FCMpy: A Python Module for Constructing and Analyzing Fuzzy Cognitive Maps
FCMpy is an open source package in Python for building and analyzing Fuzzy Cognitive Maps. More specifically, the package allows 1) deriving fuzzy causal weights from qualitative data, 2) simulating the system behavior, 3) applying machine learning algorithms (e.g., Nonlinear Hebbian Learning, Activ...
        Saved in:
      
    
          | Published in | arXiv.org | 
|---|---|
| Main Authors | , , , , , | 
| Format | Paper Journal Article | 
| Language | English | 
| Published | 
        Ithaca
          Cornell University Library, arXiv.org
    
        24.11.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2331-8422 | 
| DOI | 10.48550/arxiv.2111.12749 | 
Cover
| Abstract | FCMpy is an open source package in Python for building and analyzing Fuzzy Cognitive Maps. More specifically, the package allows 1) deriving fuzzy causal weights from qualitative data, 2) simulating the system behavior, 3) applying machine learning algorithms (e.g., Nonlinear Hebbian Learning, Active Hebbian Learning, Genetic Algorithms and Deterministic Learning) to adjust the FCM causal weight matrix and to solve classification problems, and 4) implementing scenario analysis by simulating hypothetical interventions (i.e., analyzing what-if scenarios). | 
    
|---|---|
| AbstractList | FCMpy is an open source package in Python for building and analyzing Fuzzy Cognitive Maps. More specifically, the package allows 1) deriving fuzzy causal weights from qualitative data, 2) simulating the system behavior, 3) applying machine learning algorithms (e.g., Nonlinear Hebbian Learning, Active Hebbian Learning, Genetic Algorithms and Deterministic Learning) to adjust the FCM causal weight matrix and to solve classification problems, and 4) implementing scenario analysis by simulating hypothetical interventions (i.e., analyzing what-if scenarios). PeerJ Computer Science 8:e1078, 2022 FCMpy is an open source package in Python for building and analyzing Fuzzy Cognitive Maps. More specifically, the package allows 1) deriving fuzzy causal weights from qualitative data, 2) simulating the system behavior, 3) applying machine learning algorithms (e.g., Nonlinear Hebbian Learning, Active Hebbian Learning, Genetic Algorithms and Deterministic Learning) to adjust the FCM causal weight matrix and to solve classification problems, and 4) implementing scenario analysis by simulating hypothetical interventions (i.e., analyzing what-if scenarios).  | 
    
| Author | Giabbanelli, Philippe J Wozniak, Maciej K Crutzen, Rik de Vries, Nanne K Mkhitaryan, Samvel Napoles, Gonzalo  | 
    
| Author_xml | – sequence: 1 givenname: Samvel surname: Mkhitaryan fullname: Mkhitaryan, Samvel – sequence: 2 givenname: Philippe surname: Giabbanelli middlename: J fullname: Giabbanelli, Philippe J – sequence: 3 givenname: Maciej surname: Wozniak middlename: K fullname: Wozniak, Maciej K – sequence: 4 givenname: Gonzalo surname: Napoles fullname: Napoles, Gonzalo – sequence: 5 givenname: Nanne surname: de Vries middlename: K fullname: de Vries, Nanne K – sequence: 6 givenname: Rik surname: Crutzen fullname: Crutzen, Rik  | 
    
| BackLink | https://doi.org/10.7717/peerj-cs.1078$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.2111.12749$$DView paper in arXiv  | 
    
| BookMark | eNotj1tLwzAAhYMoOOd-gE8GfG7NrUnr2yjWCxv6sPeSpsnsqElN2mH36-02nw4HPg7nuwGX1lkNwB1GMUuTBD1K_9vsY4IxjjERLLsAM0IpjlJGyDVYhLBDCBEuSJLQGXgv8nU3PsEl_Bz7L2fh2tVDq6FxHubOht4Pqm_sFkpbw6WV7Xg4tmI4HMYJ2Nqmb_YarmUXbsGVkW3Qi_-cg03xvMlfo9XHy1u-XEUyITyqBZNUiNRgXIlK1YoqxLCWPOMmkSplghNhMMdZpjOtalZXXEtjmEiVRFlF5-D-PHsSLTvffEs_lkfh8iQ8EQ9novPuZ9ChL3du8NP3UBKOGJlupJz-AZhnWi0 | 
    
| ContentType | Paper Journal Article  | 
    
| Copyright | 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0  | 
    
| Copyright_xml | – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://creativecommons.org/licenses/by/4.0  | 
    
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY GOX  | 
    
| DOI | 10.48550/arxiv.2111.12749 | 
    
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central SciTech Premium Collection (via ProQuest) ProQuest Engineering Collection Engineering Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Computer Science arXiv.org  | 
    
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection  | 
    
| DatabaseTitleList | Publicly Available Content Database | 
    
| Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 2331-8422 | 
    
| ExternalDocumentID | 2111_12749 | 
    
| Genre | Working Paper/Pre-Print | 
    
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY GOX  | 
    
| ID | FETCH-LOGICAL-a526-d74a3778f11b7bcdc3c041ea696f5ac847627f16199e9ecd4db6eaff478ca09b3 | 
    
| IEDL.DBID | BENPR | 
    
| IngestDate | Tue Jul 22 23:14:52 EDT 2025 Mon Jun 30 09:24:22 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a526-d74a3778f11b7bcdc3c041ea696f5ac847627f16199e9ecd4db6eaff478ca09b3 | 
    
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2604252686?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2604252686 | 
    
| PQPubID | 2050157 | 
    
| ParticipantIDs | arxiv_primary_2111_12749 proquest_journals_2604252686  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20211124 2021-11-24  | 
    
| PublicationDateYYYYMMDD | 2021-11-24 | 
    
| PublicationDate_xml | – month: 11 year: 2021 text: 20211124 day: 24  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Ithaca | 
    
| PublicationPlace_xml | – name: Ithaca | 
    
| PublicationTitle | arXiv.org | 
    
| PublicationYear | 2021 | 
    
| Publisher | Cornell University Library, arXiv.org | 
    
| Publisher_xml | – name: Cornell University Library, arXiv.org | 
    
| SSID | ssj0002672553 | 
    
| Score | 1.780294 | 
    
| SecondaryResourceType | preprint | 
    
| Snippet | FCMpy is an open source package in Python for building and analyzing Fuzzy Cognitive Maps. More specifically, the package allows 1) deriving fuzzy causal... PeerJ Computer Science 8:e1078, 2022 FCMpy is an open source package in Python for building and analyzing Fuzzy Cognitive Maps. More specifically, the package...  | 
    
| SourceID | arxiv proquest  | 
    
| SourceType | Open Access Repository Aggregation Database  | 
    
| SubjectTerms | Algorithms Cognitive maps Cognitive models Computer Science - Learning Computer Science - Mathematical Software Genetic algorithms Machine learning Qualitative analysis  | 
    
| SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NSwMxEA2tJy-iqLRaJQev0f1IJrveSnEphVUPFXpb8rUiyLZYK7a_3kl2iwfxuMsksG-SzBt25oWQGyGNTbVxzKZCM-S3gikQnIHXMgFIVBSq3ctHmL7w2UIseoTue2HUx_fbV6sPrNd3mJ3EtzEmTnmf9JEo-Gbep0X7czJIcXX2v3bIMcOrP0driBfFMTnqiB4dt545IT3XnJJZMSlX23s6ps9b37RPy6XdvDuKzJH6qzNbMdfmlWJ-T4NeyM4_FZvdbosGXaUPLdVqfUbmxcN8MmXdbQZMiQSYlVylUmZ1HGupjTWpiXjsFORQC2UwSEAia-Rfee5yZyy3Gpyqay4zo6Jcp-fkoFk2bkCoA7D4xZ76Z15gXiGlwOmFzSIhEOkhGQQMqlUrWFF5eKoAz5CM9rBU3WJdVzgF7twEMrj4f-QlOUx8OUccs4SPyAEC4q4wHn_q6-CUHxaSiO0 priority: 102 providerName: Cornell University  | 
    
| Title | FCMpy: A Python Module for Constructing and Analyzing Fuzzy Cognitive Maps | 
    
| URI | https://www.proquest.com/docview/2604252686 https://arxiv.org/abs/2111.12749  | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7MDcGbP9l0jhy8Zq4_kraCiI51Y9A5RGG3kiapCNJVp-J28G_3Jev0IHgppCmFvBfe-5J8-R7AGQuk8jKpqfJYRhHfMio48yk3Wiacu6Jn2e7JhI8e_PGMzWow2dyFMbTKTUy0gVrNpdkjP0fcjdPL5SG_Kl-oqRplTlc3JTREVVpBXVqJsS1ouEYZqw6Nm8Fkevez6-LyADG0tz7etGJe5-L18-mji-sgp-vgEs0QE-2rP8HZZpx4FxpTUerXPajpYh-2LVFTLg5gHPeTcnlBrsl0aa79k2Su3p81QexJTPHNtRxs8UhEoYhVHFmZVvy-Wi3xg4orRBJRLg7hPh7c90e0qodABQ6cqsAXXhCEueNkQSaV9GTPd7TgEc-ZkJhmuBvkiOCiSEdaKl9lXIs894NQil6UeUdQL-aFbgLRnCscsVk8hEaiXiAowd8zFfYYQ1-1oGltkJZryYvUmCe15mlBe2OWtJrui_TXOcf_d5_AjmtIIY5DXb8NdTSKPsWs_pZ1YCuMh53KYdga3s7wmXwNvgHCzaND | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0BFYIbq1gK-ABHQ5PYToJUIbaqLKkqVCRukWM7CAmlgbK1_8a_MXZTOCBx45hFI-V5Mn5jj98A7PJQ6SBThuqAZxT5LadScEaF1TIRwpcNV-2edET7ll3e8bsp-JychbFllZOY6AK17iu7Rn6AvBvdyxeROCqfqO0aZXdXJy00ZNVaQTedxFh1sOPKDN8xhRs0L85wvPd8v3XeO23TqssAlWiO6pDJIAyj3POyMFNaBarBPCNFLHIuFQZv4Yc58qI4NrFRmulMGJnnLIyUbMRZgGanocYCFmPuVzs573Rvvhd5fBEiZQ_Gu6lOO-xAPn88vO1j2uXte5gR2jpId-vXXOAmuNYC1LqyNM-LMGWKJZh1daFqsAyXrdOkHB6SY9IdWpUBkvT166MhSHWJ7fU5Vp8t7oksNHECJyN71XodjYb4QlWaRBJZDlag9x_ArMJM0S_MGhAjhMYvtrlKZBXxJXIgNM911OAcXWMd1hwGaTlW2EgtPKmDZx3qE1jS6u8apD--sPH34x2Ya_eS6_T6onO1CfO-rUfxPOqzOswgQGYLCcVLtl0NG4H0nx3lC_v93Zs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCMpy%3A+A+Python+Module+for+Constructing+and+Analyzing+Fuzzy+Cognitive+Maps&rft.jtitle=arXiv.org&rft.au=Mkhitaryan%2C+Samvel&rft.au=Giabbanelli%2C+Philippe+J&rft.au=Wozniak%2C+Maciej+K&rft.au=Napoles%2C+Gonzalo&rft.date=2021-11-24&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2111.12749 |