Federated Transfer Learning for EEG Signal Classification

The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limit the possibility of constructing a large EEG-BCI...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Ju, Ce, Gao, Dashan, Mane, Ravikiran, Tan, Ben, Liu, Yang, Guan, Cuntai
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 25.01.2021
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2004.12321

Cover

Abstract The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limit the possibility of constructing a large EEG-BCI dataset by the conglomeration of multiple small ones for jointly training machine learning models. Hence, in this paper, we propose a novel privacy-preserving DL architecture named federated transfer learning (FTL) for EEG classification that is based on the federated learning framework. Working with the single-trial covariance matrix, the proposed architecture extracts common discriminative information from multi-subject EEG data with the help of domain adaptation techniques. We evaluate the performance of the proposed architecture on the PhysioNet dataset for 2-class motor imagery classification. While avoiding the actual data sharing, our FTL approach achieves 2% higher classification accuracy in a subject-adaptive analysis. Also, in the absence of multi-subject data, our architecture provides 6% better accuracy compared to other state-of-the-art DL architectures.
AbstractList 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 2020, pp. 3040-3045 The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limit the possibility of constructing a large EEG-BCI dataset by the conglomeration of multiple small ones for jointly training machine learning models. Hence, in this paper, we propose a novel privacy-preserving DL architecture named federated transfer learning (FTL) for EEG classification that is based on the federated learning framework. Working with the single-trial covariance matrix, the proposed architecture extracts common discriminative information from multi-subject EEG data with the help of domain adaptation techniques. We evaluate the performance of the proposed architecture on the PhysioNet dataset for 2-class motor imagery classification. While avoiding the actual data sharing, our FTL approach achieves 2% higher classification accuracy in a subject-adaptive analysis. Also, in the absence of multi-subject data, our architecture provides 6% better accuracy compared to other state-of-the-art DL architectures.
The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limit the possibility of constructing a large EEG-BCI dataset by the conglomeration of multiple small ones for jointly training machine learning models. Hence, in this paper, we propose a novel privacy-preserving DL architecture named federated transfer learning (FTL) for EEG classification that is based on the federated learning framework. Working with the single-trial covariance matrix, the proposed architecture extracts common discriminative information from multi-subject EEG data with the help of domain adaptation techniques. We evaluate the performance of the proposed architecture on the PhysioNet dataset for 2-class motor imagery classification. While avoiding the actual data sharing, our FTL approach achieves 2% higher classification accuracy in a subject-adaptive analysis. Also, in the absence of multi-subject data, our architecture provides 6% better accuracy compared to other state-of-the-art DL architectures.
Author Tan, Ben
Ju, Ce
Liu, Yang
Guan, Cuntai
Gao, Dashan
Mane, Ravikiran
Author_xml – sequence: 1
  givenname: Ce
  surname: Ju
  fullname: Ju, Ce
– sequence: 2
  givenname: Dashan
  surname: Gao
  fullname: Gao, Dashan
– sequence: 3
  givenname: Ravikiran
  surname: Mane
  fullname: Mane, Ravikiran
– sequence: 4
  givenname: Ben
  surname: Tan
  fullname: Tan, Ben
– sequence: 5
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 6
  givenname: Cuntai
  surname: Guan
  fullname: Guan, Cuntai
BackLink https://doi.org/10.1109/EMBC44109.2020.9175344$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2004.12321$$DView paper in arXiv
BookMark eNotj71OwzAURi0EEqX0AZiIxJxwfW0n8YiqtiBVYqB7dBPblavgFDtF8Pb0h-lbjj6dc8euwxAsYw8cClkrBc8Uf_x3gQCy4CiQX7EJCsHzWiLesllKOwDAskKlxITppTU20mhNtokUkrMxW1uKwYdt5oaYLRar7MNvA_XZvKeUvPMdjX4I9-zGUZ_s7H-nbLNcbOav-fp99TZ_WeekUOWW11Y4LUDK0mioSuUsILZkCLVW2ImKd0QkgSxAh8AVCFO2XDt0rVFiyh4vt-euZh_9J8Xf5tTXnPuOxNOF2Mfh62DT2OyGQzwKpwaFVhK1qJT4A41FUv4
ContentType Paper
Journal Article
Copyright 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2004.12321
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
Physics
EISSN 2331-8422
ExternalDocumentID 2004_12321
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a525-e18e3f930446d90765fe022bada29952c371caaa40ae00c201503d6b19f2fbd53
IEDL.DBID 8FG
IngestDate Tue Jul 22 23:10:07 EDT 2025
Mon Jun 30 09:27:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-e18e3f930446d90765fe022bada29952c371caaa40ae00c201503d6b19f2fbd53
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2395429375?pq-origsite=%requestingapplication%
PQID 2395429375
PQPubID 2050157
ParticipantIDs arxiv_primary_2004_12321
proquest_journals_2395429375
PublicationCentury 2000
PublicationDate 20210125
PublicationDateYYYYMMDD 2021-01-25
PublicationDate_xml – month: 01
  year: 2021
  text: 20210125
  day: 25
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7498087
SecondaryResourceType preprint
Snippet The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been...
2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 2020, pp. 3040-3045 The success...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Accuracy
Architecture
Classification
Computer Science - Learning
Covariance matrix
Data retrieval
Datasets
Electroencephalography
Human-computer interface
Image classification
Machine learning
Privacy
Signal classification
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEB5qT15EUWm1Sg5eo7t57OMo0loE9WCF3pbJq_Qisq3Sn-8ku8WDeM3jkJmQ75sk8w3ATRZUZW2hua-KwJUOyKtQB04BkPRlidQXc4efX4r5u3pa6uUA2D4XBtvd-rvTBzabu-jC2wj6FN8cEFGIybyvy-5xMklx9eN_xxHHTE1_jtaEF7NjOOqJHrvvPHMCA_9xCvUsajcQvXMsgUTwLesVTleM6CObTh_Z23oVZ6ZylfEjT7LdGSxm08XDnPfFCzhqQUvPKy9DLeN7qaMAtNDBE1wadEgAoIWVZW4RUWXos8yKePEgXWHyOohgnJbnMKT434-AlcJiXgalnfIEt1hZ6TBXXphgJJpqDKO05Oaz06eIlSVVk6wxhsneCk2_NzeNkHUsUiVLffH_zEs4FPH3RpZzoScw3LZf_orgd2uukw9-AJKChEs
  priority: 102
  providerName: Cornell University
Title Federated Transfer Learning for EEG Signal Classification
URI https://www.proquest.com/docview/2395429375
https://arxiv.org/abs/2004.12321
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH5oiyBetCqt1pKD17HJLFlOopK0CK1FK_QWJrOUXrqkVTz5252ZpioIXgLJ3N483ve2fB_Ata9pLETIkIpDjSjTHMU60cgUQERFETdn9t_hwTDsv9LHCZtUDbd1tVa5i4kuUMuFsD3yLiaJlVYiEbtdrpBVjbLT1UpCYx_qBqgT69Vx1vvuseAwMhkz2Q4zHXVXl5cfs3dXFt7YZMIyc7pPf0Kxw5fsGOojvlTlCeypeQOO7n519xtw4LY0xfoUksxSP5jsUHoOY7QqvYogdeqZ7NNL0573Mpsa5_Cc2qXdA3KmP4Nxlo4f-qjSPkCcYWO5IFZEJ8SOW6WpX0OmlUHbgktu8INhQaJAcM6pz5XvC2z7FkSGRZBorAvJyDnU5ou5aoIXYcGDSFMmqTJozWNBJA-owoUuCC_iFjSdBfLllt7CClPS3BmnBe2dUfLKtdf5z0Vc_H98CYfYLoD4AcKsDbVN-aauDIJvio67pg7U79Ph6Nm89Z4m5jn4TL8AK_Od_A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB0hIgSigQAiEMAFlIZdH3sUEeJISDgiBEGiW3l9RDQhJOH6OP4N29kFJCQ62nWzmhnPvDk8D2A3MCyRMuJYJ5HBjBuBE5MabBMgquNY2DP3dviqG7Xv2Pk9v5-Bj_ItjBurLH2id9TqUboa-QGhqaNWojE_HD5hxxrluqslhYYoqBVUw68YKx52XOj3V5vCjRudU6vvPUJazd5JGxcsA1hwYv8xTDQ1KXWNTWUzxYgbbeNaLpSwnpoTSeNQCiFYIHQQSOIqBFRFeZgaYnLlSCNsBKgwylKb-1WOm93rm68iD4liC9nptJvqd4cdiNHbw4vPS_cdmnGrQf2nX7HAB7jWElSuxVCPlmFGD6qwePSjvVCFOT8mKscrkLbc7gkLTxXyQc7oESo2tPaRhb-o2TxDtw99a53I0226QSSv-1Xo_YdY1mB28DjQ64BiIkUYG8YV0xYuiERSJUKmSW5yKvKkButeAtlwul_DMWOyzAunBvVSKFlxt8bZtyVs_H28A_Pt3tVldtnpXmzCAnHTKEGICa_D7GT0rLcsnJjk24XSEGT_bCafjSXcMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Transfer+Learning+for+EEG+Signal+Classification&rft.jtitle=arXiv.org&rft.au=Ju%2C+Ce&rft.au=Gao%2C+Dashan&rft.au=Mane%2C+Ravikiran&rft.au=Tan%2C+Ben&rft.date=2021-01-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2004.12321