Analysis of Eight Oil Spill Dispersants Using Rapid, In Vitro Tests for Endocrine and Other Biological Activity

The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this large scale use there is a critical need to understand the potential for toxicity of the currently used dispersant and potential alternative...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 44; no. 15; pp. 5979 - 5985
Main Authors Judson, Richard S, Martin, Matthew T, Reif, David M, Houck, Keith A, Knudsen, Thomas B, Rotroff, Daniel M, Xia, Menghang, Sakamuru, Srilatha, Huang, Ruili, Shinn, Paul, Austin, Christopher P, Kavlock, Robert J, Dix, David J
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.08.2010
Subjects
Online AccessGet full text
ISSN0013-936X
1520-5851
1520-5851
DOI10.1021/es102150z

Cover

Abstract The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this large scale use there is a critical need to understand the potential for toxicity of the currently used dispersant and potential alternatives, especially given the limited toxicity testing information that is available. In particular, some dispersants contain nonylphenol ethoxylates (NPEs), which can degrade to nonylphenol (NP), a known endocrine disruptor. Given the urgent need to generate toxicity data, we carried out a series of in vitro high-throughput assays on eight commercial dispersants. These assays focused on the estrogen and androgen receptors (ER and AR), but also included a larger battery of assays probing other biological pathways. Cytotoxicity in mammalian cells was also quantified. No activity was seen in any AR assay. Two dispersants showed a weak ER signal in one assay (EC50 of 16 ppm for Nokomis 3-F4 and 25 ppm for ZI-400). NPs and NPEs also had a weak signal in this same ER assay. Note that Corexit 9500, the currently used product, does not contain NPEs and did not show any ER activity. Cytotoxicity values for six of the dispersants were statistically indistinguishable, with median LC50 values ∼100 ppm. Two dispersants, JD 2000 and SAF-RON GOLD, were significantly less cytotoxic than the others with LC50 values approaching or exceeding 1000 ppm.
AbstractList The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this large scale use there is a critical need to understand the potential for toxicity of the currently used dispersant and potential alternatives, especially given the limited toxicity testing information that is available. In particular, some dispersants contain nonylphenol ethoxylates (NPEs), which can degrade to nonylphenol (NP), a known endocrine disruptor. Given the urgent need to generate toxicity data, we carried out a series of in vitro high-throughput assays on eight commercial dispersants. These assays focused on the estrogen and androgen receptors (ER and AR), but also included a larger battery of assays probing other biological pathways. Cytotoxicity in mammalian cells was also quantified. No activity was seen in any AR assay. Two dispersants showed a weak ER signal in one assay (EC50 of 16 ppm for Nokomis 3-F4 and 25 ppm for ZI-400). NPs and NPEs also had a weak signal in this same ER assay. Note that Corexit 9500, the currently used product, does not contain NPEs and did not show any ER activity. Cytotoxicity values for six of the dispersants were statistically indistinguishable, with median LC50 values ~100 ppm. Two dispersants, JD 2000 and SAF-RON GOLD, were significantly less cytotoxic than the others with LC50 values approaching or exceeding 1000 ppm. [PUBLICATION ABSTRACT]
The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this large scale use there is a critical need to understand the potential for toxicity of the currently used dispersant and potential alternatives, especially given the limited toxicity testing information that is available. In particular, some dispersants contain nonylphenol ethoxylates (NPEs), which can degrade to nonylphenol (NP), a known endocrine disruptor. Given the urgent need to generate toxicity data, we carried out a series of in vitro high-throughput assays on eight commercial dispersants. These assays focused on the estrogen and androgen receptors (ER and AR), but also included a larger battery of assays probing other biological pathways. Cytotoxicity in mammalian cells was also quantified. No activity was seen in any AR assay. Two dispersants showed a weak ER signal in one assay (EC50 of 16 ppm for Nokomis 3-F4 and 25 ppm for ZI-400). NPs and NPEs also had a weak signal in this same ER assay. Note that Corexit 9500, the currently used product, does not contain NPEs and did not show any ER activity. Cytotoxicity values for six of the dispersants were statistically indistinguishable, with median LC50 values approximately 100 ppm. Two dispersants, JD 2000 and SAF-RON GOLD, were significantly less cytotoxic than the others with LC50 values approaching or exceeding 1000 ppm.The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this large scale use there is a critical need to understand the potential for toxicity of the currently used dispersant and potential alternatives, especially given the limited toxicity testing information