OpenPathSampling: A Python Framework for Path Sampling Simulations. 1. Basics
Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple...
        Saved in:
      
    
          | Published in | Journal of chemical theory and computation Vol. 15; no. 2; pp. 813 - 836 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Chemical Society
    
        12.02.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1549-9618 1549-9626 1549-9626  | 
| DOI | 10.1021/acs.jctc.8b00626 | 
Cover
| Abstract | Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as importance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques out of reach of the broad community. Here, we introduce an easy-to-use Python framework called OpenPathSampling (OPS) that facilitates path sampling for (bio)molecular systems with minimal effort and yet is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use transition path sampling methodologies are implemented, including standard transition path sampling (TPS) between reactant and product states and transition interface sampling (TIS) and its replica exchange variant (RETIS), as well as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a variety of benchmark problems. | 
    
|---|---|
| AbstractList | Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as importance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques out of reach of the broad community. Here, we introduce an easy-to-use Python framework called OpenPathSampling (OPS) that facilitates path sampling for (bio)molecular systems with minimal effort and yet is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use transition path sampling methodologies are implemented, including standard transition path sampling (TPS) between reactant and product states and transition interface sampling (TIS) and its replica exchange variant (RETIS), as well as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a variety of benchmark problems. Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as importance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques out of reach of the broad community. Here, we introduce an easy-to-use Python framework called OpenPathSampling (OPS) that facilitates path sampling for (bio)molecular systems with minimal effort and yet is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use transition path sampling methodologies are implemented, including standard transition path sampling (TPS) between reactant and product states and transition interface sampling (TIS) and its replica exchange variant (RETIS), as well as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a variety of benchmark problems. Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as importance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques out of reach of the broad community. Here, we introduce an easy-to-use Python framework called OpenPathSampling (OPS) that facilitates path sampling for (bio)molecular systems with minimal effort and yet is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use transition path sampling methodologies are implemented, including standard transition path sampling (TPS) between reactant and product states and transition interface sampling (TIS) and its replica exchange variant (RETIS), as well as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a variety of benchmark problems.Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as importance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques out of reach of the broad community. Here, we introduce an easy-to-use Python framework called OpenPathSampling (OPS) that facilitates path sampling for (bio)molecular systems with minimal effort and yet is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use transition path sampling methodologies are implemented, including standard transition path sampling (TPS) between reactant and product states and transition interface sampling (TIS) and its replica exchange variant (RETIS), as well as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a variety of benchmark problems. Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as importance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques out of reach of the broad community. Here, we introduce an easy-to-use Python framework called OpenPathSampling (OPS) that facilitates path sampling for (bio)molecular systems with minimal effort and yet is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use transition path sampling methodologies are implemented, including standard transition path sampling (TPS) between reactant and product states and transition interface sampling (TIS) and its replica exchange variant (RETIS), as well as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a variety of benchmark problems.  | 
    
| Author | Prinz, Jan-Hendrik Noe, Frank Swenson, David W. H Chodera, John D Bolhuis, Peter G  | 
    
| AuthorAffiliation | Computational and Systems Biology Program Department of Mathematics and Computer Science, Arnimallee 6 van ’t Hoff Institute for Molecular Sciences  | 
    
| AuthorAffiliation_xml | – name: van ’t Hoff Institute for Molecular Sciences – name: Computational and Systems Biology Program – name: Department of Mathematics and Computer Science, Arnimallee 6  | 
    
