Federated Transfer Learning for EEG Signal Classification
The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limit the possibility of constructing a large EEG-BCI...
Saved in:
| Published in | arXiv.org |
|---|---|
| Main Authors | , , , , , |
| Format | Paper Journal Article |
| Language | English |
| Published |
Ithaca
Cornell University Library, arXiv.org
25.01.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2331-8422 |
| DOI | 10.48550/arxiv.2004.12321 |
Cover
| Abstract | The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limit the possibility of constructing a large EEG-BCI dataset by the conglomeration of multiple small ones for jointly training machine learning models. Hence, in this paper, we propose a novel privacy-preserving DL architecture named federated transfer learning (FTL) for EEG classification that is based on the federated learning framework. Working with the single-trial covariance matrix, the proposed architecture extracts common discriminative information from multi-subject EEG data with the help of domain adaptation techniques. We evaluate the performance of the proposed architecture on the PhysioNet dataset for 2-class motor imagery classification. While avoiding the actual data sharing, our FTL approach achieves 2% higher classification accuracy in a subject-adaptive analysis. Also, in the absence of multi-subject data, our architecture provides 6% better accuracy compared to other state-of-the-art DL architectures. |
|---|---|
| AbstractList | 2020 42nd Annual International Conference of the IEEE Engineering
in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 2020, pp.
3040-3045 The success of deep learning (DL) methods in the Brain-Computer Interfaces
(BCI) field for classification of electroencephalographic (EEG) recordings has
been restricted by the lack of large datasets. Privacy concerns associated with
EEG signals limit the possibility of constructing a large EEG-BCI dataset by
the conglomeration of multiple small ones for jointly training machine learning
models. Hence, in this paper, we propose a novel privacy-preserving DL
architecture named federated transfer learning (FTL) for EEG classification
that is based on the federated learning framework. Working with the
single-trial covariance matrix, the proposed architecture extracts common
discriminative information from multi-subject EEG data with the help of domain
adaptation techniques. We evaluate the performance of the proposed architecture
on the PhysioNet dataset for 2-class motor imagery classification. While
avoiding the actual data sharing, our FTL approach achieves 2% higher
classification accuracy in a subject-adaptive analysis. Also, in the absence of
multi-subject data, our architecture provides 6% better accuracy compared to
other state-of-the-art DL architectures. The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limit the possibility of constructing a large EEG-BCI dataset by the conglomeration of multiple small ones for jointly training machine learning models. Hence, in this paper, we propose a novel privacy-preserving DL architecture named federated transfer learning (FTL) for EEG classification that is based on the federated learning framework. Working with the single-trial covariance matrix, the proposed architecture extracts common discriminative information from multi-subject EEG data with the help of domain adaptation techniques. We evaluate the performance of the proposed architecture on the PhysioNet dataset for 2-class motor imagery classification. While avoiding the actual data sharing, our FTL approach achieves 2% higher classification accuracy in a subject-adaptive analysis. Also, in the absence of multi-subject data, our architecture provides 6% better accuracy compared to other state-of-the-art DL architectures. |
| Author | Tan, Ben Ju, Ce Liu, Yang Guan, Cuntai Gao, Dashan Mane, Ravikiran |
| Author_xml | – sequence: 1 givenname: Ce surname: Ju fullname: Ju, Ce – sequence: 2 givenname: Dashan surname: Gao fullname: Gao, Dashan – sequence: 3 givenname: Ravikiran surname: Mane fullname: Mane, Ravikiran – sequence: 4 givenname: Ben surname: Tan fullname: Tan, Ben – sequence: 5 givenname: Yang surname: Liu fullname: Liu, Yang – sequence: 6 givenname: Cuntai surname: Guan fullname: Guan, Cuntai |
| BackLink | https://doi.org/10.1109/EMBC44109.2020.9175344$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.2004.12321$$DView paper in arXiv |
| BookMark | eNotj71OwzAURi0EEqX0AZiIxJxwfW0n8YiqtiBVYqB7dBPblavgFDtF8Pb0h-lbjj6dc8euwxAsYw8cClkrBc8Uf_x3gQCy4CiQX7EJCsHzWiLesllKOwDAskKlxITppTU20mhNtokUkrMxW1uKwYdt5oaYLRar7MNvA_XZvKeUvPMdjX4I9-zGUZ_s7H-nbLNcbOav-fp99TZ_WeekUOWW11Y4LUDK0mioSuUsILZkCLVW2ImKd0QkgSxAh8AVCFO2XDt0rVFiyh4vt-euZh_9J8Xf5tTXnPuOxNOF2Mfh62DT2OyGQzwKpwaFVhK1qJT4A41FUv4 |
| ContentType | Paper Journal Article |
| Copyright | 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
| Copyright_xml | – notice: 2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY GOX |
| DOI | 10.48550/arxiv.2004.12321 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Computer Science arXiv.org |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Architecture Physics |
| EISSN | 2331-8422 |
| ExternalDocumentID | 2004_12321 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY GOX |
| ID | FETCH-LOGICAL-a525-e18e3f930446d90765fe022bada29952c371caaa40ae00c201503d6b19f2fbd53 |
| IEDL.DBID | 8FG |
| IngestDate | Tue Jul 22 23:10:07 EDT 2025 Mon Jun 30 09:27:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a525-e18e3f930446d90765fe022bada29952c371caaa40ae00c201503d6b19f2fbd53 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2395429375?pq-origsite=%requestingapplication% |
| PQID | 2395429375 |
| PQPubID | 2050157 |
| ParticipantIDs | arxiv_primary_2004_12321 proquest_journals_2395429375 |
| PublicationCentury | 2000 |
| PublicationDate | 20210125 |
| PublicationDateYYYYMMDD | 2021-01-25 |
| PublicationDate_xml | – month: 01 year: 2021 text: 20210125 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2021 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.7498087 |
| SecondaryResourceType | preprint |
| Snippet | The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been... 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 2020, pp. 3040-3045 The success... |
| SourceID | arxiv proquest |
| SourceType | Open Access Repository Aggregation Database |
| SubjectTerms | Accuracy Architecture Classification Computer Science - Learning Covariance matrix Data retrieval Datasets Electroencephalography Human-computer interface Image classification Machine learning Privacy Signal classification |
| SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEB5qT15EUWm1Sg5eo7t57OMo0loE9WCF3pbJq_Qisq3Sn-8ku8WDeM3jkJmQ75sk8w3ATRZUZW2hua-KwJUOyKtQB04BkPRlidQXc4efX4r5u3pa6uUA2D4XBtvd-rvTBzabu-jC2wj6FN8cEFGIybyvy-5xMklx9eN_xxHHTE1_jtaEF7NjOOqJHrvvPHMCA_9xCvUsajcQvXMsgUTwLesVTleM6CObTh_Z23oVZ6ZylfEjT7LdGSxm08XDnPfFCzhqQUvPKy9DLeN7qaMAtNDBE1wadEgAoIWVZW4RUWXos8yKePEgXWHyOohgnJbnMKT434-AlcJiXgalnfIEt1hZ6TBXXphgJJpqDKO05Oaz06eIlSVVk6wxhsneCk2_NzeNkHUsUiVLffH_zEs4FPH3RpZzoScw3LZf_orgd2uukw9-AJKChEs priority: 102 providerName: Cornell University |
| Title | Federated Transfer Learning for EEG Signal Classification |
| URI | https://www.proquest.com/docview/2395429375 https://arxiv.org/abs/2004.12321 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8NAFH5oiyBetCqt1pKD17HJLFlOopK0CK1FK_QWJrOUXrqkVTz5252ZpioIXgLJ3N483ve2fB_Ata9pLETIkIpDjSjTHMU60cgUQERFETdn9t_hwTDsv9LHCZtUDbd1tVa5i4kuUMuFsD3yLiaJlVYiEbtdrpBVjbLT1UpCYx_qBqgT69Vx1vvuseAwMhkz2Q4zHXVXl5cfs3dXFt7YZMIyc7pPf0Kxw5fsGOojvlTlCeypeQOO7n519xtw4LY0xfoUksxSP5jsUHoOY7QqvYogdeqZ7NNL0573Mpsa5_Cc2qXdA3KmP4Nxlo4f-qjSPkCcYWO5IFZEJ8SOW6WpX0OmlUHbgktu8INhQaJAcM6pz5XvC2z7FkSGRZBorAvJyDnU5ou5aoIXYcGDSFMmqTJozWNBJA-owoUuCC_iFjSdBfLllt7CClPS3BmnBe2dUfLKtdf5z0Vc_H98CYfYLoD4AcKsDbVN-aauDIJvio67pg7U79Ph6Nm89Z4m5jn4TL8AK_Od_A |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxEB0hIgSigQAiEMAFlIZdH3sUEeJISDgiBEGiW3l9RDQhJOH6OP4N29kFJCQ62nWzmhnPvDk8D2A3MCyRMuJYJ5HBjBuBE5MabBMgquNY2DP3dviqG7Xv2Pk9v5-Bj_ItjBurLH2id9TqUboa-QGhqaNWojE_HD5hxxrluqslhYYoqBVUw68YKx52XOj3V5vCjRudU6vvPUJazd5JGxcsA1hwYv8xTDQ1KXWNTWUzxYgbbeNaLpSwnpoTSeNQCiFYIHQQSOIqBFRFeZgaYnLlSCNsBKgwylKb-1WOm93rm68iD4liC9nptJvqd4cdiNHbw4vPS_cdmnGrQf2nX7HAB7jWElSuxVCPlmFGD6qwePSjvVCFOT8mKscrkLbc7gkLTxXyQc7oESo2tPaRhb-o2TxDtw99a53I0226QSSv-1Xo_YdY1mB28DjQ64BiIkUYG8YV0xYuiERSJUKmSW5yKvKkButeAtlwul_DMWOyzAunBvVSKFlxt8bZtyVs_H28A_Pt3tVldtnpXmzCAnHTKEGICa_D7GT0rLcsnJjk24XSEGT_bCafjSXcMQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Transfer+Learning+for+EEG+Signal+Classification&rft.jtitle=arXiv.org&rft.au=Ju%2C+Ce&rft.au=Gao%2C+Dashan&rft.au=Mane%2C+Ravikiran&rft.au=Tan%2C+Ben&rft.date=2021-01-25&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2004.12321 |