Micromagnetic simulations of the size dependence of the Curie temperature in ferromagnetic nanowires and nanolayers

We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the temperature proportionally to the computational cell size \(\Delta x\) (\(T \to T\,\De...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Courtès, Clémentine, Boileau, Matthieu, Côte, Raphaël, Paul-Antoine Hervieux, Manfredi, Giovanni
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 25.04.2024
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2401.05722

Cover

Abstract We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the temperature proportionally to the computational cell size \(\Delta x\) (\(T \to T\,\Delta x/a_{\text{eff}}\), where \(a_{\text{eff}}\) is the lattice constant) [M. B. Hahn, J. Phys. Comm., 3:075009, 2019], we obtain Curie temperatures \(T_{\text{C}}\) that are in line with the experimental values for cobalt, iron and nickel. For finite-sized objects such as nanowires (1D) and nanolayers (2D), the Curie temperature varies with the smallest size \(d\) of the system. We show that the difference between the computed finite-size \(T_{\text{C}}\) and the bulk \(T_{\text{C}}\) follows a power-law of the type: \((\xi_0/d)^\lambda\), where \(\xi_0\) is the correlation length at zero temperature, and \(\lambda\) is a critical exponent. We obtain values of \(\xi_0\) in the nanometer range, also in accordance with other simulations and experiments. The computed critical exponent is close to \(\lambda=2\) for all considered materials and geometries. This is the expected result for a mean-field approach, but slightly larger than the values observed experimentally.
AbstractList Journal of Magnetism and Magnetic Materials 598 (2024) 172040 We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the temperature proportionally to the computational cell size$\Delta x$( $T \to T\,\Delta x/a_{\text{eff}}$ , where$a_{\text{eff}}$is the lattice constant) [M. B. Hahn, J. Phys. Comm., 3:075009, 2019], we obtain Curie temperatures$T_{\text{C}}$that are in line with the experimental values for cobalt, iron and nickel. For finite-sized objects such as nanowires (1D) and nanolayers (2D), the Curie temperature varies with the smallest size$d$of the system. We show that the difference between the computed finite-size$T_{\text{C}}$and the bulk$T_{\text{C}}$follows a power-law of the type:$(\xi_0/d)^\lambda$ , where$\xi_0$is the correlation length at zero temperature, and$\lambda$is a critical exponent. We obtain values of$\xi_0$in the nanometer range, also in accordance with other simulations and experiments. The computed critical exponent is close to$\lambda=2$for all considered materials and geometries. This is the expected result for a mean-field approach, but slightly larger than the values observed experimentally.
We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the temperature proportionally to the computational cell size \(\Delta x\) (\(T \to T\,\Delta x/a_{\text{eff}}\), where \(a_{\text{eff}}\) is the lattice constant) [M. B. Hahn, J. Phys. Comm., 3:075009, 2019], we obtain Curie temperatures \(T_{\text{C}}\) that are in line with the experimental values for cobalt, iron and nickel. For finite-sized objects such as nanowires (1D) and nanolayers (2D), the Curie temperature varies with the smallest size \(d\) of the system. We show that the difference between the computed finite-size \(T_{\text{C}}\) and the bulk \(T_{\text{C}}\) follows a power-law of the type: \((\xi_0/d)^\lambda\), where \(\xi_0\) is the correlation length at zero temperature, and \(\lambda\) is a critical exponent. We obtain values of \(\xi_0\) in the nanometer range, also in accordance with other simulations and experiments. The computed critical exponent is close to \(\lambda=2\) for all considered materials and geometries. This is the expected result for a mean-field approach, but slightly larger than the values observed experimentally.
Author Boileau, Matthieu
Côte, Raphaël
Paul-Antoine Hervieux
Manfredi, Giovanni
Courtès, Clémentine
Author_xml – sequence: 1
  givenname: Clémentine
  surname: Courtès
  fullname: Courtès, Clémentine
– sequence: 2
  givenname: Matthieu
  surname: Boileau
  fullname: Boileau, Matthieu
– sequence: 3
  givenname: Raphaël
  surname: Côte
  fullname: Côte, Raphaël
– sequence: 4
  fullname: Paul-Antoine Hervieux
– sequence: 5
  givenname: Giovanni
  surname: Manfredi
  fullname: Manfredi, Giovanni
BackLink https://doi.org/10.48550/arXiv.2401.05722$$DView paper in arXiv
https://doi.org/10.1016/j.jmmm.2024.172040$$DView published paper (Access to full text may be restricted)
BookMark eNpNkEtPwzAQhC0EEqX0B3DCEueEtdfO44gqXlIRl94jN96Cq8YJdgKUX09oQeI02tFotPOdsWPfemLsQkCqCq3h2oRP955KBSIFnUt5xCYSUSSFkvKUzWLcAIDMcqk1Tlh8cnVoG_PiqXc1j64ZtqZ3rY-8XfP-lUbri7iljrwlX9OfPR-CI95T01Ew_RCIO8_XFP6VeePbDxcocuPt_tqaHYV4zk7WZhtp9qtTtry7Xc4fksXz_eP8ZpEYLfNEgKhVARYVESCpDC0YqfMSyayUzKQtFWQIRZnrcVEpVZkZQlwJvSIki1N2eajdE6m64BoTdtUPmWpPZkxcHRJdaN8Gin21aYfgx58qWQrUiIA5fgOxLmkg
ContentType Paper
Journal Article
Copyright 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
GOX
DOI 10.48550/arxiv.2401.05722
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2401_05722
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
GOX
ID FETCH-LOGICAL-a527-101c480d34ee03e463d0a25793eab4262d940630897500092496ae33b15be3ed3
IEDL.DBID GOX
IngestDate Tue Sep 30 19:26:23 EDT 2025
Mon Jun 30 09:17:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-101c480d34ee03e463d0a25793eab4262d940630897500092496ae33b15be3ed3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/2401.05722
PQID 2913533037
PQPubID 2050157
ParticipantIDs arxiv_primary_2401_05722
proquest_journals_2913533037
PublicationCentury 2000
PublicationDate 20240425
PublicationDateYYYYMMDD 2024-04-25
PublicationDate_xml – month: 04
  year: 2024
  text: 20240425
  day: 25
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2024
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8724965
SecondaryResourceType preprint
Snippet We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose...
Journal of Magnetism and Magnetic Materials 598 (2024) 172040 We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Computation
Computer Science - Numerical Analysis
Curie temperature
Electrons
Ferromagnetism
Lattice parameters
Mathematics - Numerical Analysis
Nanowires
Physics - Mesoscale and Nanoscale Physics
Rescaling
Temperature
Temperature dependence
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60RfDmk1ar7MFr2mQ3mzQnD8VahIqHCr2FfUykoJuaVBF_vTvbRAXBYyaQhdnszOw8vo-QK17IUBspEN8OUzdMBAqYCQotIYGQGWFwUHh-n8we47ulWDYJt7ppq2xtojfUptSYIx-xDBkanMFNr9evAbJGYXW1odDYJd2IuT8JJ8Wnt985Fpa4tQXfFjM9dNdIVh-r96FzY9HQRSpImdv1oj-m2PuX6QHpPsg1VIdkB-wR2fNtmbo-JvXc98vJJ4uzhrRevTRsWzUtC-piNyf6BNoy2WpoxRNkoqOIO9WAJtOVpQVUvz5mpS0RqLim0hr_9Cwx_j4hi-nNYjILGpqEQAqWOjsa6XgcGh4DhBzihJtQuoOYcZAK8eZNFiOw1jhLPfmBu28lEjhXkVDAwfBT0rGlhR6hMsqAhUkmBeJgcaPGcaSFYrFK07TgrE96Xln5eouEkaMec6_HPhm0-subU1DnP3t29v_rc7LPXLCAVRomBqSzqd7gwjn7jbr0O_oFLvyqTw
  priority: 102
  providerName: ProQuest
Title Micromagnetic simulations of the size dependence of the Curie temperature in ferromagnetic nanowires and nanolayers
URI https://www.proquest.com/docview/2913533037
https://arxiv.org/abs/2401.05722
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PS8MwFH5s8-JFFJVN58jBa7VNmv446tgcwqbIhN1K0rzKQDNpp4gH_3aTtEVBvBT6SHt4ad73ten7PoBzVgg_V4JbfTv76YZyTyJVXpELjNCniivbKDxfRLPH8HbFVx0gbS-MKD_W77U-sKwuDdwEF4ZRUFNku2Zt2Wbeu1W9OemkuJrxP-MMx3ShP6XV4cV0H_Yaokeu6pk5gA7qQ6jm7v838aRt7yCp1i-Ne1ZFNgUxXMyEPpG0zrQ5tuGxdZYjVkeqEUEma00KLH_dTAu9scLDFRFaubNnYfn0ESynk-V45jW2B57gNDZ1McjDxFcsRPQZhhFTvjALK2UopNWPV2lohbKSNHZmBub9KRLImAy4RIaKHUNPbzT2gYggRepHqeBW14opmYRBziUNZRzHBaMD6LtkZa-1skVm85i5PA5g2OYva57qKqOpdckwoBef_H_lKexSA_x2x4XyIfS25RueGeDeyhF0k-nNCHauJ4v7h5GbS3Ocf02-Af0lnV0
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB7URfTmE9dnDnqstknTbg8i-GLV3WWRFbyVtJnKgrbr1vd_87-Zia0KgjePnUIgk8nMJJn5PoBtkSk31UoSvh1d3XDpJMi1k6UKA3S5lpoahbu9oH3ln1_L6wl4r3thqKyy9onWUesipTvyPR4RQ4NxuOHB6N4h1ih6Xa0pNFRFraD3LcRY1dhxga_P5ghX7p8dm_Xe4fz0ZHDUdiqWAUdJHho35KV-y9XCR3QF-oHQrjJ2HAlUCcG168gnXKpWFFruAHNcCRQKkXgyQYFamGEnoWGyDmE2VePwpNe__Lrk4YGZvBSfr6kWO2xPjV-GT7smjnq7JlUizt6GFf2KBTbAnc5Bo69GOJ6HCcwXYNrWhablIpRdW7CnbnJqdmTl8K6i-ypZkTGTPBrRG7KaSjfFWnxEVHiMgK8q1GY2zFmG4x-D5SovCCm5ZCrX9utW0QFgCQb_ocFlmMqLHFeAKS9C7gaRkgTEJXTS8r1UJtxPwjDMBG_CilVWPPqE4ohJj7HVYxPWa_3F1TYs42-jWf379xbMtAfdTtw5612swSw3mQs9GXG5DlMP40fcMJnHQ7JZrS-D-J8t6gNoeuo5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micromagnetic+simulations+of+the+size+dependence+of+the+Curie+temperature+in+ferromagnetic+nanowires+and+nanolayers&rft.jtitle=arXiv.org&rft.au=Court%C3%A8s%2C+Cl%C3%A9mentine&rft.au=Boileau%2C+Matthieu&rft.au=C%C3%B4te%2C+Rapha%C3%ABl&rft.au=Paul-Antoine+Hervieux&rft.date=2024-04-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2401.05722