| Author_xml | – sequence: 1 givenname: David W. H surname: Swenson fullname: Swenson, David W. H email: dwhs@hyperblazer.net organization: Computational and Systems Biology Program – sequence: 2 givenname: Jan-Hendrik surname: Prinz fullname: Prinz, Jan-Hendrik email: jan.prinz@choderalab.org organization: Department of Mathematics and Computer Science, Arnimallee 6 – sequence: 3 givenname: Frank surname: Noe fullname: Noe, Frank email: frank.noe@fu-berlin.de organization: Department of Mathematics and Computer Science, Arnimallee 6 – sequence: 4 givenname: John D orcidid: 0000-0003-0542-119X surname: Chodera fullname: Chodera, John D email: john.chodera@choderalab.org organization: Computational and Systems Biology Program – sequence: 5 givenname: Peter G orcidid: 0000-0002-3698-9258 surname: Bolhuis fullname: Bolhuis, Peter G email: p.g.bolhuis@uva.nl organization: van ’t Hoff Institute for Molecular Sciences  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30336030$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkc1rFDEYh4NUbLt69yQDXjy4Yz5m8uFBqMWqUGmheg7vZjLdrDPJNJmx7H9vtrtbtaB4ygt5fi-_PDlGBz54i9BzgkuCKXkDJpUrM5pSLjDmlD9CR6Su1Fzl-eB-JvIQHae0wpixirIn6JDliWOGj9CXi8H6SxiXV9APnfPXb4uT4nI9LoMvziL09jbE70UbYrGBij1VXLl-6mB0waeyIGXxHpIz6Sl63EKX7LPdOUPfzj58Pf00P7_4-Pn05HwONRXjvJZCEtVCI5SyuOG1YDUn7QLqhi2UlbUA2RDFBRigtFWcSVZJDFIpYyUnbIbIdu_kB1jfQtfpIboe4loTrDdqdFajN2r0Tk3OvNtmhmnR28ZYP0b4lQvg9J833i31dfihOROVqFRe8Gq3IIabyaZR9y4Z23XgbZiSpoQyQQSlm34vH6CrMEWflWhKsVKyVhmeoRe_N7qvsv-dDPAtYGJIKdpWGzfeSc8FXfevt-IHwf_Q83obubvZt_0r_hNRRsQq | 
    
| CitedBy_id | crossref_primary_10_1073_pnas_2322040121 crossref_primary_10_1063_5_0058639 crossref_primary_10_1021_acs_jctc_3c00821 crossref_primary_10_1063_1_5134029 crossref_primary_10_1021_acs_jctc_3c00526 crossref_primary_10_1093_nar_gkz837 crossref_primary_10_1021_acs_oprd_0c00222 crossref_primary_10_1021_jacs_4c03445 crossref_primary_10_1063_5_0060896 crossref_primary_10_1063_5_0127249 crossref_primary_10_1073_pnas_1906502116 crossref_primary_10_1016_j_softx_2024_101976 crossref_primary_10_1021_acs_jcim_2c00883 crossref_primary_10_1063_5_0124852 crossref_primary_10_1002_jcc_26112 crossref_primary_10_1021_acs_jctc_0c00981 crossref_primary_10_1038_s41592_019_0506_8 crossref_primary_10_1016_j_sbi_2023_102768 crossref_primary_10_1021_acs_jctc_4c00435 crossref_primary_10_7498_aps_72_20231319 crossref_primary_10_1063_1_5119252 crossref_primary_10_1063_5_0147597 crossref_primary_10_1002_adts_202000237 crossref_primary_10_1038_s43588_023_00428_z crossref_primary_10_5802_crchim_315 crossref_primary_10_1021_acs_jctc_2c00543 crossref_primary_10_1021_acs_jctc_8b00627 crossref_primary_10_1021_acs_jpcb_0c04582 crossref_primary_10_1063_5_0080053 crossref_primary_10_1021_acs_jpcb_0c09915 crossref_primary_10_1063_5_0044883 crossref_primary_10_1021_acs_chemrev_0c00534 crossref_primary_10_1002_jcc_26467 crossref_primary_10_1103_PhysRevResearch_3_033068 crossref_primary_10_1002_wcms_1712 crossref_primary_10_1021_acs_jctc_4c00423 crossref_primary_10_1021_acs_jpcb_3c08304 crossref_primary_10_1021_acs_jcim_4c00867 crossref_primary_10_1021_acs_jpcc_4c03516 crossref_primary_10_1021_acs_jctc_2c01088 crossref_primary_10_1021_acsomega_0c01434 crossref_primary_10_1021_acs_jpcb_2c06235 crossref_primary_10_1063_1_5130760 crossref_primary_10_1080_23746149_2022_2052353 crossref_primary_10_1002_jcc_27319 crossref_primary_10_1021_acs_jctc_1c01154  | 
    
