OpenPathSampling: A Python Framework for Path Sampling Simulations. 1. Basics

Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 15; no. 2; pp. 813 - 836
Main Authors Swenson, David W. H, Prinz, Jan-Hendrik, Noe, Frank, Chodera, John D, Bolhuis, Peter G
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.02.2019
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.8b00626

Cover

Abstract Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as importance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques out of reach of the broad community. Here, we introduce an easy-to-use Python framework called OpenPathSampling (OPS) that facilitates path sampling for (bio)­molecular systems with minimal effort and yet is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use transition path sampling methodologies are implemented, including standard transition path sampling (TPS) between reactant and product states and transition interface sampling (TIS) and its replica exchange variant (RETIS), as well as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a variety of benchmark problems.
AbstractList Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as importance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques out of reach of the broad community. Here, we introduce an easy-to-use Python framework called OpenPathSampling (OPS) that facilitates path sampling for (bio)molecular systems with minimal effort and yet is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use transition path sampling methodologies are implemented, including standard transition path sampling (TPS) between reactant and product states and transition interface sampling (TIS) and its replica exchange variant (RETIS), as well as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a variety of benchmark problems.
Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as importance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques out of reach of the broad community. Here, we introduce an easy-to-use Python framework called OpenPathSampling (OPS) that facilitates path sampling for (bio)molecular systems with minimal effort and yet is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use transition path sampling methodologies are implemented, including standard transition path sampling (TPS) between reactant and product states and transition interface sampling (TIS) and its replica exchange variant (RETIS), as well as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a variety of benchmark problems.
Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as importance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques out of reach of the broad community. Here, we introduce an easy-to-use Python framework called OpenPathSampling (OPS) that facilitates path sampling for (bio)molecular systems with minimal effort and yet is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use transition path sampling methodologies are implemented, including standard transition path sampling (TPS) between reactant and product states and transition interface sampling (TIS) and its replica exchange variant (RETIS), as well as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a variety of benchmark problems.Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as importance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques out of reach of the broad community. Here, we introduce an easy-to-use Python framework called OpenPathSampling (OPS) that facilitates path sampling for (bio)molecular systems with minimal effort and yet is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use transition path sampling methodologies are implemented, including standard transition path sampling (TPS) between reactant and product states and transition interface sampling (TIS) and its replica exchange variant (RETIS), as well as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a variety of benchmark problems.
Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as importance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques out of reach of the broad community. Here, we introduce an easy-to-use Python framework called OpenPathSampling (OPS) that facilitates path sampling for (bio)­molecular systems with minimal effort and yet is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use transition path sampling methodologies are implemented, including standard transition path sampling (TPS) between reactant and product states and transition interface sampling (TIS) and its replica exchange variant (RETIS), as well as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a variety of benchmark problems.
