On energy stable discontinuous Galerkin spectral element approximations of the perfectly matched layer for the wave equation

We develop a provably energy stable discontinuous Galerkin spectral element method (DGSEM) approximation of the perfectly matched layer (PML) for the three and two space dimensional (3D and 2D) linear acoustic wave equations, in first order form, subject to well-posed linear boundary conditions. Fir...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Duru, Kenneth, Alice-Agnes Gabriel, Kreiss, Gunilla
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 18.02.2018
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1802.06388

Cover

Abstract We develop a provably energy stable discontinuous Galerkin spectral element method (DGSEM) approximation of the perfectly matched layer (PML) for the three and two space dimensional (3D and 2D) linear acoustic wave equations, in first order form, subject to well-posed linear boundary conditions. First, using the well-known complex coordinate stretching, we derive an efficient un-split modal PML for the 3D acoustic wave equation. Second, we prove asymptotic stability of the continuous PML by deriving energy estimates in the Laplace space, for the 3D PML in a heterogeneous acoustic medium, assuming piece-wise constant PML damping. Third, we develop a DGSEM for the wave equation using physically motivated numerical flux, with penalty weights, which are compatible with all well-posed, internal and external, boundary conditions. When the PML damping vanishes, by construction, our choice of penalty parameters yield an upwind scheme and a discrete energy estimate analogous to the continuous energy estimate. Fourth, to ensure numerical stability when PML damping is present, it is necessary to systematically extend the numerical numerical fluxes, and the inter-element and boundary procedures, to the PML auxiliary differential equations. This is critical for deriving discrete energy estimates analogous to the continuous energy estimates. Finally, we propose a procedure to compute PML damping coefficients such that the PML error converges to zero, at the optimal convergence rate of the underlying numerical method. Numerical experiments are presented in 2D and 3D corroborating the theoretical results.
AbstractList We develop a provably energy stable discontinuous Galerkin spectral element method (DGSEM) approximation of the perfectly matched layer (PML) for the three and two space dimensional (3D and 2D) linear acoustic wave equations, in first order form, subject to well-posed linear boundary conditions. First, using the well-known complex coordinate stretching, we derive an efficient un-split modal PML for the 3D acoustic wave equation. Second, we prove asymptotic stability of the continuous PML by deriving energy estimates in the Laplace space, for the 3D PML in a heterogeneous acoustic medium, assuming piece-wise constant PML damping. Third, we develop a DGSEM for the wave equation using physically motivated numerical flux, with penalty weights, which are compatible with all well-posed, internal and external, boundary conditions. When the PML damping vanishes, by construction, our choice of penalty parameters yield an upwind scheme and a discrete energy estimate analogous to the continuous energy estimate. Fourth, to ensure numerical stability when PML damping is present, it is necessary to systematically extend the numerical numerical fluxes, and the inter-element and boundary procedures, to the PML auxiliary differential equations. This is critical for deriving discrete energy estimates analogous to the continuous energy estimates. Finally, we propose a procedure to compute PML damping coefficients such that the PML error converges to zero, at the optimal convergence rate of the underlying numerical method. Numerical experiments are presented in 2D and 3D corroborating the theoretical results.
We develop a provably energy stable discontinuous Galerkin spectral element method (DGSEM) approximation of the perfectly matched layer (PML) for the three and two space dimensional (3D and 2D) linear acoustic wave equations, in first order form, subject to well-posed linear boundary conditions. First, using the well-known complex coordinate stretching, we derive an efficient un-split modal PML for the 3D acoustic wave equation. Second, we prove asymptotic stability of the continuous PML by deriving energy estimates in the Laplace space, for the 3D PML in a heterogeneous acoustic medium, assuming piece-wise constant PML damping. Third, we develop a DGSEM for the wave equation using physically motivated numerical flux, with penalty weights, which are compatible with all well-posed, internal and external, boundary conditions. When the PML damping vanishes, by construction, our choice of penalty parameters yield an upwind scheme and a discrete energy estimate analogous to the continuous energy estimate. Fourth, to ensure numerical stability when PML damping is present, it is necessary to systematically extend the numerical numerical fluxes, and the inter-element and boundary procedures, to the PML auxiliary differential equations. This is critical for deriving discrete energy estimates analogous to the continuous energy estimates. Finally, we propose a procedure to compute PML damping coefficients such that the PML error converges to zero, at the optimal convergence rate of the underlying numerical method. Numerical experiments are presented in 2D and 3D corroborating the theoretical results.
Author Alice-Agnes Gabriel
Duru, Kenneth
Kreiss, Gunilla
Author_xml – sequence: 1
  givenname: Kenneth
  surname: Duru
  fullname: Duru, Kenneth
– sequence: 2
  fullname: Alice-Agnes Gabriel
– sequence: 3
  givenname: Gunilla
  surname: Kreiss
  fullname: Kreiss, Gunilla
BackLink https://doi.org/10.1016/j.cma.2019.02.036$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.1802.06388$$DView paper in arXiv
BookMark eNotkEFPwzAMhSMEEmPsB3AiEueONGnS7IgmGEiTdtm9clOXdXRpl7RjlfjxhI6TZb3P9vO7I9e2sUjIQ8zmiZaSPYM7V6d5rBmfMyW0viITLkQc6YTzWzLzfs8Y4yrlUooJ-dlYihbd50B9B3mNtKi8aWxX2b7pPV1Bje6rstS3aDoHNcUaD2g7Cm3rmnN1gK5qrKdNSbsd0hZdGcB6oEEwOyxoDQM6WjZu1L_hhBSP_Th1T25KqD3O_uuUbN9et8v3aL1ZfSxf1hFIriKuUyPKVPESONe5jLHIQ6eUgDgvUgaIIk4WKk8MKgPKlDkwmQhpuNYIUkzJ42XtGE3WumDaDdlfRNkYUSCeLkR46dij77J90zsbPGWcpbFi6SKc-wXyx25K
ContentType Paper
Journal Article
Copyright 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.1802.06388
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1802_06388
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a526-287c3f762fa228b51edb762663a1bd70aee31496b4ce6ca6cfba05435c288ea53
IEDL.DBID GOX
IngestDate Tue Jul 22 21:59:13 EDT 2025
Mon Jun 30 09:41:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-287c3f762fa228b51edb762663a1bd70aee31496b4ce6ca6cfba05435c288ea53
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/1802.06388
PQID 2071607966
PQPubID 2050157
ParticipantIDs arxiv_primary_1802_06388
proquest_journals_2071607966
PublicationCentury 2000
PublicationDate 20180218
2018-02-18
PublicationDateYYYYMMDD 2018-02-18
PublicationDate_xml – month: 02
  year: 2018
  text: 20180218
  day: 18
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2018
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.6512414
SecondaryResourceType preprint
Snippet We develop a provably energy stable discontinuous Galerkin spectral element method (DGSEM) approximation of the perfectly matched layer (PML) for the three and...
We develop a provably energy stable discontinuous Galerkin spectral element method (DGSEM) approximation of the perfectly matched layer (PML) for the three and...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Acoustic waves
Acoustics
Boundary conditions
Boundary element method
Convergence
Damping
Differential equations
Energy
Estimates
Fluxes
Galerkin method
Mathematics - Numerical Analysis
Numerical methods
Numerical stability
Perfectly matched layers
Spectral element method
Wave equations
Well posed problems
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60RfDmk6pV9uA1tXnsNjl5ENsi-DhU6C3M7k6gEJK2aWsFf7yzm1QPgsdkIIGZnZlvZufB2K1JQgGDBDyJpE2RIjsIvjaeVhLogBDoELZ3-PlFjt-jp6mYNgm3qimr3NlEZ6hNqW2O3GZC7Cw0Quf384Vnt0bZ29VmhcY-a_sBnSTbKT4c_eRYAjkgxBzWl5ludNcdLLezTc-OPetZZx0TJnWv_phi51-GR6z9BnNcHrM9LE7YgSvL1NUp-3otOLruPE4oTuXIbRdtabc7rClk5yMy7zbZzV3D5BJyjnU5OHezwrezujGx4mXGCelx-oct38g_ORFIXIbnQJibE3J19A_YIMdFPf77jE2Gj5OHsdfsS_BABNKj2EeHGRm3DIIgVsJHo-iJIAX4ygz6gBhSPCRVpFFqkDpTQIAtFDqIYwQRnrNWURbYYdxgSLgpU1IaE5mEdLyPxiT06RgpYBIXrOO4ls7rkRipZWjqGHrBujtGpo06VOmv8C7_J1-xQ0IksS2L9uMua62Wa7wmr79SN06034Czr4A
  priority: 102
  providerName: ProQuest
Title On energy stable discontinuous Galerkin spectral element approximations of the perfectly matched layer for the wave equation
URI https://www.proquest.com/docview/2071607966
https://arxiv.org/abs/1802.06388
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEA5tvXgRRaXVWubgdbX7SJo9qvSB0FakQm9LspmFQmnr9mEF8bc7yW7xIF4WdpPsYZLMfLM73xfGbk0cctWJlSeQdlOkyQ8qPzVeqoWiBUKgg1vu8HAkBm_R85RPKwwOXBiV72e7Qh9Yr--tPNmdDaqyarmKdtX2x9Pi56ST4ir7__YjjOke_XGtLl70TtlJCfTgoZiZM1bBxTn7Gi8AHdsOCJXpOYJlxS7taQ1bSsGhT-7afrwGR4DMaTwW5d3gtL_3s4JouIZlBoTcYIW5LceYfwI1kPkNzBVhaCAk6to_1A4B3ws57ws26XUnTwOvPP_AUzwQHuUyaZiRs8pUEEjNfTSa7ggiKF-bTlshhpTfCB2lKFIl0kwrAmAhTwMpUfHwktUWywXWGRgMCQdlWghjIhPTnm2jMTG9WiIlQLzB6s5qyaqQuEisQRNn0AZrHgyZlMt7nQQETES7Q6nS1f8jr9kxoQtpS5x92WS1Tb7FG4rgG91iVdnrt9jRY3f08tpyk0rX4Xf3B0Ztopg
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF5Ki-jNJ1Wr7kGPqTZptumhCGq1VVtFKvQWZncnUChNbewL_Gv-N2c3qR4Ebx6zCwlMZme-mZ1vhrFTXfd8qNXBEUinqSrJDkJFaUdJAaQgBDp8wx3udEXrtXrf9_s59rniwpiyypVNtIZax8rkyE0mxPRCI3R-OX5zzNQoc7u6GqEB2WgF3bAtxjJixwMu5xTCJY32Df3vM9e9bfauW042ZcAB3xUORQzKi8gkROC6gfQrqCU9kSOGitS1C0D0KIoQsqpQKBAqkkAwx_OVGwQIZmgEeYACLXh0qApXze7zy3eSxxU1guxeeptqe4edw2QxmJVN37WyQQsBgWK79MsXWAd3u8kKzzDGyRbL4Wibrdm6UJXssI-nEUdLD-QEI-UQuaHxxma8xDSeJvyO_IvJtnPL2JzAkGNaj85ts_LFIGVGJjyOOEFNTt8w9SPDJacN0hfNh0CgnxN0tvtzmCHHt7T_-C7r_Yco91h-FI-wyLhGj4BbJIXQuqrrZGQuUOs6vTpAitj8fVa0UgvHaU-O0Ag0tALdZ6WVIMPsPCbhj_Yc_L19wtZbvc5j-NjuPhyyDYJHganRrgQlln-fTPGIIMi7PM5-NGfhP6vWFwaB8og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+energy+stable+discontinuous+Galerkin+spectral+element+approximations+of+the+perfectly+matched+layer+for+the+wave+equation&rft.jtitle=arXiv.org&rft.au=Duru%2C+Kenneth&rft.au=Alice-Agnes+Gabriel&rft.au=Kreiss%2C+Gunilla&rft.date=2018-02-18&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1802.06388