| Cites_doi | 10.1016/j.bpj.2015.08.015 10.1073/pnas.0810631106 10.1063/1.4874299 10.1063/1.4802990 10.1016/S0009-2614(99)01123-9 10.1063/1.3029696 10.1021/ar9500675 10.1016/j.cpc.2013.09.018 10.1016/0009-2614(74)80109-0 10.1063/1.4954769 10.1016/j.sbi.2017.02.006 10.1209/0295-5075/19/6/002 10.1063/1.2976011 10.1016/S0006-3495(96)79552-8 10.1063/1.1410978 10.1038/nchem.2785 10.1007/978-3-540-87706-6_3 10.1006/jcph.1995.1039 10.1016/j.jcp.2004.11.003 10.1002/0471231509.ch1 10.1063/1.3306345 10.1103/PhysRevLett.98.268301 10.1109/MCSE.2010.27 10.1073/pnas.0606692103 10.1063/1.3644344 10.1021/ct700301q 10.1073/pnas.1103547108 10.1021/ct300857j 10.1146/annurev.physchem.53.082301.113146 10.1063/1.473503 10.1145/2063384.2063465 10.1016/S0959-440X(00)00194-9 10.1063/1.3244561 10.1021/acs.jctc.5b00032 10.1002/jcc.20291 10.1529/biophysj.108.136267 10.1021/ct500719p 10.1063/1.3601919 10.1063/1.3518708 10.1063/1.478569 10.1063/1.2978000 10.1093/bioinformatics/btx789 10.1021/acs.jctc.5b00743 10.1063/1.4890037 10.1063/1.4989844 10.1063/1.462133 10.1073/pnas.0905466106 10.1073/pnas.0908754107 10.1073/pnas.1513210112 10.1140/epjst/e2015-02419-6 10.1073/pnas.1525092113 10.1021/ct200463m 10.1073/pnas.1534924100 10.1063/1.3565032 10.1002/jcc.24900 10.1002/9781118309513.ch2 10.1063/1.2714539 10.1063/1.1323224 10.1126/science.290.5498.1903 10.1073/pnas.202427399 10.1371/journal.pcbi.1002054 10.1142/9789812839664_0001 10.1109/eScience.2016.7870921 10.1006/jcph.1999.6231 10.1063/1.475562 10.1073/pnas.100127697 10.1021/jp0455430 10.1063/1.445869 10.1126/science.1208351 10.1016/S0009-2614(89)87314-2 10.1063/1.3525099 10.1039/C3CP54520B 10.1016/S1570-8659(03)10013-0 10.1021/ct050162r 10.1063/1.2825614 10.1063/1.4965882 10.1103/PhysRevX.4.041018 10.1063/1.1644537 10.1002/ett.4460130409 10.1063/1.1738647 10.1063/1.3242285 10.1021/acs.jctc.8b00627 10.1137/06065146X 10.1063/1.2714538 10.1103/PhysRevE.52.2893 10.1063/1.4902240 10.1007/BF00124016 10.1021/acs.jpclett.7b01617 10.1021/jp411770f 10.1063/1.4813777 10.1063/1.3592153 10.1063/1.3491817 10.1016/j.bpj.2016.10.042 10.1063/1.1562614 10.1080/10618600.2015.1113975 10.1063/1.1738640 10.1063/1.2140273  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright American Chemical Society Feb 12, 2019 Copyright © 2018 American Chemical Society 2018 American Chemical Society  | 
    
| Copyright_xml | – notice: Copyright American Chemical Society Feb 12, 2019 – notice: Copyright © 2018 American Chemical Society 2018 American Chemical Society  | 
    
| DBID | AAYXX CITATION NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1021/acs.jctc.8b00626 | 
    