Author Prinz, Jan-Hendrik
Noe, Frank
Swenson, David W. H
Chodera, John D
Bolhuis, Peter G
AuthorAffiliation Computational and Systems Biology Program
Department of Mathematics and Computer Science, Arnimallee 6
van ’t Hoff Institute for Molecular Sciences
AuthorAffiliation_xml – name: van ’t Hoff Institute for Molecular Sciences
– name: Computational and Systems Biology Program
– name: Department of Mathematics and Computer Science, Arnimallee 6
Author_xml – sequence: 1
  givenname: David W. H
  surname: Swenson
  fullname: Swenson, David W. H
  email: dwhs@hyperblazer.net
  organization: Computational and Systems Biology Program
– sequence: 2
  givenname: Jan-Hendrik
  surname: Prinz
  fullname: Prinz, Jan-Hendrik
  email: jan.prinz@choderalab.org
  organization: Department of Mathematics and Computer Science, Arnimallee 6
– sequence: 3
  givenname: Frank
  surname: Noe
  fullname: Noe, Frank
  email: frank.noe@fu-berlin.de
  organization: Department of Mathematics and Computer Science, Arnimallee 6
– sequence: 4
  givenname: John D
  orcidid: 0000-0003-0542-119X
  surname: Chodera
  fullname: Chodera, John D
  email: john.chodera@choderalab.org
  organization: Computational and Systems Biology Program
– sequence: 5
  givenname: Peter G
  orcidid: 0000-0002-3698-9258
  surname: Bolhuis
  fullname: Bolhuis, Peter G
  email: p.g.bolhuis@uva.nl
  organization: van ’t Hoff Institute for Molecular Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30336030$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1rFDEYh4NUbLt69yQDXjy4Yz5m8uFBqMWqUGmheg7vZjLdrDPJNJmx7H9vtrtbtaB4ygt5fi-_PDlGBz54i9BzgkuCKXkDJpUrM5pSLjDmlD9CR6Su1Fzl-eB-JvIQHae0wpixirIn6JDliWOGj9CXi8H6SxiXV9APnfPXb4uT4nI9LoMvziL09jbE70UbYrGBij1VXLl-6mB0waeyIGXxHpIz6Sl63EKX7LPdOUPfzj58Pf00P7_4-Pn05HwONRXjvJZCEtVCI5SyuOG1YDUn7QLqhi2UlbUA2RDFBRigtFWcSVZJDFIpYyUnbIbIdu_kB1jfQtfpIboe4loTrDdqdFajN2r0Tk3OvNtmhmnR28ZYP0b4lQvg9J833i31dfihOROVqFRe8Gq3IIabyaZR9y4Z23XgbZiSpoQyQQSlm34vH6CrMEWflWhKsVKyVhmeoRe_N7qvsv-dDPAtYGJIKdpWGzfeSc8FXfevt-IHwf_Q83obubvZt_0r_hNRRsQq
CitedBy_id crossref_primary_10_1073_pnas_2322040121
crossref_primary_10_1063_5_0058639
crossref_primary_10_1021_acs_jctc_3c00821
crossref_primary_10_1063_1_5134029
crossref_primary_10_1021_acs_jctc_3c00526
crossref_primary_10_1093_nar_gkz837
crossref_primary_10_1021_acs_oprd_0c00222
crossref_primary_10_1021_jacs_4c03445
crossref_primary_10_1063_5_0060896
crossref_primary_10_1063_5_0127249
crossref_primary_10_1073_pnas_1906502116
crossref_primary_10_1016_j_softx_2024_101976
crossref_primary_10_1021_acs_jcim_2c00883
crossref_primary_10_1063_5_0124852
crossref_primary_10_1002_jcc_26112
crossref_primary_10_1021_acs_jctc_0c00981
crossref_primary_10_1038_s41592_019_0506_8
crossref_primary_10_1016_j_sbi_2023_102768
crossref_primary_10_1021_acs_jctc_4c00435
crossref_primary_10_7498_aps_72_20231319
crossref_primary_10_1063_1_5119252
crossref_primary_10_1063_5_0147597
crossref_primary_10_1002_adts_202000237
crossref_primary_10_1038_s43588_023_00428_z
crossref_primary_10_5802_crchim_315
crossref_primary_10_1021_acs_jctc_2c00543
crossref_primary_10_1021_acs_jctc_8b00627
crossref_primary_10_1021_acs_jpcb_0c04582
crossref_primary_10_1063_5_0080053
crossref_primary_10_1021_acs_jpcb_0c09915
crossref_primary_10_1063_5_0044883
crossref_primary_10_1021_acs_chemrev_0c00534
crossref_primary_10_1002_jcc_26467
crossref_primary_10_1103_PhysRevResearch_3_033068
crossref_primary_10_1002_wcms_1712
crossref_primary_10_1021_acs_jctc_4c00423
crossref_primary_10_1021_acs_jpcb_3c08304
crossref_primary_10_1021_acs_jcim_4c00867
crossref_primary_10_1021_acs_jpcc_4c03516
crossref_primary_10_1021_acs_jctc_2c01088
crossref_primary_10_1021_acsomega_0c01434
crossref_primary_10_1021_acs_jpcb_2c06235
crossref_primary_10_1063_1_5130760
crossref_primary_10_1080_23746149_2022_2052353
crossref_primary_10_1002_jcc_27319
crossref_primary_10_1021_acs_jctc_1c01154
Cites_doi 10.1016/j.bpj.2015.08.015
10.1073/pnas.0810631106
10.1063/1.4874299
10.1063/1.4802990
10.1016/S0009-2614(99)01123-9
10.1063/1.3029696
10.1021/ar9500675
10.1016/j.cpc.2013.09.018
10.1016/0009-2614(74)80109-0
10.1063/1.4954769
10.1016/j.sbi.2017.02.006
10.1209/0295-5075/19/6/002
10.1063/1.2976011
10.1016/S0006-3495(96)79552-8
10.1063/1.1410978
10.1038/nchem.2785
10.1007/978-3-540-87706-6_3
10.1006/jcph.1995.1039
10.1016/j.jcp.2004.11.003
10.1002/0471231509.ch1
10.1063/1.3306345
10.1103/PhysRevLett.98.268301
10.1109/MCSE.2010.27
10.1073/pnas.0606692103
10.1063/1.3644344
10.1021/ct700301q
10.1073/pnas.1103547108
10.1021/ct300857j
10.1146/annurev.physchem.53.082301.113146
10.1063/1.473503
10.1145/2063384.2063465
10.1016/S0959-440X(00)00194-9
10.1063/1.3244561
10.1021/acs.jctc.5b00032
10.1002/jcc.20291
10.1529/biophysj.108.136267
10.1021/ct500719p
10.1063/1.3601919
10.1063/1.3518708
10.1063/1.478569
10.1063/1.2978000
10.1093/bioinformatics/btx789
10.1021/acs.jctc.5b00743
10.1063/1.4890037
10.1063/1.4989844
10.1063/1.462133
10.1073/pnas.0905466106
10.1073/pnas.0908754107
10.1073/pnas.1513210112
10.1140/epjst/e2015-02419-6
10.1073/pnas.1525092113
10.1021/ct200463m
10.1073/pnas.1534924100
10.1063/1.3565032
10.1002/jcc.24900
10.1002/9781118309513.ch2
10.1063/1.2714539
10.1063/1.1323224
10.1126/science.290.5498.1903
10.1073/pnas.202427399
10.1371/journal.pcbi.1002054
10.1142/9789812839664_0001
10.1109/eScience.2016.7870921
10.1006/jcph.1999.6231
10.1063/1.475562
10.1073/pnas.100127697
10.1021/jp0455430
10.1063/1.445869
10.1126/science.1208351
10.1016/S0009-2614(89)87314-2
10.1063/1.3525099
10.1039/C3CP54520B
10.1016/S1570-8659(03)10013-0
10.1021/ct050162r
10.1063/1.2825614
10.1063/1.4965882
10.1103/PhysRevX.4.041018
10.1063/1.1644537
10.1002/ett.4460130409
10.1063/1.1738647
10.1063/1.3242285
10.1021/acs.jctc.8b00627
10.1137/06065146X
10.1063/1.2714538
10.1103/PhysRevE.52.2893
10.1063/1.4902240
10.1007/BF00124016
10.1021/acs.jpclett.7b01617
10.1021/jp411770f
10.1063/1.4813777
10.1063/1.3592153
10.1063/1.3491817
10.1016/j.bpj.2016.10.042
10.1063/1.1562614
10.1080/10618600.2015.1113975
10.1063/1.1738640
10.1063/1.2140273
ContentType Journal Article
Copyright Copyright American Chemical Society Feb 12, 2019
Copyright © 2018 American Chemical Society 2018 American Chemical Society
Copyright_xml – notice: Copyright American Chemical Society Feb 12, 2019
– notice: Copyright © 2018 American Chemical Society 2018 American Chemical Society
DBID AAYXX
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1021/acs.jctc.8b00626
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 836
ExternalDocumentID 10.1021/acs.jctc.8b00626
PMC6374749
30336030
10_1021_acs_jctc_8b00626
c805129507
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM121505
– fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID 53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
J9A
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
4.4
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
IHE
LG6
UNPAY
ID FETCH-LOGICAL-a527t-587819fad799e0d6573561fba5d3b9e857a8d1967aca22f96383480a899ce8613
IEDL.DBID ACS
ISSN 1549-9618
1549-9626
IngestDate Wed Oct 29 11:11:08 EDT 2025
Tue Sep 30 16:37:17 EDT 2025
Fri Jul 11 13:45:33 EDT 2025
Mon Jun 30 03:36:04 EDT 2025
Wed Feb 19 02:36:17 EST 2025
Tue Jul 01 00:37:00 EDT 2025
Thu Apr 24 23:10:28 EDT 2025
Thu Aug 27 13:43:29 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html
This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527t-587819fad799e0d6573561fba5d3b9e857a8d1967aca22f96383480a899ce8613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0542-119X
0000-0002-3698-9258
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.acs.org/doi/pdf/10.1021/acs.jctc.8b00626
PMID 30336030
PQID 2209985912
PQPubID 2048741
PageCount 24
ParticipantIDs unpaywall_primary_10_1021_acs_jctc_8b00626
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6374749
proquest_miscellaneous_2123717221
proquest_journals_2209985912
pubmed_primary_30336030
crossref_citationtrail_10_1021_acs_jctc_8b00626
crossref_primary_10_1021_acs_jctc_8b00626
acs_journals_10_1021_acs_jctc_8b00626
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-12
PublicationDateYYYYMMDD 2019-02-12
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
van Kampen N. G. (ref67/cit67) 1997
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref13/cit13
ref61/cit61
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref44/cit44
ref70/cit70
ref98/cit98
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
Bolhuis P. G. (ref48/cit48) 2009
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
Peters B. (ref9/cit9) 2017
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref104/cit104
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref86/cit86
  doi: 10.1016/j.bpj.2015.08.015
– ident: ref20/cit20
  doi: 10.1073/pnas.0810631106
– ident: ref63/cit63
  doi: 10.1063/1.4874299
– ident: ref99/cit99
  doi: 10.1063/1.4802990
– ident: ref18/cit18
  doi: 10.1016/S0009-2614(99)01123-9
– ident: ref36/cit36
  doi: 10.1063/1.3029696
– ident: ref91/cit91
  doi: 10.1021/ar9500675
– ident: ref84/cit84
  doi: 10.1016/j.cpc.2013.09.018
– ident: ref11/cit11
  doi: 10.1016/0009-2614(74)80109-0
– ident: ref49/cit49
  doi: 10.1063/1.4954769
– ident: ref85/cit85
  doi: 10.1016/j.sbi.2017.02.006
– ident: ref19/cit19
  doi: 10.1209/0295-5075/19/6/002
– ident: ref74/cit74
  doi: 10.1063/1.2976011
– ident: ref32/cit32
  doi: 10.1016/S0006-3495(96)79552-8
– ident: ref17/cit17
  doi: 10.1063/1.1410978
– ident: ref2/cit2
  doi: 10.1038/nchem.2785
– ident: ref24/cit24
  doi: 10.1007/978-3-540-87706-6_3
– ident: ref83/cit83
  doi: 10.1006/jcph.1995.1039
– ident: ref61/cit61
  doi: 10.1016/j.jcp.2004.11.003
– ident: ref23/cit23
  doi: 10.1002/0471231509.ch1
– ident: ref33/cit33
  doi: 10.1063/1.3306345
– ident: ref73/cit73
  doi: 10.1103/PhysRevLett.98.268301
– ident: ref44/cit44
  doi: 10.1109/MCSE.2010.27
– ident: ref50/cit50
  doi: 10.1073/pnas.0606692103
– ident: ref62/cit62
  doi: 10.1063/1.3644344
– ident: ref82/cit82
  doi: 10.1021/ct700301q
– ident: ref1/cit1
  doi: 10.1073/pnas.1103547108
– ident: ref80/cit80
  doi: 10.1021/ct300857j
– ident: ref10/cit10
  doi: 10.1146/annurev.physchem.53.082301.113146
– ident: ref15/cit15
  doi: 10.1063/1.473503
– ident: ref37/cit37
  doi: 10.1145/2063384.2063465
– ident: ref102/cit102
  doi: 10.1016/S0959-440X(00)00194-9
– ident: ref31/cit31
  doi: 10.1063/1.3244561
– ident: ref52/cit52
  doi: 10.1021/acs.jctc.5b00032
– ident: ref81/cit81
  doi: 10.1002/jcc.20291
– ident: ref96/cit96
  doi: 10.1529/biophysj.108.136267
– ident: ref43/cit43
  doi: 10.1021/ct500719p
– ident: ref60/cit60
  doi: 10.1063/1.3601919
– ident: ref26/cit26
  doi: 10.1063/1.3518708
– ident: ref57/cit57
  doi: 10.1063/1.478569
– ident: ref51/cit51
  doi: 10.1063/1.2978000
– ident: ref98/cit98
  doi: 10.1093/bioinformatics/btx789
