pyMOR - Generic Algorithms and Interfaces for Model Order Reduction

Reduced basis methods are projection-based model order reduction techniques for reducing the computational complexity of solving parametrized partial differential equation problems. In this work we discuss the design of pyMOR, a freely available software library of model order reduction algorithms,...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Milk, René, Rave, Stephan, Schindler, Felix
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 31.03.2016
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1506.07094

Cover

Abstract Reduced basis methods are projection-based model order reduction techniques for reducing the computational complexity of solving parametrized partial differential equation problems. In this work we discuss the design of pyMOR, a freely available software library of model order reduction algorithms, in particular reduced basis methods, implemented with the Python programming language. As its main design feature, all reduction algorithms in pyMOR are implemented generically via operations on well-defined vector array, operator and discretization interface classes. This allows for an easy integration with existing open-source high-performance partial differential equation solvers without adding any model reduction specific code to these solvers. Besides an in-depth discussion of pyMOR's design philosophy and architecture, we present several benchmark results and numerical examples showing the feasibility of our approach.
AbstractList Reduced basis methods are projection-based model order reduction techniques for reducing the computational complexity of solving parametrized partial differential equation problems. In this work we discuss the design of pyMOR, a freely available software library of model order reduction algorithms, in particular reduced basis methods, implemented with the Python programming language. As its main design feature, all reduction algorithms in pyMOR are implemented generically via operations on well-defined vector array, operator and discretization interface classes. This allows for an easy integration with existing open-source high-performance partial differential equation solvers without adding any model reduction specific code to these solvers. Besides an in-depth discussion of pyMOR's design philosophy and architecture, we present several benchmark results and numerical examples showing the feasibility of our approach.
SIAM J. Sci. Comput., 38 (2016), pp. S194-S216 Reduced basis methods are projection-based model order reduction techniques for reducing the computational complexity of solving parametrized partial differential equation problems. In this work we discuss the design of pyMOR, a freely available software library of model order reduction algorithms, in particular reduced basis methods, implemented with the Python programming language. As its main design feature, all reduction algorithms in pyMOR are implemented generically via operations on well-defined vector array, operator and discretization interface classes. This allows for an easy integration with existing open-source high-performance partial differential equation solvers without adding any model reduction specific code to these solvers. Besides an in-depth discussion of pyMOR's design philosophy and architecture, we present several benchmark results and numerical examples showing the feasibility of our approach.
Author Rave, Stephan
Milk, René
Schindler, Felix
Author_xml – sequence: 1
  givenname: René
  surname: Milk
  fullname: Milk, René
– sequence: 2
  givenname: Stephan
  surname: Rave
  fullname: Rave, Stephan
– sequence: 3
  givenname: Felix
  surname: Schindler
  fullname: Schindler, Felix
BackLink https://doi.org/10.1137/15M1026614$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.1506.07094$$DView paper in arXiv
BookMark eNotj0FPwjAYhhujiYj8AE828Tz82q7reiREkQSyhHBfuvabjowWu83IvwfB03t58uZ5HsitDx4JeWIwTXMp4dXE3-ZnyiRkU1Cg0xsy4kKwJE85vyeTrtsBAM8Ul1KMyPxwXBcbmtAFeoyNpbP2M8Sm_9p31HhHl77HWBuLHa1DpOvgsKVFdBjpBt1g-yb4R3JXm7bDyf-Oyfb9bTv_SFbFYjmfrRIjuUqMAswqlZvaaZ6DqG3muHTcVpo7odGATJlxNpNYMQagdFUzqy1iZipEFGPyfL29FJaH2OxNPJZ_peWl9Ey8XIlDDN8Ddn25C0P0Z6eSg2KKM62VOAG3nFfJ
ContentType Paper
Journal Article
Copyright 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
GOX
DOI 10.48550/arxiv.1506.07094
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1506_07094
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
GOX
ID FETCH-LOGICAL-a527-a70e6b78afd92803fc6d25d2cb92d39ea0541adc65eb110079bf1c9cee6abeee3
IEDL.DBID GOX
IngestDate Tue Jul 22 22:02:13 EDT 2025
Mon Jun 30 09:42:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-a70e6b78afd92803fc6d25d2cb92d39ea0541adc65eb110079bf1c9cee6abeee3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/1506.07094
PQID 2071721997
PQPubID 2050157
ParticipantIDs arxiv_primary_1506_07094
proquest_journals_2071721997
PublicationCentury 2000
PublicationDate 20160331
PublicationDateYYYYMMDD 2016-03-31
PublicationDate_xml – month: 03
  year: 2016
  text: 20160331
  day: 31
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2016
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.5909108
SecondaryResourceType preprint
Snippet Reduced basis methods are projection-based model order reduction techniques for reducing the computational complexity of solving parametrized partial...
SIAM J. Sci. Comput., 38 (2016), pp. S194-S216 Reduced basis methods are projection-based model order reduction techniques for reducing the computational...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Computer Science - Mathematical Software
Interface classes
Mathematical models
Mathematics - Numerical Analysis
Model reduction
Partial differential equations
Programming languages
Solvers
Source code
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4gGxNvPgOKpgevi-yrpQdjlECIiUAIJtw2fa2S6LICGv33dsquHky87KF7aWfamel05vsALjPOjIwRZj-QXWzJ6fjcRIHPuRH2fBmZCFflO6LDx_h-nsxrMKp6YbCssrKJzlDrpcIcOWZC8LbCObsp3nxkjcLX1YpCQ5TUCvraQYztgBciMlYdvLv-aDL9ybqElNkYOto-bzowryux-lx8tBFor223P5IXe27oj3F2HmewD95EFGZ1ADWTH8KuK9RU6yPoFV8P4ynxicOLXihy-_Jkp7l5fl0TkWviMnwZ1lkRG44SpDp7IWPE1yRTRGlFPRzDbNCf9YZ-SYTgiyRkvmAdQyXrikxzJJPKFNVhokMleagjK1QbdgVCK5pYw4tVD1xmgeLW_VEhjTHRCdTzZW4aQKRkmbBzUPaaE1P71aojVKIjo2UWdeMmNNzi02KLdZGiXFInlya0Knmk5T5fp79aOf3_9xns2VCDbrv5WlDfrN7NuXXnG3lR6ugbM6agRg
  priority: 102
  providerName: ProQuest
Title pyMOR - Generic Algorithms and Interfaces for Model Order Reduction
URI https://www.proquest.com/docview/2071721997
https://arxiv.org/abs/1506.07094
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NTwIxEJ0AXrwYjRoQJD14XWW_utsjEpCYAIZgwm3Tr1USBAJo9OJvd6a7xIPx0kPTTbqv3c6b7cwbgJtcJFZFJLPvq5RScjqesKHvCWElfl9WxdJF-Y758Dl6nMfzCrBDLozcfi4-Cn1gtbsj-btb3JQiqkIViQIl807mxeWkk-Iqx_-OQ47puv4crc5eDE7hpCR6rFuszBlU7Oocepuv0WTKPObUnheadZcva3TPX992DF165v7P5RQlxZBMMipUtmQTUsdkU9JYJRQvYDboz3pDryxj4Mk4SDyZdCxXSSpzI6gUVK65CWITaCUCEyIkSJp8aTSP8dikmAWhcl8LNF5cKmtteAm11Xpl68CUSnKJc9DopEQcW6M7UscmtEblYRo1oO5ePtsUShUZ4ZI5XBrQOuCRlbt0lwXkzAUUanL1_5NNOEaSwIs8vBbU9tt3e42GeK_aUE0HD204uu-Pn6ZttzbYjr77PzkQjMc
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTgJBEK0oxOjNNaiofdDjKMxKH4hRhIBshmDCbdLbqIkiAi58nP9mVTPowcSblznMJJ2e6u7auuo9gOOER0b6BLNflCVqySk43HhFh3Mj8HwZGQhb5dsJ67f-9SAYLMHnoheGyioXOtEqav2sKEdOmRCKVjiPzkcvDrFG0e3qgkJDpNQKumwhxtLGjqaZvWMINyk3rnC9T1y3Vu1X6k7KMuCIwI0cERVMKKOSSDQnpqZEhdoNtKskd7WHM0afpii0CgPUalRSwGVSVBxtSyikMcbDYZch63s-x9gve1nt3PS-kzxuGKHL7s1vUy122JkYfzy8nRKu3ymeNuJKztpXv2yBNXC1dcjeiJEZb8CSGW7Ciq0LVZMtqIxm7W6POczCUz8odvF4h1KZ3j9NmBhqZhOKCZV1MfR-GTGrPbIuwXmyHoHC0rJvQ_8_JLIDmeHz0OSASRklAuegMKryQ3xqVRAq0J7RMvFK_i7k7M_Hozm0Rkxyia1cdiG_kEecHqtJ_LMJ9v7-fASr9X67FbcaneY-rKGXE84bCfOQmY5fzQF6ElN5mK4Xg_ifd8gXF8Tepg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pyMOR+-+Generic+Algorithms+and+Interfaces+for+Model+Order+Reduction&rft.jtitle=arXiv.org&rft.au=Milk%2C+Ren%C3%A9&rft.au=Rave%2C+Stephan&rft.au=Schindler%2C+Felix&rft.date=2016-03-31&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1506.07094