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1549-9626 | 
    
| EndPage | 836 | 
    
| ExternalDocumentID | 10.1021/acs.jctc.8b00626 PMC6374749 30336030 10_1021_acs_jctc_8b00626 c805129507  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM121505 – fundername: NCI NIH HHS grantid: P30 CA008748  | 
    
| GroupedDBID | 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACIWK ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 J9A JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F 4.4 5VS AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM ADTOC IHE LG6 UNPAY  | 
    
| ID | FETCH-LOGICAL-a527t-587819fad799e0d6573561fba5d3b9e857a8d1967aca22f96383480a899ce8613 | 
    
| IEDL.DBID | ACS | 
    
| ISSN | 1549-9618 1549-9626  | 
    
| IngestDate | Wed Oct 29 11:11:08 EDT 2025 Tue Sep 30 16:37:17 EDT 2025 Fri Jul 11 13:45:33 EDT 2025 Mon Jun 30 03:36:04 EDT 2025 Wed Feb 19 02:36:17 EST 2025 Tue Jul 01 00:37:00 EDT 2025 Thu Apr 24 23:10:28 EDT 2025 Thu Aug 27 13:43:29 EDT 2020  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a527t-587819fad799e0d6573561fba5d3b9e857a8d1967aca22f96383480a899ce8613 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-0542-119X 0000-0002-3698-9258  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.acs.org/doi/pdf/10.1021/acs.jctc.8b00626 | 
    
| PMID | 30336030 | 
    
| PQID | 2209985912 | 
    
| PQPubID | 2048741 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | unpaywall_primary_10_1021_acs_jctc_8b00626 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6374749 proquest_miscellaneous_2123717221 proquest_journals_2209985912 pubmed_primary_30336030 crossref_citationtrail_10_1021_acs_jctc_8b00626 crossref_primary_10_1021_acs_jctc_8b00626 acs_journals_10_1021_acs_jctc_8b00626  | 
    
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-02-12 | 
    
| PublicationDateYYYYMMDD | 2019-02-12 | 
    
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-12 day: 12  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Washington  | 
    
| PublicationTitle | Journal of chemical theory and computation | 
    
| PublicationTitleAlternate | J. Chem. Theory Comput | 
    
| PublicationYear | 2019 | 
    
| Publisher | American Chemical Society | 
    
| Publisher_xml | – name: American Chemical Society | 
    
| References | ref45/cit45 ref99/cit99 ref3/cit3 van Kampen N. G. (ref67/cit67) 1997 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref13/cit13 ref61/cit61 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref44/cit44 ref70/cit70 ref98/cit98 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 Bolhuis P. G. (ref48/cit48) 2009 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 Peters B. (ref9/cit9) 2017 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref104/cit104 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7  | 
    
| References_xml | – ident: ref86/cit86 doi: 10.1016/j.bpj.2015.08.015 – ident: ref20/cit20 doi: 10.1073/pnas.0810631106 – ident: ref63/cit63 doi: 10.1063/1.4874299 – ident: ref99/cit99 doi: 10.1063/1.4802990 – ident: ref18/cit18 doi: 10.1016/S0009-2614(99)01123-9 – ident: ref36/cit36 doi: 10.1063/1.3029696 – ident: ref91/cit91 doi: 10.1021/ar9500675 – ident: ref84/cit84 doi: 10.1016/j.cpc.2013.09.018 – ident: ref11/cit11 doi: 10.1016/0009-2614(74)80109-0 – ident: ref49/cit49 doi: 10.1063/1.4954769 – ident: ref85/cit85 doi: 10.1016/j.sbi.2017.02.006 – ident: ref19/cit19 doi: 10.1209/0295-5075/19/6/002 – ident: ref74/cit74 doi: 10.1063/1.2976011 – ident: ref32/cit32 doi: 10.1016/S0006-3495(96)79552-8 – ident: ref17/cit17 doi: 10.1063/1.1410978 – ident: ref2/cit2 doi: 10.1038/nchem.2785 – ident: ref24/cit24 doi: 10.1007/978-3-540-87706-6_3 – ident: ref83/cit83 doi: 10.1006/jcph.1995.1039 – ident: ref61/cit61 doi: 10.1016/j.jcp.2004.11.003 – ident: ref23/cit23 doi: 10.1002/0471231509.ch1 – ident: ref33/cit33 doi: 10.1063/1.3306345 – ident: ref73/cit73 doi: 10.1103/PhysRevLett.98.268301 – ident: ref44/cit44 doi: 10.1109/MCSE.2010.27 – ident: ref50/cit50 doi: 10.1073/pnas.0606692103 – ident: ref62/cit62 doi: 10.1063/1.3644344 – ident: ref82/cit82 doi: 10.1021/ct700301q – ident: ref1/cit1 doi: 10.1073/pnas.1103547108 – ident: ref80/cit80 doi: 10.1021/ct300857j – ident: ref10/cit10 doi: 10.1146/annurev.physchem.53.082301.113146 – ident: ref15/cit15 doi: 10.1063/1.473503 – ident: ref37/cit37 doi: 10.1145/2063384.2063465 – ident: ref102/cit102 doi: 10.1016/S0959-440X(00)00194-9 – ident: ref31/cit31 doi: 10.1063/1.3244561 – ident: ref52/cit52 doi: 10.1021/acs.jctc.5b00032 – ident: ref81/cit81 doi: 10.1002/jcc.20291 – ident: ref96/cit96 doi: 10.1529/biophysj.108.136267 – ident: ref43/cit43 doi: 10.1021/ct500719p – ident: ref60/cit60 doi: 10.1063/1.3601919 – ident: ref26/cit26 doi: 10.1063/1.3518708 – ident: ref57/cit57 doi: 10.1063/1.478569 – ident: ref51/cit51 doi: 10.1063/1.2978000 – ident: ref98/cit98 doi: 10.1093/bioinformatics/btx789 – ident: ref89/cit89 doi: 10.1021/acs.jctc.5b00743 – ident: ref76/cit76 doi: 10.1063/1.4890037 – ident: ref58/cit58 doi: 10.1063/1.4989844 – ident: ref77/cit77 doi: 10.1063/1.462133 – ident: ref68/cit68 doi: 10.1073/pnas.0905466106 – ident: ref71/cit71 doi: 10.1073/pnas.0908754107 – ident: ref79/cit79 doi: 10.1073/pnas.1513210112 – ident: ref97/cit97 doi: 10.1140/epjst/e2015-02419-6 – ident: ref41/cit41 doi: 10.1073/pnas.1525092113 – ident: ref87/cit87 doi: 10.1021/ct200463m – ident: ref70/cit70 doi: 10.1073/pnas.1534924100 – ident: ref34/cit34 doi: 10.1063/1.3565032 – ident: ref46/cit46 doi: 10.1002/jcc.24900 – ident: ref75/cit75 doi: 10.1002/9781118309513.ch2 – ident: ref6/cit6 doi: 10.1063/1.2714539 – ident: ref103/cit103 doi: 10.1063/1.1323224 – ident: ref100/cit100 doi: 10.1126/science.290.5498.1903 – ident: ref16/cit16 doi: 10.1073/pnas.202427399 – ident: ref3/cit3 doi: 10.1371/journal.pcbi.1002054 – ident: ref8/cit8 doi: 10.1142/9789812839664_0001 – volume-title: Reaction Rate Theory and Rare Events year: 2017 ident: ref9/cit9 – ident: ref39/cit39 doi: 10.1109/eScience.2016.7870921 – ident: ref72/cit72 – ident: ref4/cit4 doi: 10.1006/jcph.1999.6231 – ident: ref22/cit22 doi: 10.1063/1.475562 – ident: ref95/cit95 doi: 10.1073/pnas.100127697 – ident: ref45/cit45 doi: 10.1021/ct300857j – ident: ref104/cit104 doi: 10.1021/jp0455430 – ident: ref90/cit90 doi: 10.1063/1.445869 – ident: ref101/cit101 doi: 10.1126/science.1208351 – ident: ref12/cit12 doi: 10.1016/S0009-2614(89)87314-2 – ident: ref69/cit69 doi: 10.1140/epjst/e2015-02419-6 – ident: ref30/cit30 doi: 10.1063/1.3525099 – ident: ref38/cit38 doi: 10.1039/C3CP54520B – ident: ref5/cit5 doi: 10.1016/S1570-8659(03)10013-0 – ident: ref64/cit64 doi: 10.1021/ct050162r – ident: ref21/cit21 doi: 10.1063/1.2825614 – ident: ref53/cit53 doi: 10.1063/1.4965882 – ident: ref42/cit42 doi: 10.1103/PhysRevX.4.041018 – ident: ref28/cit28 doi: 10.1063/1.1644537 – ident: ref29/cit29 doi: 10.1002/ett.4460130409 – ident: ref35/cit35 doi: 10.1063/1.1738647 – ident: ref65/cit65 doi: 10.1063/1.3242285 – volume-title: Reviews of Computational Chemistry year: 2009 ident: ref48/cit48 – ident: ref47/cit47 doi: 10.1021/acs.jctc.8b00627 – ident: ref92/cit92 doi: 10.1137/06065146X – ident: ref7/cit7 doi: 10.1063/1.2714538 – ident: ref14/cit14 doi: 10.1103/PhysRevE.52.2893 – ident: ref40/cit40 doi: 10.1063/1.4902240 – ident: ref13/cit13 doi: 10.1007/BF00124016 – ident: ref54/cit54 doi: 10.1021/acs.jpclett.7b01617 – ident: ref94/cit94 doi: 10.1021/jp411770f – ident: ref66/cit66 doi: 10.1063/1.4813777 – ident: ref93/cit93 doi: 10.1063/1.3592153 – ident: ref59/cit59 doi: 10.1016/0009-2614(74)80109-0 – ident: ref56/cit56 doi: 10.1063/1.3491817 – ident: ref88/cit88 doi: 10.1016/j.bpj.2016.10.042 – ident: ref55/cit55 doi: 10.1063/1.1562614 – ident: ref78/cit78 doi: 10.1080/10618600.2015.1113975 – ident: ref27/cit27 doi: 10.1063/1.1738640 – ident: ref25/cit25 doi: 10.1063/1.2140273 – volume-title: Stochastic processes in physics and chemistry year: 1997 ident: ref67/cit67  | 
    