– ident: ref89/cit89
  doi: 10.1021/acs.jctc.5b00743
– ident: ref76/cit76
  doi: 10.1063/1.4890037
– ident: ref58/cit58
  doi: 10.1063/1.4989844
– ident: ref77/cit77
  doi: 10.1063/1.462133
– ident: ref68/cit68
  doi: 10.1073/pnas.0905466106
– ident: ref71/cit71
  doi: 10.1073/pnas.0908754107
– ident: ref79/cit79
  doi: 10.1073/pnas.1513210112
– ident: ref97/cit97
  doi: 10.1140/epjst/e2015-02419-6
– ident: ref41/cit41
  doi: 10.1073/pnas.1525092113
– ident: ref87/cit87
  doi: 10.1021/ct200463m
– ident: ref70/cit70
  doi: 10.1073/pnas.1534924100
– ident: ref34/cit34
  doi: 10.1063/1.3565032
– ident: ref46/cit46
  doi: 10.1002/jcc.24900
– ident: ref75/cit75
  doi: 10.1002/9781118309513.ch2
– ident: ref6/cit6
  doi: 10.1063/1.2714539
– ident: ref103/cit103
  doi: 10.1063/1.1323224
– ident: ref100/cit100
  doi: 10.1126/science.290.5498.1903
– ident: ref16/cit16
  doi: 10.1073/pnas.202427399
– ident: ref3/cit3
  doi: 10.1371/journal.pcbi.1002054
– ident: ref8/cit8
  doi: 10.1142/9789812839664_0001
– volume-title: Reaction Rate Theory and Rare Events
  year: 2017
  ident: ref9/cit9
– ident: ref39/cit39
  doi: 10.1109/eScience.2016.7870921
– ident: ref72/cit72
– ident: ref4/cit4
  doi: 10.1006/jcph.1999.6231
– ident: ref22/cit22
  doi: 10.1063/1.475562
– ident: ref95/cit95
  doi: 10.1073/pnas.100127697
– ident: ref45/cit45
  doi: 10.1021/ct300857j
– ident: ref104/cit104
  doi: 10.1021/jp0455430
– ident: ref90/cit90
  doi: 10.1063/1.445869
– ident: ref101/cit101
  doi: 10.1126/science.1208351
– ident: ref12/cit12
  doi: 10.1016/S0009-2614(89)87314-2
– ident: ref69/cit69
  doi: 10.1140/epjst/e2015-02419-6
– ident: ref30/cit30
  doi: 10.1063/1.3525099
– ident: ref38/cit38
  doi: 10.1039/C3CP54520B
– ident: ref5/cit5
  doi: 10.1016/S1570-8659(03)10013-0
– ident: ref64/cit64
  doi: 10.1021/ct050162r
– ident: ref21/cit21
  doi: 10.1063/1.2825614
– ident: ref53/cit53
  doi: 10.1063/1.4965882
– ident: ref42/cit42
  doi: 10.1103/PhysRevX.4.041018
– ident: ref28/cit28
  doi: 10.1063/1.1644537
– ident: ref29/cit29
  doi: 10.1002/ett.4460130409
– ident: ref35/cit35
  doi: 10.1063/1.1738647
– ident: ref65/cit65
  doi: 10.1063/1.3242285
– volume-title: Reviews of Computational Chemistry
  year: 2009
  ident: ref48/cit48
– ident: ref47/cit47
  doi: 10.1021/acs.jctc.8b00627
– ident: ref92/cit92
  doi: 10.1137/06065146X
– ident: ref7/cit7
  doi: 10.1063/1.2714538
– ident: ref14/cit14
  doi: 10.1103/PhysRevE.52.2893
– ident: ref40/cit40
  doi: 10.1063/1.4902240
– ident: ref13/cit13
  doi: 10.1007/BF00124016
– ident: ref54/cit54
  doi: 10.1021/acs.jpclett.7b01617
– ident: ref94/cit94
  doi: 10.1021/jp411770f
– ident: ref66/cit66
  doi: 10.1063/1.4813777
– ident: ref93/cit93
  doi: 10.1063/1.3592153
– ident: ref59/cit59
  doi: 10.1016/0009-2614(74)80109-0
– ident: ref56/cit56
  doi: 10.1063/1.3491817
– ident: ref88/cit88
  doi: 10.1016/j.bpj.2016.10.042
– ident: ref55/cit55
  doi: 10.1063/1.1562614
– ident: ref78/cit78
  doi: 10.1080/10618600.2015.1113975
– ident: ref27/cit27
  doi: 10.1063/1.1738640
– ident: ref25/cit25
  doi: 10.1063/1.2140273
– volume-title: Stochastic processes in physics and chemistry
  year: 1997
  ident: ref67/cit67
SSID ssj0033423
Score 2.5106182
Snippet Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into...
Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 813
SubjectTerms Algorithms
Complex systems
Complexity
Computer simulation
Importance sampling
Molecular dynamics
Simulation
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7aFceD8CBRkJDiAl3TixnXBbKlYVUquVyqJyimwngcKSrkhWqPx6ZrxOYCkq6iWynIljOzPx58zkG4DnkrZcwprQZGMRprrEUi3TMLUJtwkelWPbPzySB_P03Yk42QLR_wuDnWixpdY58cmql2XtGQbiPar_YjsbZaQsXF6DbSkQgo9ge340m3x03KgpMU6673q-zHv35L-aoEXJtpuL0gWkeTFgcmfVLPX5D71Y_LEaTW_Ch2EcLgjla7TqTGR__kXxeOWB3oIbHp-yyVqhbsNW1dyBnf0-LdxdOKQQlBnixmNNwejNp9dswmbnREHApn2kF0MozEiI9VLs-PSbzxTWRiyO2BuN-tHeg_n07fv9g9DnZAi14KoLRaYQQ9S6VHlejUspVIIIrDZalInJq0wonZVo1UpbzXlN5p2k2Vjjts5WGWKH-zBqzprqITBjq3Fc57km76tNlVEmLmWskxoxFjc2gBc4D4W3qbZw7nIeF64SJ6fwkxPAXv_wCuuJzSm_xuKSK14OVyzXpB6XyO72-vC7K5x-OCbmPx7As-E0PgjytuimOluhDGIC3CtzHgfwYK0-w80QNyQSX68BqA3FGgSI9HvzTHP62ZF_ywQ3gGkewKtBBf87hkdXEX4M1xEU5qFLerMLo-77qnqCwKszT72Z_QIs_Sm3
  priority: 102
  providerName: Unpaywall
Title OpenPathSampling: A Python Framework for Path Sampling Simulations. 1. Basics
URI http://dx.doi.org/10.1021/acs.jctc.8b00626
https://www.ncbi.nlm.nih.gov/pubmed/30336030
https://www.proquest.com/docview/2209985912
https://www.proquest.com/docview/2123717221
https://pubmed.ncbi.nlm.nih.gov/PMC6374749
https://pubs.acs.org/doi/pdf/10.1021/acs.jctc.8b00626
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9626
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT5xAEJ5YfbAvVWtbaa3ZJu2DJuCxC7vQt_PSi2miueR6iT6R3QVa6xVN4WLsr-8MB9jrGfWFEHYW2NkZ9tvM8A3AR0lbrtAa10S90A10ime5DNzACm4FHlXNtn9yKo8nwdez8OyOJuf_CD73D7UtvZ-2sl5EFsLlM1jjUilK3-sPxu1XVxCTXc2NGhDjpB81Icn77kALkS0XF6IldLmcJLk-K6717Y2eTv9ZgYYb81JGZU1cSIknl96sMp79s0zr-ITBbcKLBoiy_txytmAlK17C-qCt_7YNJ5RrMkKAONaUdV58_8z6bHRLXANs2KZ0McS8jIRYK8XGF7-akmClx3yPHWk0hPIVTIZfvg2O3ab4gqtDrio3jBSChVynKo6zXipDJRBq5UaHqTBxFoVKRym6r9JWc56TH4sg6mncv9ksQpDwGlaLqyLbAWZs1vPzONYUZrWBMsr4qfS1yBFMcWMd-IR6SBrnKZM6Ls79pL6Iykka5Thw2M5YYhsGcyqkMX2gx37X43rO3vGA7G5rBHevwunPYqL44w586JpxIiisoovsaoYyuPjjpphz34E3c5vpHoYAQUj8jjqgFqypEyB278WW4uJHzfItBe70gtiBg87uHh3D2ydq8h08R-AXu3Vhm11YrX7PsvcIriqzV3vVHqxNTkf9878RDiA5
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N8VBe-M0IDDASPICUrLZjO-GtVFQF1mmim7S3yHYSGJRsIqnQ-Os5u0lGGRrwEkXxxYkvZ_s73eU7gGfSuVzCmtAkQxHGOsezUsZhbDmzHI_Ks-3P9uT0MH53JI42gHb_wuBL1NhT7YP45-wCdMdd-2wbGyXOUJi8AleFjKnzt0bjebf4ckdo5ylSY0c8SZM2MvmnHtx-ZOv1_egCyLyYKzlYVqf67LteLH7ZiCY34EM_BJ9_8iVaNiayP35jd_yvMd6E6y0sJaOVHd2CjaK6DYNxVw3uDsxc5sk-wsW5djno1cdXZET2zxzzAJl0CV4EETBxQqSTIvPjr22BsDoiNCKvNZpFfRcOJ28OxtOwLcUQasFUE4pEIXQoda7StBjmUiiOwKs0WuTcpEUilE5ynMxKW81Y6WY1j5OhRm_OFglChnuwWZ1UxX0gxhZDWqapdkFXGyujDM0l1bxEaMWMDeA56iFrp1Kd-Sg5o5m_iMrJWuUEsNN9uMy2fOaurMbikjte9Hecrrg8LpHd7mzh_FWY-8_YEf6xAJ72zfghXJBFV8XJEmUQCqCLzBgNYGtlOv3DEC5wiatqAGrNqHoBx_W93lIdf_Kc35Kj3xenAbzsze-vY3jwj5p8AoPpwWw323279_4hXENImIa-5M02bDbflsUjhF2Neewn2k9ySSbr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTWK8wPgODDASPICUrLHjONlbKVTjY1OlMrS3yHYSGJSsIqnQ-Ot35yaBMjTgJYqSSxzbd_HvdOffATyJyeWS1vgmGUg_0jmelXHkR1ZwK_CoHNv-_kG8dxi9OZJHayC7vTD4ETW-qXZBfLLqeV62DAPhDl3_bBsbJKQsPL4EGxIbI59rOJp2P2BBpHaOJjUi8skwaaOTf3oDrUm2Xl2TzgHN8_mSm4tqrk-_69nsl8VofA0-9N1wOShfgkVjAvvjN4bH_-7nFlxt4SkbLvXpOqwV1Q3YHHVV4W7CPmWgTBA2TjXlolcfd9mQTU6JgYCNu0QvhkiYkRDrpNj0-GtbKKwOWBiwFxrVo74Fh-NX70d7fluSwdeSq8aXiUIIUepcpWkxyGOpBAKw0miZC5MWiVQ6ydGolbaa85KsW0TJQKNXZ4sEocNtWK9OquIuMGOLQVimqabgq42UUSbM41CLEiEWN9aDpzgOWWtSdeai5TzM3EUcnKwdHA92usnLbMtrTuU1Zhc88ax_Yr7k9LhAdrvTh5-fwmm_MRH_cQ8e97dxIijYoqviZIEyCAnQVeY89ODOUn36xhA2iBj_rh6oFcXqBYjze_VOdfzJcX_HAv2_KPXgea-Cf-3DvX8cyUdwefJynL17ffD2PlxBZJj6rvLNNqw33xbFA0RfjXnobO0M6C8pbg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7aFceD8CBRkJDiAl3TixnXBbKlYVUquVyqJyimwngcKSrkhWqPx6ZrxOYCkq6iWynIljOzPx58zkG4DnkrZcwprQZGMRprrEUi3TMLUJtwkelWPbPzySB_P03Yk42QLR_wuDnWixpdY58cmql2XtGQbiPar_YjsbZaQsXF6DbSkQgo9ge340m3x03KgpMU6673q-zHv35L-aoEXJtpuL0gWkeTFgcmfVLPX5D71Y_LEaTW_Ch2EcLgjla7TqTGR__kXxeOWB3oIbHp-yyVqhbsNW1dyBnf0-LdxdOKQQlBnixmNNwejNp9dswmbnREHApn2kF0MozEiI9VLs-PSbzxTWRiyO2BuN-tHeg_n07fv9g9DnZAi14KoLRaYQQ9S6VHlejUspVIIIrDZalInJq0wonZVo1UpbzXlN5p2k2Vjjts5WGWKH-zBqzprqITBjq3Fc57km76tNlVEmLmWskxoxFjc2gBc4D4W3qbZw7nIeF64SJ6fwkxPAXv_wCuuJzSm_xuKSK14OVyzXpB6XyO72-vC7K5x-OCbmPx7As-E0PgjytuimOluhDGIC3CtzHgfwYK0-w80QNyQSX68BqA3FGgSI9HvzTHP62ZF_ywQ3gGkewKtBBf87hkdXEX4M1xEU5qFLerMLo-77qnqCwKszT72Z_QIs_Sm3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OpenPathSampling%3A+A+Python+Framework+for+Path+Sampling+Simulations.+1.+Basics&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Swenson%2C+David+W.+H&rft.au=Prinz%2C+Jan-Hendrik&rft.au=Noe%2C+Frank&rft.au=Chodera%2C+John+D&rft.date=2019-02-12&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=15&rft.issue=2&rft.spage=813&rft.epage=836&rft_id=info:doi/10.1021%2Facs.jctc.8b00626&rft.externalDocID=c805129507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon