FCMpy: A Python Module for Constructing and Analyzing Fuzzy Cognitive Maps

FCMpy is an open source package in Python for building and analyzing Fuzzy Cognitive Maps. More specifically, the package allows 1) deriving fuzzy causal weights from qualitative data, 2) simulating the system behavior, 3) applying machine learning algorithms (e.g., Nonlinear Hebbian Learning, Activ...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Mkhitaryan, Samvel, Giabbanelli, Philippe J, Wozniak, Maciej K, Napoles, Gonzalo, de Vries, Nanne K, Crutzen, Rik
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 24.11.2021
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2111.12749

Cover

Abstract FCMpy is an open source package in Python for building and analyzing Fuzzy Cognitive Maps. More specifically, the package allows 1) deriving fuzzy causal weights from qualitative data, 2) simulating the system behavior, 3) applying machine learning algorithms (e.g., Nonlinear Hebbian Learning, Active Hebbian Learning, Genetic Algorithms and Deterministic Learning) to adjust the FCM causal weight matrix and to solve classification problems, and 4) implementing scenario analysis by simulating hypothetical interventions (i.e., analyzing what-if scenarios).
AbstractList FCMpy is an open source package in Python for building and analyzing Fuzzy Cognitive Maps. More specifically, the package allows 1) deriving fuzzy causal weights from qualitative data, 2) simulating the system behavior, 3) applying machine learning algorithms (e.g., Nonlinear Hebbian Learning, Active Hebbian Learning, Genetic Algorithms and Deterministic Learning) to adjust the FCM causal weight matrix and to solve classification problems, and 4) implementing scenario analysis by simulating hypothetical interventions (i.e., analyzing what-if scenarios).
PeerJ Computer Science 8:e1078, 2022 FCMpy is an open source package in Python for building and analyzing Fuzzy Cognitive Maps. More specifically, the package allows 1) deriving fuzzy causal weights from qualitative data, 2) simulating the system behavior, 3) applying machine learning algorithms (e.g., Nonlinear Hebbian Learning, Active Hebbian Learning, Genetic Algorithms and Deterministic Learning) to adjust the FCM causal weight matrix and to solve classification problems, and 4) implementing scenario analysis by simulating hypothetical interventions (i.e., analyzing what-if scenarios).
Author Giabbanelli, Philippe J
Wozniak, Maciej K
Crutzen, Rik
de Vries, Nanne K
Mkhitaryan, Samvel
Napoles, Gonzalo
Author_xml – sequence: 1
  givenname: Samvel
  surname: Mkhitaryan
  fullname: Mkhitaryan, Samvel
– sequence: 2
  givenname: Philippe
  surname: Giabbanelli
  middlename: J
  fullname: Giabbanelli, Philippe J
– sequence: 3
  givenname: Maciej
  surname: Wozniak
  middlename: K
  fullname: Wozniak, Maciej K
– sequence: 4
  givenname: Gonzalo
  surname: Napoles
  fullname: Napoles, Gonzalo
– sequence: 5
  givenname: Nanne
  surname: de Vries
  middlename: K
  fullname: de Vries, Nanne K
– sequence: 6
  givenname: Rik
  surname: Crutzen
  fullname: Crutzen, Rik
BackLink https://doi.org/10.7717/peerj-cs.1078$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2111.12749$$DView paper in arXiv
BookMark eNotj1tLwzAAhYMoOOd-gE8GfG7NrUnr2yjWCxv6sPeSpsnsqElN2mH36-02nw4HPg7nuwGX1lkNwB1GMUuTBD1K_9vsY4IxjjERLLsAM0IpjlJGyDVYhLBDCBEuSJLQGXgv8nU3PsEl_Bz7L2fh2tVDq6FxHubOht4Pqm_sFkpbw6WV7Xg4tmI4HMYJ2Nqmb_YarmUXbsGVkW3Qi_-cg03xvMlfo9XHy1u-XEUyITyqBZNUiNRgXIlK1YoqxLCWPOMmkSplghNhMMdZpjOtalZXXEtjmEiVRFlF5-D-PHsSLTvffEs_lkfh8iQ8EQ9novPuZ9ChL3du8NP3UBKOGJlupJz-AZhnWi0
ContentType Paper
Journal Article
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/licenses/by/4.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2111.12749
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (via ProQuest)
ProQuest Engineering Collection
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2111_12749
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a526-d74a3778f11b7bcdc3c041ea696f5ac847627f16199e9ecd4db6eaff478ca09b3
IEDL.DBID BENPR
IngestDate Tue Jul 22 23:14:52 EDT 2025
Mon Jun 30 09:24:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-d74a3778f11b7bcdc3c041ea696f5ac847627f16199e9ecd4db6eaff478ca09b3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2604252686?pq-origsite=%requestingapplication%&accountid=15518
PQID 2604252686
PQPubID 2050157
ParticipantIDs arxiv_primary_2111_12749
proquest_journals_2604252686
PublicationCentury 2000
PublicationDate 20211124
2021-11-24
PublicationDateYYYYMMDD 2021-11-24
PublicationDate_xml – month: 11
  year: 2021
  text: 20211124
  day: 24
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.780294
SecondaryResourceType preprint
Snippet FCMpy is an open source package in Python for building and analyzing Fuzzy Cognitive Maps. More specifically, the package allows 1) deriving fuzzy causal...
PeerJ Computer Science 8:e1078, 2022 FCMpy is an open source package in Python for building and analyzing Fuzzy Cognitive Maps. More specifically, the package...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Cognitive maps
Cognitive models
Computer Science - Learning
Computer Science - Mathematical Software
Genetic algorithms
Machine learning
Qualitative analysis
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NSwMxEA2tJy-iqLRaJQev0f1IJrveSnEphVUPFXpb8rUiyLZYK7a_3kl2iwfxuMsksG-SzBt25oWQGyGNTbVxzKZCM-S3gikQnIHXMgFIVBSq3ctHmL7w2UIseoTue2HUx_fbV6sPrNd3mJ3EtzEmTnmf9JEo-Gbep0X7czJIcXX2v3bIMcOrP0driBfFMTnqiB4dt545IT3XnJJZMSlX23s6ps9b37RPy6XdvDuKzJH6qzNbMdfmlWJ-T4NeyM4_FZvdbosGXaUPLdVqfUbmxcN8MmXdbQZMiQSYlVylUmZ1HGupjTWpiXjsFORQC2UwSEAia-Rfee5yZyy3Gpyqay4zo6Jcp-fkoFk2bkCoA7D4xZ76Z15gXiGlwOmFzSIhEOkhGQQMqlUrWFF5eKoAz5CM9rBU3WJdVzgF7twEMrj4f-QlOUx8OUccs4SPyAEC4q4wHn_q6-CUHxaSiO0
  priority: 102
  providerName: Cornell University
Title FCMpy: A Python Module for Constructing and Analyzing Fuzzy Cognitive Maps
URI https://www.proquest.com/docview/2604252686
https://arxiv.org/abs/2111.12749
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7MDcGbP9l0jhy8Zq4_kraCiI51Y9A5RGG3kiapCNJVp-J28G_3Jev0IHgppCmFvBfe-5J8-R7AGQuk8jKpqfJYRhHfMio48yk3Wiacu6Jn2e7JhI8e_PGMzWow2dyFMbTKTUy0gVrNpdkjP0fcjdPL5SG_Kl-oqRplTlc3JTREVVpBXVqJsS1ouEYZqw6Nm8Fkevez6-LyADG0tz7etGJe5-L18-mji-sgp-vgEs0QE-2rP8HZZpx4FxpTUerXPajpYh-2LVFTLg5gHPeTcnlBrsl0aa79k2Su3p81QexJTPHNtRxs8UhEoYhVHFmZVvy-Wi3xg4orRBJRLg7hPh7c90e0qodABQ6cqsAXXhCEueNkQSaV9GTPd7TgEc-ZkJhmuBvkiOCiSEdaKl9lXIs894NQil6UeUdQL-aFbgLRnCscsVk8hEaiXiAowd8zFfYYQ1-1oGltkJZryYvUmCe15mlBe2OWtJrui_TXOcf_d5_AjmtIIY5DXb8NdTSKPsWs_pZ1YCuMh53KYdga3s7wmXwNvgHCzaND
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0BFYIbq1gK-ABHQ5PYToJUIbaqLKkqVCRukWM7CAmlgbK1_8a_MXZTOCBx45hFI-V5Mn5jj98A7PJQ6SBThuqAZxT5LadScEaF1TIRwpcNV-2edET7ll3e8bsp-JychbFllZOY6AK17iu7Rn6AvBvdyxeROCqfqO0aZXdXJy00ZNVaQTedxFh1sOPKDN8xhRs0L85wvPd8v3XeO23TqssAlWiO6pDJIAyj3POyMFNaBarBPCNFLHIuFQZv4Yc58qI4NrFRmulMGJnnLIyUbMRZgGanocYCFmPuVzs573Rvvhd5fBEiZQ_Gu6lOO-xAPn88vO1j2uXte5gR2jpId-vXXOAmuNYC1LqyNM-LMGWKJZh1daFqsAyXrdOkHB6SY9IdWpUBkvT166MhSHWJ7fU5Vp8t7oksNHECJyN71XodjYb4QlWaRBJZDlag9x_ArMJM0S_MGhAjhMYvtrlKZBXxJXIgNM911OAcXWMd1hwGaTlW2EgtPKmDZx3qE1jS6u8apD--sPH34x2Ya_eS6_T6onO1CfO-rUfxPOqzOswgQGYLCcVLtl0NG4H0nx3lC_v93Zs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCMpy%3A+A+Python+Module+for+Constructing+and+Analyzing+Fuzzy+Cognitive+Maps&rft.jtitle=arXiv.org&rft.au=Mkhitaryan%2C+Samvel&rft.au=Giabbanelli%2C+Philippe+J&rft.au=Wozniak%2C+Maciej+K&rft.au=Napoles%2C+Gonzalo&rft.date=2021-11-24&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2111.12749