| SSID | ssj0033423 | 
    
| Score | 2.5106182 | 
    
| Snippet | Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into... Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref acs  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 813 | 
    
| SubjectTerms | Algorithms Complex systems Complexity Computer simulation Importance sampling Molecular dynamics Simulation  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7aFceD8CBRkJDiAl3TixnXBbKlYVUquVyqJyimwngcKSrkhWqPx6ZrxOYCkq6iWynIljOzPx58zkG4DnkrZcwprQZGMRprrEUi3TMLUJtwkelWPbPzySB_P03Yk42QLR_wuDnWixpdY58cmql2XtGQbiPar_YjsbZaQsXF6DbSkQgo9ge340m3x03KgpMU6673q-zHv35L-aoEXJtpuL0gWkeTFgcmfVLPX5D71Y_LEaTW_Ch2EcLgjla7TqTGR__kXxeOWB3oIbHp-yyVqhbsNW1dyBnf0-LdxdOKQQlBnixmNNwejNp9dswmbnREHApn2kF0MozEiI9VLs-PSbzxTWRiyO2BuN-tHeg_n07fv9g9DnZAi14KoLRaYQQ9S6VHlejUspVIIIrDZalInJq0wonZVo1UpbzXlN5p2k2Vjjts5WGWKH-zBqzprqITBjq3Fc57km76tNlVEmLmWskxoxFjc2gBc4D4W3qbZw7nIeF64SJ6fwkxPAXv_wCuuJzSm_xuKSK14OVyzXpB6XyO72-vC7K5x-OCbmPx7As-E0PgjytuimOluhDGIC3CtzHgfwYK0-w80QNyQSX68BqA3FGgSI9HvzTHP62ZF_ywQ3gGkewKtBBf87hkdXEX4M1xEU5qFLerMLo-77qnqCwKszT72Z_QIs_Sm3 priority: 102 providerName: Unpaywall  | 
    
| Title | OpenPathSampling: A Python Framework for Path Sampling Simulations. 1. Basics | 
    
| URI | http://dx.doi.org/10.1021/acs.jctc.8b00626 https://www.ncbi.nlm.nih.gov/pubmed/30336030 https://www.proquest.com/docview/2209985912 https://www.proquest.com/docview/2123717221 https://pubmed.ncbi.nlm.nih.gov/PMC6374749 https://pubs.acs.org/doi/pdf/10.1021/acs.jctc.8b00626  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-9626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033423 issn: 1549-9626 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT5xAEJ5YfbAvVWtbaa3ZJu2DJuCxC7vQt_PSi2miueR6iT6R3QVa6xVN4WLsr-8MB9jrGfWFEHYW2NkZ9tvM8A3AR0lbrtAa10S90A10ime5DNzACm4FHlXNtn9yKo8nwdez8OyOJuf_CD73D7UtvZ-2sl5EFsLlM1jjUilK3-sPxu1XVxCTXc2NGhDjpB81Icn77kALkS0XF6IldLmcJLk-K6717Y2eTv9ZgYYb81JGZU1cSIknl96sMp79s0zr-ITBbcKLBoiy_txytmAlK17C-qCt_7YNJ5RrMkKAONaUdV58_8z6bHRLXANs2KZ0McS8jIRYK8XGF7-akmClx3yPHWk0hPIVTIZfvg2O3ab4gqtDrio3jBSChVynKo6zXipDJRBq5UaHqTBxFoVKRym6r9JWc56TH4sg6mncv9ksQpDwGlaLqyLbAWZs1vPzONYUZrWBMsr4qfS1yBFMcWMd-IR6SBrnKZM6Ls79pL6Iykka5Thw2M5YYhsGcyqkMX2gx37X43rO3vGA7G5rBHevwunPYqL44w586JpxIiisoovsaoYyuPjjpphz34E3c5vpHoYAQUj8jjqgFqypEyB278WW4uJHzfItBe70gtiBg87uHh3D2ydq8h08R-AXu3Vhm11YrX7PsvcIriqzV3vVHqxNTkf9878RDiA5 | 
    
| linkProvider | American Chemical Society | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N8VBe-M0IDDASPICUrLZjO-GtVFQF1mmim7S3yHYSGJRsIqnQ-Os5u0lGGRrwEkXxxYkvZ_s73eU7gGfSuVzCmtAkQxHGOsezUsZhbDmzHI_Ks-3P9uT0MH53JI42gHb_wuBL1NhT7YP45-wCdMdd-2wbGyXOUJi8AleFjKnzt0bjebf4ckdo5ylSY0c8SZM2MvmnHtx-ZOv1_egCyLyYKzlYVqf67LteLH7ZiCY34EM_BJ9_8iVaNiayP35jd_yvMd6E6y0sJaOVHd2CjaK6DYNxVw3uDsxc5sk-wsW5djno1cdXZET2zxzzAJl0CV4EETBxQqSTIvPjr22BsDoiNCKvNZpFfRcOJ28OxtOwLcUQasFUE4pEIXQoda7StBjmUiiOwKs0WuTcpEUilE5ynMxKW81Y6WY1j5OhRm_OFglChnuwWZ1UxX0gxhZDWqapdkFXGyujDM0l1bxEaMWMDeA56iFrp1Kd-Sg5o5m_iMrJWuUEsNN9uMy2fOaurMbikjte9Hecrrg8LpHd7mzh_FWY-8_YEf6xAJ72zfghXJBFV8XJEmUQCqCLzBgNYGtlOv3DEC5wiatqAGrNqHoBx_W93lIdf_Kc35Kj3xenAbzsze-vY3jwj5p8AoPpwWw323279_4hXENImIa-5M02bDbflsUjhF2Neewn2k9ySSbr | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTWK8wPgODDASPICUrLHjONlbKVTjY1OlMrS3yHYSGJSsIqnQ-Ot35yaBMjTgJYqSSxzbd_HvdOffATyJyeWS1vgmGUg_0jmelXHkR1ZwK_CoHNv-_kG8dxi9OZJHayC7vTD4ETW-qXZBfLLqeV62DAPhDl3_bBsbJKQsPL4EGxIbI59rOJp2P2BBpHaOJjUi8skwaaOTf3oDrUm2Xl2TzgHN8_mSm4tqrk-_69nsl8VofA0-9N1wOShfgkVjAvvjN4bH_-7nFlxt4SkbLvXpOqwV1Q3YHHVV4W7CPmWgTBA2TjXlolcfd9mQTU6JgYCNu0QvhkiYkRDrpNj0-GtbKKwOWBiwFxrVo74Fh-NX70d7fluSwdeSq8aXiUIIUepcpWkxyGOpBAKw0miZC5MWiVQ6ydGolbaa85KsW0TJQKNXZ4sEocNtWK9OquIuMGOLQVimqabgq42UUSbM41CLEiEWN9aDpzgOWWtSdeai5TzM3EUcnKwdHA92usnLbMtrTuU1Zhc88ax_Yr7k9LhAdrvTh5-fwmm_MRH_cQ8e97dxIijYoqviZIEyCAnQVeY89ODOUn36xhA2iBj_rh6oFcXqBYjze_VOdfzJcX_HAv2_KPXgea-Cf-3DvX8cyUdwefJynL17ffD2PlxBZJj6rvLNNqw33xbFA0RfjXnobO0M6C8pbg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7aFceD8CBRkJDiAl3TixnXBbKlYVUquVyqJyimwngcKSrkhWqPx6ZrxOYCkq6iWynIljOzPx58zkG4DnkrZcwprQZGMRprrEUi3TMLUJtwkelWPbPzySB_P03Yk42QLR_wuDnWixpdY58cmql2XtGQbiPar_YjsbZaQsXF6DbSkQgo9ge340m3x03KgpMU6673q-zHv35L-aoEXJtpuL0gWkeTFgcmfVLPX5D71Y_LEaTW_Ch2EcLgjla7TqTGR__kXxeOWB3oIbHp-yyVqhbsNW1dyBnf0-LdxdOKQQlBnixmNNwejNp9dswmbnREHApn2kF0MozEiI9VLs-PSbzxTWRiyO2BuN-tHeg_n07fv9g9DnZAi14KoLRaYQQ9S6VHlejUspVIIIrDZalInJq0wonZVo1UpbzXlN5p2k2Vjjts5WGWKH-zBqzprqITBjq3Fc57km76tNlVEmLmWskxoxFjc2gBc4D4W3qbZw7nIeF64SJ6fwkxPAXv_wCuuJzSm_xuKSK14OVyzXpB6XyO72-vC7K5x-OCbmPx7As-E0PgjytuimOluhDGIC3CtzHgfwYK0-w80QNyQSX68BqA3FGgSI9HvzTHP62ZF_ywQ3gGkewKtBBf87hkdXEX4M1xEU5qFLerMLo-77qnqCwKszT72Z_QIs_Sm3 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OpenPathSampling%3A+A+Python+Framework+for+Path+Sampling+Simulations.+1.+Basics&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Swenson%2C+David+W.+H&rft.au=Prinz%2C+Jan-Hendrik&rft.au=Noe%2C+Frank&rft.au=Chodera%2C+John+D&rft.date=2019-02-12&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=15&rft.issue=2&rft.spage=813&rft.epage=836&rft_id=info:doi/10.1021%2Facs.jctc.8b00626&rft.externalDocID=c805129507 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |