Micromagnetic simulations of the size dependence of the Curie temperature in ferromagnetic nanowires and nanolayers
We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the temperature proportionally to the computational cell size \(\Delta x\) (\(T \to T\,\De...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
25.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.2401.05722 |
Cover
Abstract | We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the temperature proportionally to the computational cell size \(\Delta x\) (\(T \to T\,\Delta x/a_{\text{eff}}\), where \(a_{\text{eff}}\) is the lattice constant) [M. B. Hahn, J. Phys. Comm., 3:075009, 2019], we obtain Curie temperatures \(T_{\text{C}}\) that are in line with the experimental values for cobalt, iron and nickel. For finite-sized objects such as nanowires (1D) and nanolayers (2D), the Curie temperature varies with the smallest size \(d\) of the system. We show that the difference between the computed finite-size \(T_{\text{C}}\) and the bulk \(T_{\text{C}}\) follows a power-law of the type: \((\xi_0/d)^\lambda\), where \(\xi_0\) is the correlation length at zero temperature, and \(\lambda\) is a critical exponent. We obtain values of \(\xi_0\) in the nanometer range, also in accordance with other simulations and experiments. The computed critical exponent is close to \(\lambda=2\) for all considered materials and geometries. This is the expected result for a mean-field approach, but slightly larger than the values observed experimentally. |
---|---|
AbstractList | Journal of Magnetism and Magnetic Materials 598 (2024) 172040 We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the temperature proportionally to the computational cell size$\Delta x$( $T \to T\,\Delta x/a_{\text{eff}}$ , where$a_{\text{eff}}$is the lattice constant) [M. B. Hahn, J. Phys. Comm., 3:075009, 2019], we obtain Curie temperatures$T_{\text{C}}$that are in line with the experimental values for cobalt, iron and nickel. For finite-sized objects such as nanowires (1D) and nanolayers (2D), the Curie temperature varies with the smallest size$d$of the system. We show that the difference between the computed finite-size$T_{\text{C}}$and the bulk$T_{\text{C}}$follows a power-law of the type:$(\xi_0/d)^\lambda$ , where$\xi_0$is the correlation length at zero temperature, and$\lambda$is a critical exponent. We obtain values of$\xi_0$in the nanometer range, also in accordance with other simulations and experiments. The computed critical exponent is close to$\lambda=2$for all considered materials and geometries. This is the expected result for a mean-field approach, but slightly larger than the values observed experimentally. We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the temperature proportionally to the computational cell size \(\Delta x\) (\(T \to T\,\Delta x/a_{\text{eff}}\), where \(a_{\text{eff}}\) is the lattice constant) [M. B. Hahn, J. Phys. Comm., 3:075009, 2019], we obtain Curie temperatures \(T_{\text{C}}\) that are in line with the experimental values for cobalt, iron and nickel. For finite-sized objects such as nanowires (1D) and nanolayers (2D), the Curie temperature varies with the smallest size \(d\) of the system. We show that the difference between the computed finite-size \(T_{\text{C}}\) and the bulk \(T_{\text{C}}\) follows a power-law of the type: \((\xi_0/d)^\lambda\), where \(\xi_0\) is the correlation length at zero temperature, and \(\lambda\) is a critical exponent. We obtain values of \(\xi_0\) in the nanometer range, also in accordance with other simulations and experiments. The computed critical exponent is close to \(\lambda=2\) for all considered materials and geometries. This is the expected result for a mean-field approach, but slightly larger than the values observed experimentally. |
Author | Boileau, Matthieu Côte, Raphaël Paul-Antoine Hervieux Manfredi, Giovanni Courtès, Clémentine |
Author_xml | – sequence: 1 givenname: Clémentine surname: Courtès fullname: Courtès, Clémentine – sequence: 2 givenname: Matthieu surname: Boileau fullname: Boileau, Matthieu – sequence: 3 givenname: Raphaël surname: Côte fullname: Côte, Raphaël – sequence: 4 fullname: Paul-Antoine Hervieux – sequence: 5 givenname: Giovanni surname: Manfredi fullname: Manfredi, Giovanni |
BackLink | https://doi.org/10.48550/arXiv.2401.05722$$DView paper in arXiv https://doi.org/10.1016/j.jmmm.2024.172040$$DView published paper (Access to full text may be restricted) |
BookMark | eNpNkEtPwzAQhC0EEqX0B3DCEueEtdfO44gqXlIRl94jN96Cq8YJdgKUX09oQeI02tFotPOdsWPfemLsQkCqCq3h2oRP955KBSIFnUt5xCYSUSSFkvKUzWLcAIDMcqk1Tlh8cnVoG_PiqXc1j64ZtqZ3rY-8XfP-lUbri7iljrwlX9OfPR-CI95T01Ew_RCIO8_XFP6VeePbDxcocuPt_tqaHYV4zk7WZhtp9qtTtry7Xc4fksXz_eP8ZpEYLfNEgKhVARYVESCpDC0YqfMSyayUzKQtFWQIRZnrcVEpVZkZQlwJvSIki1N2eajdE6m64BoTdtUPmWpPZkxcHRJdaN8Gin21aYfgx58qWQrUiIA5fgOxLmkg |
ContentType | Paper Journal Article |
Copyright | 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY AKZ GOX |
DOI | 10.48550/arxiv.2401.05722 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Computer Science arXiv Mathematics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 2401_05722 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY AKZ GOX |
ID | FETCH-LOGICAL-a527-101c480d34ee03e463d0a25793eab4262d940630897500092496ae33b15be3ed3 |
IEDL.DBID | GOX |
IngestDate | Tue Sep 30 19:26:23 EDT 2025 Mon Jun 30 09:17:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a527-101c480d34ee03e463d0a25793eab4262d940630897500092496ae33b15be3ed3 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://arxiv.org/abs/2401.05722 |
PQID | 2913533037 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_2401_05722 proquest_journals_2913533037 |
PublicationCentury | 2000 |
PublicationDate | 20240425 |
PublicationDateYYYYMMDD | 2024-04-25 |
PublicationDate_xml | – month: 04 year: 2024 text: 20240425 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2024 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.8724965 |
SecondaryResourceType | preprint |
Snippet | We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose... Journal of Magnetism and Magnetic Materials 598 (2024) 172040 We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Computation Computer Science - Numerical Analysis Curie temperature Electrons Ferromagnetism Lattice parameters Mathematics - Numerical Analysis Nanowires Physics - Mesoscale and Nanoscale Physics Rescaling Temperature Temperature dependence |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60RfDmk1ar7MFr2mQ3mzQnD8VahIqHCr2FfUykoJuaVBF_vTvbRAXBYyaQhdnszOw8vo-QK17IUBspEN8OUzdMBAqYCQotIYGQGWFwUHh-n8we47ulWDYJt7ppq2xtojfUptSYIx-xDBkanMFNr9evAbJGYXW1odDYJd2IuT8JJ8Wnt985Fpa4tQXfFjM9dNdIVh-r96FzY9HQRSpImdv1oj-m2PuX6QHpPsg1VIdkB-wR2fNtmbo-JvXc98vJJ4uzhrRevTRsWzUtC-piNyf6BNoy2WpoxRNkoqOIO9WAJtOVpQVUvz5mpS0RqLim0hr_9Cwx_j4hi-nNYjILGpqEQAqWOjsa6XgcGh4DhBzihJtQuoOYcZAK8eZNFiOw1jhLPfmBu28lEjhXkVDAwfBT0rGlhR6hMsqAhUkmBeJgcaPGcaSFYrFK07TgrE96Xln5eouEkaMec6_HPhm0-subU1DnP3t29v_rc7LPXLCAVRomBqSzqd7gwjn7jbr0O_oFLvyqTw priority: 102 providerName: ProQuest |
Title | Micromagnetic simulations of the size dependence of the Curie temperature in ferromagnetic nanowires and nanolayers |
URI | https://www.proquest.com/docview/2913533037 https://arxiv.org/abs/2401.05722 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PS8MwFH5s8-JFFJVN58jBa7VNmv446tgcwqbIhN1K0rzKQDNpp4gH_3aTtEVBvBT6SHt4ad73ten7PoBzVgg_V4JbfTv76YZyTyJVXpELjNCniivbKDxfRLPH8HbFVx0gbS-MKD_W77U-sKwuDdwEF4ZRUFNku2Zt2Wbeu1W9OemkuJrxP-MMx3ShP6XV4cV0H_Yaokeu6pk5gA7qQ6jm7v838aRt7yCp1i-Ne1ZFNgUxXMyEPpG0zrQ5tuGxdZYjVkeqEUEma00KLH_dTAu9scLDFRFaubNnYfn0ESynk-V45jW2B57gNDZ1McjDxFcsRPQZhhFTvjALK2UopNWPV2lohbKSNHZmBub9KRLImAy4RIaKHUNPbzT2gYggRepHqeBW14opmYRBziUNZRzHBaMD6LtkZa-1skVm85i5PA5g2OYva57qKqOpdckwoBef_H_lKexSA_x2x4XyIfS25RueGeDeyhF0k-nNCHauJ4v7h5GbS3Ocf02-Af0lnV0 |
linkProvider | Cornell University |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB7URfTmE9dnDnqstknTbg8i-GLV3WWRFbyVtJnKgrbr1vd_87-Zia0KgjePnUIgk8nMJJn5PoBtkSk31UoSvh1d3XDpJMi1k6UKA3S5lpoahbu9oH3ln1_L6wl4r3thqKyy9onWUesipTvyPR4RQ4NxuOHB6N4h1ih6Xa0pNFRFraD3LcRY1dhxga_P5ghX7p8dm_Xe4fz0ZHDUdiqWAUdJHho35KV-y9XCR3QF-oHQrjJ2HAlUCcG168gnXKpWFFruAHNcCRQKkXgyQYFamGEnoWGyDmE2VePwpNe__Lrk4YGZvBSfr6kWO2xPjV-GT7smjnq7JlUizt6GFf2KBTbAnc5Bo69GOJ6HCcwXYNrWhablIpRdW7CnbnJqdmTl8K6i-ypZkTGTPBrRG7KaSjfFWnxEVHiMgK8q1GY2zFmG4x-D5SovCCm5ZCrX9utW0QFgCQb_ocFlmMqLHFeAKS9C7gaRkgTEJXTS8r1UJtxPwjDMBG_CilVWPPqE4ohJj7HVYxPWa_3F1TYs42-jWf379xbMtAfdTtw5612swSw3mQs9GXG5DlMP40fcMJnHQ7JZrS-D-J8t6gNoeuo5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micromagnetic+simulations+of+the+size+dependence+of+the+Curie+temperature+in+ferromagnetic+nanowires+and+nanolayers&rft.jtitle=arXiv.org&rft.au=Court%C3%A8s%2C+Cl%C3%A9mentine&rft.au=Boileau%2C+Matthieu&rft.au=C%C3%B4te%2C+Rapha%C3%ABl&rft.au=Paul-Antoine+Hervieux&rft.date=2024-04-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2401.05722 |