that is available. In particular, some dispersants contain nonylphenol ethoxylates (NPEs), which can degrade to nonylphenol (NP), a known endocrine disruptor. Given the urgent need to generate toxicity data, we carried out a series of in vitro high-throughput assays on eight commercial dispersants. These assays focused on the estrogen and androgen receptors (ER and AR), but also included a larger battery of assays probing other biological pathways. Cytotoxicity in mammalian cells was also quantified. No activity was seen in any AR assay. Two dispersants showed a weak ER signal in one assay (EC50 of 16 ppm for Nokomis 3-F4 and 25 ppm for ZI-400). NPs and NPEs also had a weak signal in this same ER assay. Note that Corexit 9500, the currently used product, does not contain NPEs and did not show any ER activity. Cytotoxicity values for six of the dispersants were statistically indistinguishable, with median LC50 values approximately 100 ppm. Two dispersants, JD 2000 and SAF-RON GOLD, were significantly less cytotoxic than the others with LC50 values approaching or exceeding 1000 ppm.
The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this large scale use there is a critical need to understand the potential for toxicity of the currently used dispersant and potential alternatives, especially given the limited toxicity testing information that is available. In particular, some dispersants contain nonylphenol ethoxylates (NPEs), which can degrade to nonylphenol (NP), a known endocrine disruptor. Given the urgent need to generate toxicity data, we carried out a series of in vitro high-throughput assays on eight commercial dispersants. These assays focused on the estrogen and androgen receptors (ER and AR), but also included a larger battery of assays probing other biological pathways. Cytotoxicity in mammalian cells was also quantified. No activity was seen in any AR assay. Two dispersants showed a weak ER signal in one assay (EC50 of 16 ppm for Nokomis 3-F4 and 25 ppm for ZI-400). NPs and NPEs also had a weak signal in this same ER assay. Note that Corexit 9500, the currently used product, does not contain NPEs and did not show any ER activity. Cytotoxicity values for six of the dispersants were statistically indistinguishable, with median LC50 values ∼100 ppm. Two dispersants, JD 2000, SAF-RON GOLD, were significantly less cytotoxic than the others with LC50 values approaching or exceeding 1000 ppm.
The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this large scale use there is a critical need to understand the potential for toxicity of the currently used dispersant and potential alternatives, especially given the limited toxicity testing information that is available. In particular, some dispersants contain nonylphenol ethoxylates (NPEs), which can degrade to nonylphenol (NP), a known endocrine disruptor. Given the urgent need to generate toxicity data, we carried out a series of in vitro high-throughput assays on eight commercial dispersants. These assays focused on the estrogen and androgen receptors (ER and AR), but also included a larger battery of assays probing other biological pathways. Cytotoxicity in mammalian cells was also quantified. No activity was seen in any AR assay. Two dispersants showed a weak ER signal in one assay (EC50 of 16 ppm for Nokomis 3-F4 and 25 ppm for ZI-400). NPs and NPEs also had a weak signal in this same ER assay. Note that Corexit 9500, the currently used product, does not contain NPEs and did not show any ER activity. Cytotoxicity values for six of the dispersants were statistically indistinguishable, with median LC50 values approximately 100 ppm. Two dispersants, JD 2000 and SAF-RON GOLD, were significantly less cytotoxic than the others with LC50 values approaching or exceeding 1000 ppm.
The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this large scale use there is a critical need to understand the potential for toxicity of the currently used dispersant and potential alternatives, especially given the limited toxicity testing information that is available. In particular, some dispersants contain nonylphenol ethoxylates (NPEs), which can degrade to nonylphenol (NP), a known endocrine disruptor. Given the urgent need to generate toxicity data, we carried out a series of in vitro high-throughput assays on eight commercial dispersants. These assays focused on the estrogen and androgen receptors (ER and AR), but also included a larger battery of assays probing other biological pathways. Cytotoxicity in mammalian cells was also quantified. No activity was seen in any AR assay. Two dispersants showed a weak ER signal in one assay (EC50 of 16 ppm for Nokomis 3-F4 and 25 ppm for ZI-400). NPs and NPEs also had a weak signal in this same ER assay. Note that Corexit 9500, the currently used product, does not contain NPEs and did not show any ER activity. Cytotoxicity values for six of the dispersants were statistically indistinguishable, with median LC50 values ∼100 ppm. Two dispersants, JD 2000 and SAF-RON GOLD, were significantly less cytotoxic than the others with LC50 values approaching or exceeding 1000 ppm.
Author Rotroff, Daniel M
Knudsen, Thomas B
Dix, David J
Sakamuru, Srilatha
Shinn, Paul
Judson, Richard S
Houck, Keith A
Austin, Christopher P
Reif, David M
Xia, Menghang
Huang, Ruili
Kavlock, Robert J
Martin, Matthew T
AuthorAffiliation 2 NIH Chemical Genomics Center, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
1 National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
AuthorAffiliation_xml – name: 1 National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
– name: 2 NIH Chemical Genomics Center, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
Author_xml – sequence: 1
  givenname: Richard S
  surname: Judson
  fullname: Judson, Richard S
  email: judson.richard@epa.gov
– sequence: 2
  givenname: Matthew T
  surname: Martin
  fullname: Martin, Matthew T
– sequence: 3
  givenname: David M
  surname: Reif
  fullname: Reif, David M
– sequence: 4
  givenname: Keith A
  surname: Houck
  fullname: Houck, Keith A
– sequence: 5
  givenname: Thomas B
  surname: Knudsen
  fullname: Knudsen, Thomas B
– sequence: 6
  givenname: Daniel M
  surname: Rotroff
  fullname: Rotroff, Daniel M
– sequence: 7
  givenname: Menghang
  surname: Xia
  fullname: Xia, Menghang
– sequence: 8
  givenname: Srilatha
  surname: Sakamuru
  fullname: Sakamuru, Srilatha
– sequence: 9
  givenname: Ruili
  surname: Huang
  fullname: Huang, Ruili
– sequence: 10
  givenname: Paul
  surname: Shinn
  fullname: Shinn, Paul
– sequence: 11
  givenname: Christopher P
  surname: Austin
  fullname: Austin, Christopher P
– sequence: 12
  givenname: Robert J
  surname: Kavlock
  fullname: Kavlock, Robert J
– sequence: 13
  givenname: David J
  surname: Dix
  fullname: Dix, David J
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23059462$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20602530$$D View this record in MEDLINE/PubMed
BookMark eNpt0l9rFDEQAPAgFXutPvgFJAgigmcnyWb_vAhnPbVQONBWfFty2ezdlFyyTXKF66dvjp5XrT7Nw_wyzEzmiBw47wwhLxl8YMDZiYnbIOH2CRkxyWEsa8kOyAiAiXEjyl-H5CjGKwDgAupn5JBDCVwKGBE_ccpuIkbqezrFxTLRGVr6Y0Br6WeMgwlRuRTpZUS3oN_VgN17euboT0zB0wsTc673gU5d53VAZ6hyHZ2lpQn0E3rrF6iVpROd8AbT5jl52isbzYtdPCaXX6YXp9_G57OvZ6eT87GSvEpjweacQW-6itXzquqFKlQNnSl1HoDVRdloI3qjGq1KDpU2sq9BynlloDSgpTgmH-_rDuv5ynTauBSUbYeAKxU2rVfY_p1xuGwX_qbljYACRC7wdlcg-Ot1HrNdYdTGWuWMX8e2KuqmLhhrsnz9SF75dchr3aJGyEpAmdGrP_vZN_L7JzJ4swMq5oX1QTmN8cEJkE1R8uze3TsdfIzB9HvCoN2eQbu_hmxPHlmNSSX025HR_vfFrgul48MY_7o7JELCdg
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_ygcen_2016_04_029
crossref_primary_10_1016_j_lfs_2013_12_010
crossref_primary_10_1016_j_marpolbul_2015_02_006
crossref_primary_10_3389_ftox_2020_00002
crossref_primary_10_1002_ieam_273
crossref_primary_10_1007_s11814_024_00140_2
crossref_primary_10_1289_EHP233
crossref_primary_10_1016_j_chemosphere_2018_03_033
crossref_primary_10_1111_j_1462_2920_2012_02780_x
crossref_primary_10_1289_ehp_1307260
crossref_primary_10_1016_j_scitotenv_2014_02_033
crossref_primary_10_5670_oceanog_2016_75
crossref_primary_10_1080_15287394_2011_606794
crossref_primary_10_1002_pat_1975
crossref_primary_10_1016_j_colsurfa_2015_05_060
crossref_primary_10_1007_s11356_019_04562_y
crossref_primary_10_1007_s00128_021_03247_y
crossref_primary_10_1002_jat_3900
crossref_primary_10_1007_s10337_013_2542_3
crossref_primary_10_4137_EHI_S15262
crossref_primary_10_1007_s10965_016_0938_0
crossref_primary_10_1021_acs_iecr_6b04854
crossref_primary_10_1016_j_taap_2022_116033
crossref_primary_10_1016_j_marpolbul_2016_06_027
crossref_primary_10_1039_C4AY00257A
crossref_primary_10_24057_2071_9388_2020_21
crossref_primary_10_1002_rcm_8512
crossref_primary_10_1021_acssuschemeng_5b00516
crossref_primary_10_1016_j_aquatox_2012_08_005
crossref_primary_10_1021_es504903k
crossref_primary_10_1080_02772248_2012_692553
crossref_primary_10_1289_ehp_1409672
crossref_primary_10_1016_j_chemosphere_2021_130744
crossref_primary_10_1017_S0963180115000109
crossref_primary_10_1007_s00128_014_1370_y
crossref_primary_10_1103_PhysRevFluids_3_083801
crossref_primary_10_1021_la502312n
crossref_primary_10_1016_j_cbd_2017_05_001
crossref_primary_10_1016_j_yrtph_2013_10_003
crossref_primary_10_1002_slct_202302231
crossref_primary_10_1021_es401761h
crossref_primary_10_1016_j_jhazmat_2016_02_014
crossref_primary_10_1016_j_marpolbul_2024_116491
crossref_primary_10_1021_acs_est_8b03657
crossref_primary_10_1016_j_cej_2016_11_124
crossref_primary_10_1016_j_jhazmat_2022_129046
crossref_primary_10_1289_ehp_1205826
crossref_primary_10_1007_s00335_018_9735_x
crossref_primary_10_1371_journal_pone_0163724
crossref_primary_10_1002_etc_619
crossref_primary_10_1051_bioconf_20248601050
crossref_primary_10_1093_toxsci_kfz185
crossref_primary_10_1016_j_ocemod_2014_01_004
crossref_primary_10_1007_s11356_021_13775_z
crossref_primary_10_1016_j_chemosphere_2019_125585
crossref_primary_10_1016_j_tiv_2017_11_016
crossref_primary_10_1016_j_fct_2012_02_016
crossref_primary_10_1007_s11157_011_9252_9
crossref_primary_10_1007_s00128_021_03272_x
crossref_primary_10_1002_ieam_4153
crossref_primary_10_1016_j_marpolbul_2017_06_023
crossref_primary_10_1016_j_chemosphere_2013_08_049
crossref_primary_10_1016_j_xgen_2024_100591
crossref_primary_10_1007_s11356_018_1222_0
crossref_primary_10_1016_j_chroma_2012_01_088
crossref_primary_10_1016_j_jlp_2022_104912
crossref_primary_10_1289_EHP2662
crossref_primary_10_1016_j_envint_2019_105320
crossref_primary_10_1016_j_envpol_2012_09_024
crossref_primary_10_1093_toxsci_kfz058
crossref_primary_10_3390_jimaging3040047
crossref_primary_10_1021_es103838p
crossref_primary_10_1002_etc_2721
crossref_primary_10_1093_toxsci_kfaa166
crossref_primary_10_1289_ehp_118_a338
crossref_primary_10_1021_nn4037927
crossref_primary_10_1210_en_2016_1242
crossref_primary_10_1021_envhealth_4c00172
crossref_primary_10_1021_es404846b
crossref_primary_10_1021_acs_est_5b00961
crossref_primary_10_1177_1087057113505324
crossref_primary_10_1016_j_marpolbul_2020_111098
crossref_primary_10_1007_s11356_022_23462_2
crossref_primary_10_1177_0192623311428474
crossref_primary_10_1093_toxsci_kfab126
crossref_primary_10_1016_j_aquatox_2018_07_015
crossref_primary_10_1039_c3em30816b
crossref_primary_10_1016_j_carbpol_2012_08_036
crossref_primary_10_1016_j_ygcen_2017_11_019
crossref_primary_10_1080_02772248_2012_654633
crossref_primary_10_1016_j_cej_2016_12_010
crossref_primary_10_1186_s40168_021_01143_5
crossref_primary_10_1289_ehp_1104870
crossref_primary_10_1146_annurev_pharmtox_112122_104310
crossref_primary_10_1073_pnas_1204729109
crossref_primary_10_1002_jat_3414
crossref_primary_10_1016_j_ecoenv_2012_09_009
crossref_primary_10_1007_s00204_015_1510_0
crossref_primary_10_3389_fpubh_2020_584953
crossref_primary_10_1016_j_colsurfa_2021_126148
crossref_primary_10_1289_EHP4745
crossref_primary_10_1039_c3ta11761h
crossref_primary_10_1002_etc_2501
crossref_primary_10_1289_ehp_1103507
crossref_primary_10_1021_acs_est_7b06463
crossref_primary_10_1002_btpr_701
crossref_primary_10_1016_j_marpolbul_2012_06_031
crossref_primary_10_1289_ehp_1205065
crossref_primary_10_1007_s00204_015_1526_5
crossref_primary_10_1016_j_jcis_2022_03_142
crossref_primary_10_1016_j_cotox_2017_09_002
crossref_primary_10_1016_j_chemosphere_2015_08_040
crossref_primary_10_1002_etc_532
crossref_primary_10_1002_ieam_1923
crossref_primary_10_1080_15287394_2013_821396
crossref_primary_10_1002_etc_4254
crossref_primary_10_1016_j_tiv_2017_08_005
crossref_primary_10_1007_s00204_015_1512_y
crossref_primary_10_1016_j_jece_2021_106607
crossref_primary_10_1128_mBio_00376_12
crossref_primary_10_7901_2169_3358_2017_1_311
crossref_primary_10_1126_science_1195979
Cites_doi 10.1021/jm701302v
10.1080/713608372
10.1289/ehp.0901392
10.1038/nchembio.2007.17
10.1016/j.cbi.2005.06.003
10.1210/endo.135.1.8013351
10.1021/tx900325g
10.1002/etc.619
10.1093/toxsci/kfj062
10.1021/es000127o
10.1289/ehp.6413
10.1093/toxsci/kfm255
10.1002/etc.5620150218
10.1016/S0300-483X(01)00437-1
10.1007/s00109-005-0678-9
10.1081/GNC-120038005
10.1038/nmeth.1186
10.1016/S0166-445X(01)00276-4
10.1073/pnas.0604348103
10.1289/ehp.01109437
10.1016/j.taap.2006.08.011
10.1093/carcin/17.2.191
ContentType Journal Article
Copyright Copyright © 2010 U.S. Government
2015 INIST-CNRS
Copyright American Chemical Society Aug 1, 2010
Copyright_xml – notice: Copyright © 2010 U.S. Government
– notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society Aug 1, 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
5PM
DOI 10.1021/es102150z
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 5985
ExternalDocumentID PMC2930403
2128663311
20602530
23059462
10_1021_es102150z
b439467764
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA HG200319
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYOK
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
ABHMW
ACKIV
ACRPL
ADNMO
AETEA
AEYZD
AGQPQ
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
5PM
ID FETCH-LOGICAL-a527t-31b210fed718b77f3a4a80de6c30818469ce3fea9ca6207ce5f8055b7e06e0c53
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Thu Aug 21 18:24:47 EDT 2025
Fri Sep 05 12:08:52 EDT 2025
Fri Jul 25 04:43:41 EDT 2025
Mon Jul 21 05:16:48 EDT 2025
Mon Jul 21 09:15:44 EDT 2025
Tue Jul 01 02:10:25 EDT 2025
Thu Apr 24 22:55:38 EDT 2025
Thu Aug 27 13:42:11 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Oil spill
Toxicity
Estrogen
Phenols
Endocrine disruptor
Surfactant
Sex steroid hormone
In vitro
Biological activity
Organic compounds
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527t-31b210fed718b77f3a4a80de6c30818469ce3fea9ca6207ce5f8055b7e06e0c53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2930403
PMID 20602530
PQID 749357306
PQPubID 45412
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2930403
proquest_miscellaneous_748984119
proquest_journals_749357306
pubmed_primary_20602530
pascalfrancis_primary_23059462
crossref_primary_10_1021_es102150z
crossref_citationtrail_10_1021_es102150z
acs_journals_10_1021_es102150z
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-08-01
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References White R. (ref4/cit4) 1994; 135
Jobling S. (ref8/cit8) 1996; 15
Peters J. M. (ref26/cit26) 2005; 83
ref29/cit29
Jonkers N. (ref3/cit3) 2001; 35
Peraza M. A. (ref22/cit22) 2006; 90
ref14/cit14
Owens W. (ref6/cit6) 2003; 111
Peters J. M. (ref25/cit25) 2008; 101
Folmar L. C. (ref7/cit7) 2002; 60
Romanov S. (ref10/cit10) 2008; 5
Inglese J. (ref12/cit12) 2007; 3
Poole T. M. (ref27/cit27) 1996; 17
ref17/cit17
Lai D. Y. (ref21/cit21) 2004; 22
Kretschmer X. C. (ref18/cit18) 2005; 155
Inglese J. (ref11/cit11) 2006; 103
Eldridge J. C. (ref2/cit2) 2010; 27
ref15/cit15
Martin M. T. (ref9/cit9) 2010; 23
Takeuchi S. (ref23/cit23) 2006; 217
Klaunig J. E. (ref20/cit20) 2003; 33
Auld D. S. (ref16/cit16) 2008; 51
Melnick R. L. (ref24/cit24) 2001; 109
ref13/cit13
Gutendorf B. (ref5/cit5) 2001; 166
Guyton K. Z. (ref19/cit19) 2009
Judson R. S. (ref28/cit28) 2010; 118
ref1/cit1
References_xml – ident: ref14/cit14
– volume: 51
  start-page: 2372
  issue: 8
  year: 2008
  ident: ref16/cit16
  publication-title: J. Med. Chem.
  doi: 10.1021/jm701302v
– volume: 33
  start-page: 655
  issue: 6
  year: 2003
  ident: ref20/cit20
  publication-title: Crit. Rev. Toxicol.
  doi: 10.1080/713608372
– volume: 118
  start-page: 485
  issue: 4
  year: 2010
  ident: ref28/cit28
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.0901392
– start-page: doi: 10.1289/eh
  year: 2009
  ident: ref19/cit19
  publication-title: Environ. Health Perspect.
– ident: ref13/cit13
– volume: 3
  start-page: 466
  issue: 8
  year: 2007
  ident: ref12/cit12
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2007.17
– volume: 155
  start-page: 111
  issue: 3
  year: 2005
  ident: ref18/cit18
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2005.06.003
– volume: 135
  start-page: 175
  issue: 1
  year: 1994
  ident: ref4/cit4
  publication-title: Endocrinology
  doi: 10.1210/endo.135.1.8013351
– volume: 23
  start-page: 578
  issue: 3
  year: 2010
  ident: ref9/cit9
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx900325g
– ident: ref17/cit17
  doi: 10.1002/etc.619
– ident: ref1/cit1
– volume: 90
  start-page: 269
  issue: 2
  year: 2006
  ident: ref22/cit22
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfj062
– ident: ref29/cit29
– volume: 35
  start-page: 335
  issue: 2
  year: 2001
  ident: ref3/cit3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es000127o
– volume: 111
  start-page: 1527
  issue: 12
  year: 2003
  ident: ref6/cit6
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.6413
– volume: 101
  start-page: 1
  issue: 1
  year: 2008
  ident: ref25/cit25
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfm255
– volume: 15
  start-page: 194
  issue: 2
  year: 1996
  ident: ref8/cit8
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620150218
– volume: 166
  start-page: 79
  issue: 1
  year: 2001
  ident: ref5/cit5
  publication-title: Toxicology
  doi: 10.1016/S0300-483X(01)00437-1
– volume: 83
  start-page: 774
  issue: 10
  year: 2005
  ident: ref26/cit26
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-005-0678-9
– volume: 27
  volume-title: Endocrine Toxicology
  year: 2010
  ident: ref2/cit2
– volume: 22
  start-page: 37
  issue: 1
  year: 2004
  ident: ref21/cit21
  publication-title: J. Environ. Sci. Health, C
  doi: 10.1081/GNC-120038005
– volume: 5
  start-page: 253
  issue: 3
  year: 2008
  ident: ref10/cit10
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1186
– ident: ref15/cit15
– volume: 60
  start-page: 101
  issue: 1
  year: 2002
  ident: ref7/cit7
  publication-title: Aquat. Toxicol.
  doi: 10.1016/S0166-445X(01)00276-4
– volume: 103
  start-page: 11473
  issue: 31
  year: 2006
  ident: ref11/cit11
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0604348103
– volume: 109
  start-page: 437
  issue: 5
  year: 2001
  ident: ref24/cit24
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.01109437
– volume: 217
  start-page: 235
  issue: 3
  year: 2006
  ident: ref23/cit23
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2006.08.011
– volume: 17
  start-page: 191
  issue: 2
  year: 1996
  ident: ref27/cit27
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/17.2.191
SSID ssj0002308
Score 2.392522
Snippet The Deepwater Horizon oil spill has led to the use of >1 M gallons of oil spill dispersants, which are mixtures of surfactants and solvents. Because of this...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5979
SubjectTerms Applied sciences
Bioassays
Chemical Hazard Release
Cytotoxicity
Ecotoxicology and Human Environmental Health
Endocrine Disruptors - analysis
Endocrine system
Environmental Restoration and Remediation
Exact sciences and technology
Hormones
Lipids - toxicity
Oil spills
Pollution
Receptors, Estrogen - metabolism
Surface-Active Agents - toxicity
Toxicity
Toxicology
Water Pollutants, Chemical - toxicity
Title Analysis of Eight Oil Spill Dispersants Using Rapid, In Vitro Tests for Endocrine and Other Biological Activity
URI http://dx.doi.org/10.1021/es102150z
https://www.ncbi.nlm.nih.gov/pubmed/20602530
https://www.proquest.com/docview/749357306
https://www.proquest.com/docview/748984119
https://pubmed.ncbi.nlm.nih.gov/PMC2930403
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5851
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002308
  issn: 0013-936X
  databaseCode: ACS
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgEhWgqFULqygAMH0jqxHTvHVbtVQYJK0KK9rRzHERGrZNVkL_31jPPa3bLAKQdPotiexzfy-BuA9yGGRKExyaEJYz43gfIVhgEfkX0sg1SmccNT8OVrdHnDP0_FdAfe_eUEPwxObeUegt49gIdhpAKXYY3Pvg_uFjG06tsUxCya9vRB66-60GOqjdDzZKErXIWsbV-xDV_eL5NcizsXe3De395py01-nSzr5MTc_Unm-K8p7cPTDneScasoz2DHFgfweI2N8AAOJ6tLbyjaWX31HMqeuYSUGZm4bJ5c5SiwyOdzcp47rvHKldOQpv6AfNOLPP1IPhXkR17fluQap1sRBMdkUqSlcdcNiS5ScuWwJ2mbYTpVIWPTtrJ4ATcXk-uzS79r1OBrEcoa_XiCmWNmUwx0iZQZ01wrmtrIMMeYhxm4sSyzOjY6Cqk0VmSKCpFISyNLjWCHsFuUhX0FhMaZo1QTCeIIrpjRLqMRjkcs4JYn1IMR7uSsM7Rq1pyhh8FsWFIPPvSbPDMdzbnrtjHfJvp2EF203B7bhEYbmjJIot6JmEehB0e96qx-S_KYCXSekQdkGEXDdacxurDl0omoWPEgiD142erZ6tM0QijKcLJyQwMHAccJvjlS5D8bbnBEb-iW2ev_LdMRPGrrIFwp4xvYrW-X9hjhVZ2MGvP6DYbrHjY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQBCPEofobBYiAMHUpw4zuNYla220IcEW7S3yHEcEbFKVk320l_PTF67W60Epxw8iezJeOYbefwNwEcXQ6JUmOTwRAjb005ohxgGbET2UeCkQRo1PAWXV_7kxvs2k7OOJofuwuAkKvxS1Rzir9gFnC-moofkdw_hUcOAQjDo9OfgdRFKh323gkj4s55FaP1VikC62ohAzxaqQmVkbReLbTDzfrXkWvg5e9H2MWom3lSd_Dle1smxvrvH6fh_K3sJzzsUyk5as3kFD0yxC0_XuAl3YX-8ugKHop0PqF5D2fOYsDJjY8rt2XWOAot8Pmdfc2Ier6i4hjXVCOyHWuTpZ3ZesF95fVuyKa66YgiV2bhIS02XD5kqUnZNSJS1rTHJcNiJbhtb7MHN2Xh6OrG7tg22km5Qo1dPMI_MTIphLwmCTChPhTw1vhbEn4f5uDYiMyrSynd5oI3MQi5lEhjuG66l2IedoizMITAeZUSwJhNEFV4otKL8RhKrmOMZL-EWjFCjcbftqrg5UXedeFCpBZ_6fx3rjvScem_Mt4l-GEQXLdPHNqHRhsEMkmh-MvJ814Kj3oJW0wq8SEh0pb4FbBjFbUxnM6ow5ZJEwij0HCey4KA1t9WnuY_AVOBigw1DHASIIXxzpMh_N0zhiOXQSYs3_1LTe3g8mV5exBfnV9-P4ElbIUFFjm9hp75dmncIvOpk1Oy4v_-lJqE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAI8Sh9hMJiIQ4cSHHiOI9j1e6q5dFF0KK9RY7jiIhVEjXZS389M0k2u1utBKccPInsyXjmG3n8DcB7F0OiVJjk8EQI29NOaIcYBmxE9lHgpEEatTwF3y7982vv80zO-kSR7sLgJGr8Ut0e4tOurtKsZxhwPpmaHpLf3ocHkqjfCAqd_hw8L8LpcNmxIBL-bMkktP4qRSFdb0ShJ5WqUSFZ18liG9S8WzG5FoImz2A6TL6tPPlzvGiSY317h9fx_1f3HJ72aJSddObzAu6ZYhcer3EU7sL-eHUVDkV7X1C_hHLJZ8LKjI0px2fTHAWqfD5nZzkxkNdUZMPaqgT2Q1V5-pFdFOxX3tyU7ApXXjOEzGxcpKWmS4hMFSmbEiJlXYtMMiB2orsGF3twPRlfnZ7bffsGW0k3aNC7J5hPZibF8JcEQSaUp0KeGl8L4tHDvFwbkRkVaeW7PNBGZiGXMgkM9w3XUuzDTlEW5hAYjzIiWpMJogsvFFpRniOJXczxjJdwC0ao1bjffnXcnqy7Tjyo1IIPy_8d6578nHpwzLeJvhtEq47xY5vQaMNoBkk0QRl5vmvB0dKKVtMKvEhIdKm-BWwYxe1MZzSqMOWCRMIo9BwnsuCgM7nVp7mPAFXgYoMNYxwEiCl8c6TIf7eM4Yjp0FmLV_9S01t4-P1sEn-9uPxyBI-6QgmqdXwNO83NwrxB_NUko3bT_QVV7ikb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Eight+Oil+Spill+Dispersants+Using+Rapid%2C+In+Vitro+Tests+for+Endocrine+and+Other+Biological+Activity&rft.jtitle=Environmental+science+%26+technology&rft.au=JUDSON%2C+Richard+S&rft.au=MARTIN%2C+Matthew+T&rft.au=AUSTIN%2C+Christopher+P&rft.au=KAVLOCK%2C+Robert+J&rft.date=2010-08-01&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=44&rft.issue=15&rft.spage=5979&rft.epage=5985&rft_id=info:doi/10.1021%2Fes102150z&rft.externalDBID=n%2Fa&rft.externalDocID=23059462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon