On energy stable discontinuous Galerkin spectral element approximations of the perfectly matched layer for the wave equation
We develop a provably energy stable discontinuous Galerkin spectral element method (DGSEM) approximation of the perfectly matched layer (PML) for the three and two space dimensional (3D and 2D) linear acoustic wave equations, in first order form, subject to well-posed linear boundary conditions. Fir...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
18.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.1802.06388 |
Cover
Abstract | We develop a provably energy stable discontinuous Galerkin spectral element method (DGSEM) approximation of the perfectly matched layer (PML) for the three and two space dimensional (3D and 2D) linear acoustic wave equations, in first order form, subject to well-posed linear boundary conditions. First, using the well-known complex coordinate stretching, we derive an efficient un-split modal PML for the 3D acoustic wave equation. Second, we prove asymptotic stability of the continuous PML by deriving energy estimates in the Laplace space, for the 3D PML in a heterogeneous acoustic medium, assuming piece-wise constant PML damping. Third, we develop a DGSEM for the wave equation using physically motivated numerical flux, with penalty weights, which are compatible with all well-posed, internal and external, boundary conditions. When the PML damping vanishes, by construction, our choice of penalty parameters yield an upwind scheme and a discrete energy estimate analogous to the continuous energy estimate. Fourth, to ensure numerical stability when PML damping is present, it is necessary to systematically extend the numerical numerical fluxes, and the inter-element and boundary procedures, to the PML auxiliary differential equations. This is critical for deriving discrete energy estimates analogous to the continuous energy estimates. Finally, we propose a procedure to compute PML damping coefficients such that the PML error converges to zero, at the optimal convergence rate of the underlying numerical method. Numerical experiments are presented in 2D and 3D corroborating the theoretical results. |
---|---|
AbstractList | We develop a provably energy stable discontinuous Galerkin spectral element
method (DGSEM) approximation of the perfectly matched layer (PML) for the three
and two space dimensional (3D and 2D) linear acoustic wave equations, in first
order form, subject to well-posed linear boundary conditions. First, using the
well-known complex coordinate stretching, we derive an efficient un-split modal
PML for the 3D acoustic wave equation. Second, we prove asymptotic stability of
the continuous PML by deriving energy estimates in the Laplace space, for the
3D PML in a heterogeneous acoustic medium, assuming piece-wise constant PML
damping. Third, we develop a DGSEM for the wave equation using physically
motivated numerical flux, with penalty weights, which are compatible with all
well-posed, internal and external, boundary conditions. When the PML damping
vanishes, by construction, our choice of penalty parameters yield an upwind
scheme and a discrete energy estimate analogous to the continuous energy
estimate. Fourth, to ensure numerical stability when PML damping is present, it
is necessary to systematically extend the numerical numerical fluxes, and the
inter-element and boundary procedures, to the PML auxiliary differential
equations. This is critical for deriving discrete energy estimates analogous to
the continuous energy estimates. Finally, we propose a procedure to compute PML
damping coefficients such that the PML error converges to zero, at the optimal
convergence rate of the underlying numerical method. Numerical experiments are
presented in 2D and 3D corroborating the theoretical results. We develop a provably energy stable discontinuous Galerkin spectral element method (DGSEM) approximation of the perfectly matched layer (PML) for the three and two space dimensional (3D and 2D) linear acoustic wave equations, in first order form, subject to well-posed linear boundary conditions. First, using the well-known complex coordinate stretching, we derive an efficient un-split modal PML for the 3D acoustic wave equation. Second, we prove asymptotic stability of the continuous PML by deriving energy estimates in the Laplace space, for the 3D PML in a heterogeneous acoustic medium, assuming piece-wise constant PML damping. Third, we develop a DGSEM for the wave equation using physically motivated numerical flux, with penalty weights, which are compatible with all well-posed, internal and external, boundary conditions. When the PML damping vanishes, by construction, our choice of penalty parameters yield an upwind scheme and a discrete energy estimate analogous to the continuous energy estimate. Fourth, to ensure numerical stability when PML damping is present, it is necessary to systematically extend the numerical numerical fluxes, and the inter-element and boundary procedures, to the PML auxiliary differential equations. This is critical for deriving discrete energy estimates analogous to the continuous energy estimates. Finally, we propose a procedure to compute PML damping coefficients such that the PML error converges to zero, at the optimal convergence rate of the underlying numerical method. Numerical experiments are presented in 2D and 3D corroborating the theoretical results. |
Author | Alice-Agnes Gabriel Duru, Kenneth Kreiss, Gunilla |
Author_xml | – sequence: 1 givenname: Kenneth surname: Duru fullname: Duru, Kenneth – sequence: 2 fullname: Alice-Agnes Gabriel – sequence: 3 givenname: Gunilla surname: Kreiss fullname: Kreiss, Gunilla |
BackLink | https://doi.org/10.1016/j.cma.2019.02.036$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.1802.06388$$DView paper in arXiv |
BookMark | eNotkEFPwzAMhSMEEmPsB3AiEueONGnS7IgmGEiTdtm9clOXdXRpl7RjlfjxhI6TZb3P9vO7I9e2sUjIQ8zmiZaSPYM7V6d5rBmfMyW0viITLkQc6YTzWzLzfs8Y4yrlUooJ-dlYihbd50B9B3mNtKi8aWxX2b7pPV1Bje6rstS3aDoHNcUaD2g7Cm3rmnN1gK5qrKdNSbsd0hZdGcB6oEEwOyxoDQM6WjZu1L_hhBSP_Th1T25KqD3O_uuUbN9et8v3aL1ZfSxf1hFIriKuUyPKVPESONe5jLHIQ6eUgDgvUgaIIk4WKk8MKgPKlDkwmQhpuNYIUkzJ42XtGE3WumDaDdlfRNkYUSCeLkR46dij77J90zsbPGWcpbFi6SKc-wXyx25K |
ContentType | Paper Journal Article |
Copyright | 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
DOI | 10.48550/arxiv.1802.06388 |
DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Mathematics arXiv.org |
DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2331-8422 |
ExternalDocumentID | 1802_06388 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKZ GOX |
ID | FETCH-LOGICAL-a526-287c3f762fa228b51edb762663a1bd70aee31496b4ce6ca6cfba05435c288ea53 |
IEDL.DBID | GOX |
IngestDate | Tue Jul 22 21:59:13 EDT 2025 Mon Jun 30 09:41:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a526-287c3f762fa228b51edb762663a1bd70aee31496b4ce6ca6cfba05435c288ea53 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
OpenAccessLink | https://arxiv.org/abs/1802.06388 |
PQID | 2071607966 |
PQPubID | 2050157 |
ParticipantIDs | arxiv_primary_1802_06388 proquest_journals_2071607966 |
PublicationCentury | 2000 |
PublicationDate | 20180218 2018-02-18 |
PublicationDateYYYYMMDD | 2018-02-18 |
PublicationDate_xml | – month: 02 year: 2018 text: 20180218 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Ithaca |
PublicationPlace_xml | – name: Ithaca |
PublicationTitle | arXiv.org |
PublicationYear | 2018 |
Publisher | Cornell University Library, arXiv.org |
Publisher_xml | – name: Cornell University Library, arXiv.org |
SSID | ssj0002672553 |
Score | 1.6512414 |
SecondaryResourceType | preprint |
Snippet | We develop a provably energy stable discontinuous Galerkin spectral element method (DGSEM) approximation of the perfectly matched layer (PML) for the three and... We develop a provably energy stable discontinuous Galerkin spectral element method (DGSEM) approximation of the perfectly matched layer (PML) for the three and... |
SourceID | arxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Acoustic waves Acoustics Boundary conditions Boundary element method Convergence Damping Differential equations Energy Estimates Fluxes Galerkin method Mathematics - Numerical Analysis Numerical methods Numerical stability Perfectly matched layers Spectral element method Wave equations Well posed problems |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60RfDmk6pV9uA1tXnsNjl5ENsi-DhU6C3M7k6gEJK2aWsFf7yzm1QPgsdkIIGZnZlvZufB2K1JQgGDBDyJpE2RIjsIvjaeVhLogBDoELZ3-PlFjt-jp6mYNgm3qimr3NlEZ6hNqW2O3GZC7Cw0Quf384Vnt0bZ29VmhcY-a_sBnSTbKT4c_eRYAjkgxBzWl5ludNcdLLezTc-OPetZZx0TJnWv_phi51-GR6z9BnNcHrM9LE7YgSvL1NUp-3otOLruPE4oTuXIbRdtabc7rClk5yMy7zbZzV3D5BJyjnU5OHezwrezujGx4mXGCelx-oct38g_ORFIXIbnQJibE3J19A_YIMdFPf77jE2Gj5OHsdfsS_BABNKj2EeHGRm3DIIgVsJHo-iJIAX4ygz6gBhSPCRVpFFqkDpTQIAtFDqIYwQRnrNWURbYYdxgSLgpU1IaE5mEdLyPxiT06RgpYBIXrOO4ls7rkRipZWjqGHrBujtGpo06VOmv8C7_J1-xQ0IksS2L9uMua62Wa7wmr79SN06034Czr4A priority: 102 providerName: ProQuest |
Title | On energy stable discontinuous Galerkin spectral element approximations of the perfectly matched layer for the wave equation |
URI | https://www.proquest.com/docview/2071607966 https://arxiv.org/abs/1802.06388 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEA5tvXgRRaXVWubgdbX7SJo9qvSB0FakQm9LspmFQmnr9mEF8bc7yW7xIF4WdpPsYZLMfLM73xfGbk0cctWJlSeQdlOkyQ8qPzVeqoWiBUKgg1vu8HAkBm_R85RPKwwOXBiV72e7Qh9Yr--tPNmdDaqyarmKdtX2x9Pi56ST4ir7__YjjOke_XGtLl70TtlJCfTgoZiZM1bBxTn7Gi8AHdsOCJXpOYJlxS7taQ1bSsGhT-7afrwGR4DMaTwW5d3gtL_3s4JouIZlBoTcYIW5LceYfwI1kPkNzBVhaCAk6to_1A4B3ws57ws26XUnTwOvPP_AUzwQHuUyaZiRs8pUEEjNfTSa7ggiKF-bTlshhpTfCB2lKFIl0kwrAmAhTwMpUfHwktUWywXWGRgMCQdlWghjIhPTnm2jMTG9WiIlQLzB6s5qyaqQuEisQRNn0AZrHgyZlMt7nQQETES7Q6nS1f8jr9kxoQtpS5x92WS1Tb7FG4rgG91iVdnrt9jRY3f08tpyk0rX4Xf3B0Ztopg |
linkProvider | Cornell University |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF5Ki-jNJ1Wr7kGPqTZptumhCGq1VVtFKvQWZncnUChNbewL_Gv-N2c3qR4Ebx6zCwlMZme-mZ1vhrFTXfd8qNXBEUinqSrJDkJFaUdJAaQgBDp8wx3udEXrtXrf9_s59rniwpiyypVNtIZax8rkyE0mxPRCI3R-OX5zzNQoc7u6GqEB2WgF3bAtxjJixwMu5xTCJY32Df3vM9e9bfauW042ZcAB3xUORQzKi8gkROC6gfQrqCU9kSOGitS1C0D0KIoQsqpQKBAqkkAwx_OVGwQIZmgEeYACLXh0qApXze7zy3eSxxU1guxeeptqe4edw2QxmJVN37WyQQsBgWK79MsXWAd3u8kKzzDGyRbL4Wibrdm6UJXssI-nEUdLD-QEI-UQuaHxxma8xDSeJvyO_IvJtnPL2JzAkGNaj85ts_LFIGVGJjyOOEFNTt8w9SPDJacN0hfNh0CgnxN0tvtzmCHHt7T_-C7r_Yco91h-FI-wyLhGj4BbJIXQuqrrZGQuUOs6vTpAitj8fVa0UgvHaU-O0Ag0tALdZ6WVIMPsPCbhj_Yc_L19wtZbvc5j-NjuPhyyDYJHganRrgQlln-fTPGIIMi7PM5-NGfhP6vWFwaB8og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+energy+stable+discontinuous+Galerkin+spectral+element+approximations+of+the+perfectly+matched+layer+for+the+wave+equation&rft.jtitle=arXiv.org&rft.au=Duru%2C+Kenneth&rft.au=Alice-Agnes+Gabriel&rft.au=Kreiss%2C+Gunilla&rft.date=2018-02-18&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1802.06388 |