Perfect optical absorption-enhanced magneto-optic Kerr effect microscopy

Magnetic and spintronic media have offered fundamental scientific subjects and technological applications. Magneto-optic Kerr effect (MOKE) microscopy provides the most accessible platform to study the dynamics of spins, magnetic quasi-particles, and domain walls. However, in the research of nanosca...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Kim, Dongha, Young-Wan, Oh, Jong-Uk, Kim, Shin, Jonghwa, Kab-Jin, Kim, Park, Byong-Guk, Min-Kyo Seo
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 29.09.2019
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1909.13275

Cover

Abstract Magnetic and spintronic media have offered fundamental scientific subjects and technological applications. Magneto-optic Kerr effect (MOKE) microscopy provides the most accessible platform to study the dynamics of spins, magnetic quasi-particles, and domain walls. However, in the research of nanoscale spin textures and state-of-the-art spintronic devices, optical techniques are generally restricted by the extremely weak magneto-optical activity and diffraction limit. Highly sophisticated, expensive electron microscopy and scanning probe methods thus have come to the forefront. Here, we show that perfect optical absorption (POA) dramatically improves the performance and functionality of MOKE microscopy. For 1-nm-thin Co film, we demonstrate a Kerr amplitude as large as 20 degree and magnetic domain imaging visibility of 0.47. Especially, POA-enhanced MOKE microscopy enables real-time detection and statistical analysis of sub-wavelength magnetic domain reversals. Furthermore, we exploit enhanced magneto-optic birefringence and demonstrate analyser-free MOKE microscopy. The POA technique is promising for optical investigations and applications of nanomagnetic systems.
AbstractList Nature Communications (2020) Magnetic and spintronic media have offered fundamental scientific subjects and technological applications. Magneto-optic Kerr effect (MOKE) microscopy provides the most accessible platform to study the dynamics of spins, magnetic quasi-particles, and domain walls. However, in the research of nanoscale spin textures and state-of-the-art spintronic devices, optical techniques are generally restricted by the extremely weak magneto-optical activity and diffraction limit. Highly sophisticated, expensive electron microscopy and scanning probe methods thus have come to the forefront. Here, we show that perfect optical absorption (POA) dramatically improves the performance and functionality of MOKE microscopy. For 1-nm-thin Co film, we demonstrate a Kerr amplitude as large as 20 degree and magnetic domain imaging visibility of 0.47. Especially, POA-enhanced MOKE microscopy enables real-time detection and statistical analysis of sub-wavelength magnetic domain reversals. Furthermore, we exploit enhanced magneto-optic birefringence and demonstrate analyser-free MOKE microscopy. The POA technique is promising for optical investigations and applications of nanomagnetic systems.
Magnetic and spintronic media have offered fundamental scientific subjects and technological applications. Magneto-optic Kerr effect (MOKE) microscopy provides the most accessible platform to study the dynamics of spins, magnetic quasi-particles, and domain walls. However, in the research of nanoscale spin textures and state-of-the-art spintronic devices, optical techniques are generally restricted by the extremely weak magneto-optical activity and diffraction limit. Highly sophisticated, expensive electron microscopy and scanning probe methods thus have come to the forefront. Here, we show that perfect optical absorption (POA) dramatically improves the performance and functionality of MOKE microscopy. For 1-nm-thin Co film, we demonstrate a Kerr amplitude as large as 20 degree and magnetic domain imaging visibility of 0.47. Especially, POA-enhanced MOKE microscopy enables real-time detection and statistical analysis of sub-wavelength magnetic domain reversals. Furthermore, we exploit enhanced magneto-optic birefringence and demonstrate analyser-free MOKE microscopy. The POA technique is promising for optical investigations and applications of nanomagnetic systems.
Author Young-Wan, Oh
Kab-Jin, Kim
Jong-Uk, Kim
Shin, Jonghwa
Kim, Dongha
Min-Kyo Seo
Park, Byong-Guk
Author_xml – sequence: 1
  givenname: Dongha
  surname: Kim
  fullname: Kim, Dongha
– sequence: 2
  givenname: Oh
  surname: Young-Wan
  fullname: Young-Wan, Oh
– sequence: 3
  givenname: Kim
  surname: Jong-Uk
  fullname: Jong-Uk, Kim
– sequence: 4
  givenname: Jonghwa
  surname: Shin
  fullname: Shin, Jonghwa
– sequence: 5
  givenname: Kim
  surname: Kab-Jin
  fullname: Kab-Jin, Kim
– sequence: 6
  givenname: Byong-Guk
  surname: Park
  fullname: Park, Byong-Guk
– sequence: 7
  fullname: Min-Kyo Seo
BackLink https://doi.org/10.48550/arXiv.1909.13275$$DView paper in arXiv
https://doi.org/10.1038/s41467-020-19724-7$$DView published paper (Access to full text may be restricted)
BookMark eNotj8FOwzAMhiMEEmPsAThRiXNL4s5pckQTMMQkOOxepakLndakJB1ib0_p8MU-fP71f1fs3HlHjN0Ini0VIr834af9zoTmOhM5FHjGZpDnIlVLgEu2iHHHOQdZAGI-Y-t3Cg3ZIfH90FqzT0wVfRhv71Jyn8ZZqpPOfDgafDoxySuFkFAzfXWtDT5a3x-v2UVj9pEW_3vOtk-P29U63bw9v6weNqlBkCkKQFULq4wsKoUATY1aSWPAakVWVFJoKsaxvNAN6EYrJLSCpEQjrM7n7PYUO2mWfWg7E47ln2456Y7E3Ynog_86UBzKnT8EN3YqAbSWAErK_BeZnVm7
ContentType Paper
Journal Article
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
GOX
DOI 10.48550/arxiv.1909.13275
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1909_13275
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
GOX
ID FETCH-LOGICAL-a526-51258d1c8a67b8522fd5986aa2c98ec1b619e7777c079f29f985e5c1e665a1c93
IEDL.DBID GOX
IngestDate Tue Jul 22 23:04:34 EDT 2025
Mon Jun 30 09:23:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-51258d1c8a67b8522fd5986aa2c98ec1b619e7777c079f29f985e5c1e665a1c93
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
11, 5937
OpenAccessLink https://arxiv.org/abs/1909.13275
PQID 2299622866
PQPubID 2050157
ParticipantIDs arxiv_primary_1909_13275
proquest_journals_2299622866
PublicationCentury 2000
PublicationDate 20190929
2019-09-29
PublicationDateYYYYMMDD 2019-09-29
PublicationDate_xml – month: 09
  year: 2019
  text: 20190929
  day: 29
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7052151
SecondaryResourceType preprint
Snippet Magnetic and spintronic media have offered fundamental scientific subjects and technological applications. Magneto-optic Kerr effect (MOKE) microscopy provides...
Nature Communications (2020) Magnetic and spintronic media have offered fundamental scientific subjects and technological applications. Magneto-optic Kerr...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Absorption
Birefringence
Domain walls
Kerr magnetooptical effect
Magnetic domains
Microscopy
Optical activity
Optics
Particle spin
Performance enhancement
Physics - Materials Science
Physics - Optics
Statistical analysis
Visibility
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagFRIbT7VQUAZWt40T2_HEgCgVCNShSN0i27kAQ5M0KQj-PWc3hQEJj3Gm8_m-e3y-I-SKo-JGruWstkpRxGNG0QvXruAYxTLnufHd-R-fxPQ5vl_wRZtwa1pa5dYmekOdldblyEcM7aZgLBHiulpRNzXKVVfbERq7pBsy1CT3Unxy95NjYUKixxxtipm-dddI159vH0NEQTXEOMyxC7v-0x9T7PFlckC6M11BfUh2oDgie56WaZtjMp1B7fgWQVn5nHOgTVPW_pZTKF599T5Y6pcC1iX1_wQPUNfBhqURLB3bzr07-Toh88nt_GZK29kHVHMmKMIwT7LQJlpIk6CPlGeukbrWzKoEbGgw7gGJy46lypnKVcKB2xCE4Dq0KjolnaIsoEcCiSFKEptY5wZiLkGJDCNRoxTERmb5uE96XgJptWlvkTrhpF44fTLYCiVtVbtJfw_i7P_tc7KP3oUnZDE1IJ11_Q4XiOBrc-mP6Ru8PpoP
  priority: 102
  providerName: ProQuest
Title Perfect optical absorption-enhanced magneto-optic Kerr effect microscopy
URI https://www.proquest.com/docview/2299622866
https://arxiv.org/abs/1909.13275
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED21ZWFBIEAtlMoDa6Bx468RUD8EaqlQkbpFduIAQ5MqLQgWfjtnJxUDIkOG6KJI53Peu9zdC8Alw8AdOMlZnSgVIB7TAFm4dgXHQSQylhmvzj-d8clzdL9kywaQ3SyMLj_fPip9YLO5RrRSV5gvCdZ0s4ouasePy6o46aW4avtfO-SY_tKfV6vHi9EhHNREj9xUK3MEDZsfw2RuS9c_QYq1_4ZM8PFF6XdtYPNXX40nK_2S220ReBvyYMuSVF0XZOW659wcydcJLEbDxd0kqP9lEGhGeYCwymQaJlJzYSRynix1wuha00RJm4QG8xgr8Ej6QmVUZUoyy5LQcs50mKjBKbTyIrdtIAJTDhmZSGfGRkxYxVPMLI1SNjIizfodaHsPxOtKriJ2zom9czrQ3TklrkN1E1MEJE6p5Pzs_zvPYR-Zgm-uoqoLrW35bi8QjbemB005Gvdg73Y4mz_1_ALhefo9_AFeWY0Z
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFLYqIgQbp1ookAHG9HBjJx4qJKBVSg9VqEjdIttxgKFJSMvRH8d_49lNYUBia8bES56f3_n5ewhdElDclqac5ZIxB_wxdiAK57rh2HK9mMTCsPMPRzR4dO-nZFpCX-u7MBpWubaJxlBHqdQ18joGu0kx9im9zl4dPTVKd1fXIzR4MVohahuKseJiR18tPyCFm7d7d7DfVxh3O5PbwCmmDDicYOqAwyN-1JQ-p57wIRqJI01ZzjmWzFeyKSDDUB48suGxGLOY-UQR2VSUEt6UmosJPIAFf9mCQ2XddEbjh58iD6YehOytVTfVcIfVef758l4DN8xqkAhqeKNlXv3xBcbBdfeQNeaZyvdRSSUHaNvgQuX8EAVjlWvAh51mpuhtczFPc2NmHJU8G_iAPeNPiVqkjllj91We2yuYiD3TcD998WV5hCabEMsx2krSRJWR7UGO5LvC5bFQLvEUoxGkwoIx5QovihsVVDYSCLMVv0aohRMa4VRQdS2UsDhb8_BXE07-_3yBdoLJcBAOeqP-KdqFUMegwzCroq1F_qbOIJxYiPNi02wUblhNvgH8bNuj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perfect+optical+absorption-enhanced+magneto-optic+Kerr+effect+microscopy&rft.jtitle=arXiv.org&rft.au=Kim%2C+Dongha&rft.au=Young-Wan%2C+Oh&rft.au=Jong-Uk%2C+Kim&rft.au=Shin%2C+Jonghwa&rft.date=2019-09-29&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1909.13275