgq_j7LrNOlia1SxmNqMUtiKX0s0frcJpeiu1wtfU9ASSRLWiJXmTWpHSoTG3SptamLaRhlX_RC0Kp143BRcTyrEM--GBziWLWne1tJ4kxcrCiLq_9XXotjyVKBUAodiC7Fwt8QgH-a27CLP_yEnXA priority: 102 providerName: Cornell University |
| Title | Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning |
| URI | https://www.proquest.com/docview/2623198798 https://arxiv.org/abs/2201.10713 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60RfDmk1ZrycHrqpvd7OMgorW1CFbRCr0teUqhtLW1Igj-dmfSrR4ELwubZS-TZF7J930AxybNXCadClScYIESGhFkIs0DTUhHXAJSeOW5u17SfY5vB2KwBr0VFoauVa58onfUZqKpR37KMU5TgZxnF9PXgFSj6HR1JaEhS2kFc-4pxtahyokZqwLVq3bv4fGn68KTFHPoaHm86cm8TuXsY_h-wjEQYiWbksxB1Q_9cc4-4nS2oPogp3a2DWt2vAMb_qKmnu_C56WRU3JRjBrvxJZh2RJfH1BAMqy_VD0g27PWaEE8CBidGPVbmWTXQwKT49_dISGPvRDKiD15EtnFzLIWxk41smziGPFWDYmwlJUcrC970O-0-61uUAooBFLwLMicdg4LlNyeaWdtoniURk453NPC5YIO4BJtZK5CLYSyLtYuiULObcidtqmO9qEynoxtDViOaRrXmJ4lWsX6TKhQORNrHZsQhx2vQ80brZguOTIKsmfh7VmHxsqORbk_5sXvbB78__kQNjkBDnxDtQEVtIc9wjTgTTVhPevcNMsZxreb-wE-777a39SOt_g |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BKwQ3VrHjAxwDxImzHBCCFlS2CkGRuEVeUaWqLS2r-Db-jRk3hQMSN66OksN4Mpv93gPYNmnmMulUoOIEG5TQiCATaR5oQjqiC0jhleeumknjLj6_F_cT8DnGwtC1ynFM9IHa9DTNyPc45mlqkPPssP8YkGoUna6OJTRkKa1gDjzFWAnsuLDvr9jCDQ_O6rjfO5yfnrRqjaBUGQik4FmQOe0cVvG53dfO2kTxKI2ccuj4wuWCTqkSbWSuQi2Esi7WLolCzm3InbapjvCzk1CNozjH3q96fNK8vvke8vAkxZI9Gp2meu6wPTl4a7_scsy72DinpKpQ9Uu_coFPcKezUL2WfTuYgwnbnYcpfy9UDxfg48jIPkVERnN-IuewbATnDyj_GdYaiSzQVrNa55loFzAZMhrvMsnqbcKu49uNNgGdve5Kh916ztrngWU1TNWqY1nPMaLJahM_KispXx8WofUfllyCSrfXtcvAcqwKucZqMNEq1vtChcqZWOvYhLjs-Aose6MV_RElR0H2LLw9V2B9bMei_B2HxY_zrP79eAumG62ry-LyrHmxBjOcsA5-lrsOFbSN3cAK5EltlvvMoPhnz_oCO17ymg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Resonance+Theory-based+Topological+Clustering+with+a+Divisive+Hierarchical+Structure+Capable+of+Continual+Learning&rft.jtitle=arXiv.org&rft.au=Masuyama%2C+Naoki&rft.au=Amako%2C+Narito&rft.au=Yamada%2C+Yuna&rft.au=Nojima%2C+Yusuke&rft.date=2022-07-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2201.10713 |