Accelerating High-Order Mesh Optimization Using Finite Element Partial Assembly on GPUs

In this paper we present a new GPU-oriented mesh optimization method based on high-order finite elements. Our approach relies on node movement with fixed topology, through the Target-Matrix Optimization Paradigm (TMOP) and uses a global nonlinear solve over the whole computational mesh, i.e., all me...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Jean-Sylvain Camier, Dobrev, Veselin, Knupp, Patrick, Kolev, Tzanio, Mittal, Ketan, Rieben, Robert, Tomov, Vladimir
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 02.12.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2205.12721

Cover

Abstract In this paper we present a new GPU-oriented mesh optimization method based on high-order finite elements. Our approach relies on node movement with fixed topology, through the Target-Matrix Optimization Paradigm (TMOP) and uses a global nonlinear solve over the whole computational mesh, i.e., all mesh nodes are moved together. A key property of the method is that the mesh optimization process is recast in terms of finite element operations, which allows us to utilize recent advances in the field of GPU-accelerated high-order finite element algorithms. For example, we reduce data motion by using tensor factorization and matrix-free methods, which have superior performance characteristics compared to traditional full finite element matrix assembly and offer advantages for GPU-based HPC hardware. We describe the major mathematical components of the method along with their efficient GPU-oriented implementation. In addition, we propose an easily reproducible mesh optimization test that can serve as a performance benchmark for the mesh optimization community.
AbstractList In this paper we present a new GPU-oriented mesh optimization method based on high-order finite elements. Our approach relies on node movement with fixed topology, through the Target-Matrix Optimization Paradigm (TMOP) and uses a global nonlinear solve over the whole computational mesh, i.e., all mesh nodes are moved together. A key property of the method is that the mesh optimization process is recast in terms of finite element operations, which allows us to utilize recent advances in the field of GPU-accelerated high-order finite element algorithms. For example, we reduce data motion by using tensor factorization and matrix-free methods, which have superior performance characteristics compared to traditional full finite element matrix assembly and offer advantages for GPU-based HPC hardware. We describe the major mathematical components of the method along with their efficient GPU-oriented implementation. In addition, we propose an easily reproducible mesh optimization test that can serve as a performance benchmark for the mesh optimization community.
In this paper we present a new GPU-oriented mesh optimization method based on high-order finite elements. Our approach relies on node movement with fixed topology, through the Target-Matrix Optimization Paradigm (TMOP) and uses a global nonlinear solve over the whole computational mesh, i.e., all mesh nodes are moved together. A key property of the method is that the mesh optimization process is recast in terms of finite element operations, which allows us to utilize recent advances in the field of GPU-accelerated high-order finite element algorithms. For example, we reduce data motion by using tensor factorization and matrix-free methods, which have superior performance characteristics compared to traditional full finite element matrix assembly and offer advantages for GPU-based HPC hardware. We describe the major mathematical components of the method along with their efficient GPU-oriented implementation. In addition, we propose an easily reproducible mesh optimization test that can serve as a performance benchmark for the mesh optimization community.
Author Tomov, Vladimir
Mittal, Ketan
Kolev, Tzanio
Dobrev, Veselin
Jean-Sylvain Camier
Knupp, Patrick
Rieben, Robert
Author_xml – sequence: 1
  fullname: Jean-Sylvain Camier
– sequence: 2
  givenname: Veselin
  surname: Dobrev
  fullname: Dobrev, Veselin
– sequence: 3
  givenname: Patrick
  surname: Knupp
  fullname: Knupp, Patrick
– sequence: 4
  givenname: Tzanio
  surname: Kolev
  fullname: Kolev, Tzanio
– sequence: 5
  givenname: Ketan
  surname: Mittal
  fullname: Mittal, Ketan
– sequence: 6
  givenname: Robert
  surname: Rieben
  fullname: Rieben, Robert
– sequence: 7
  givenname: Vladimir
  surname: Tomov
  fullname: Tomov, Vladimir
BackLink https://doi.org/10.48550/arXiv.2205.12721$$DView paper in arXiv
https://doi.org/10.1016/j.jcp.2022.111808$$DView published paper (Access to full text may be restricted)
BookMark eNotj0tPAjEYRRujiYj8AFc2cT3Yx_S1JISHCQYWEJeTUr6BknlgOxjw1zuAq7u4Jzf3PKH7qq4AoRdK-qkWgrzbcPI_fcaI6FOmGL1DHcY5TXTK2CPqxbgnhDCpmBC8g74GzkEBwTa-2uKp3-6SedhAwJ8Qd3h-aHzpf9uyrvAqXpCxr3wDeFRACVWDFzY03hZ4ECOU6-KMW3CyWMVn9JDbIkLvP7toOR4th9NkNp98DAezxAomEie5MtpxbbnLQWqtSG6pIVoYYMbZ1FpFTGpSmyui0rU2YqNycMqColQC76LX2-zVOjsEX9pwzi722dW-Jd5uxCHU30eITbavj6FqP2VMSqMUVVLwP-aNXik
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2205.12721
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2205_12721
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a525-c63798c38a3cfe68870fa190859e29ca4aa709494af7074b895d7fec7ae7116e3
IEDL.DBID 8FG
IngestDate Tue Jul 22 21:56:50 EDT 2025
Mon Jun 30 09:32:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-c63798c38a3cfe68870fa190859e29ca4aa709494af7074b895d7fec7ae7116e3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2669771765?pq-origsite=%requestingapplication%
PQID 2669771765
PQPubID 2050157
ParticipantIDs arxiv_primary_2205_12721
proquest_journals_2669771765
PublicationCentury 2000
PublicationDate 20221202
PublicationDateYYYYMMDD 2022-12-02
PublicationDate_xml – month: 12
  year: 2022
  text: 20221202
  day: 02
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8179971
SecondaryResourceType preprint
Snippet In this paper we present a new GPU-oriented mesh optimization method based on high-order finite elements. Our approach relies on node movement with fixed...
In this paper we present a new GPU-oriented mesh optimization method based on high-order finite elements. Our approach relies on node movement with fixed...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Assembly
Computational grids
Computer Science - Distributed, Parallel, and Cluster Computing
Computer Science - Mathematical Software
Finite element method
Mathematical analysis
Optimization
Physics - Computational Physics
Tensors
Topology optimization
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV2xTsMwELVKJxYEAtRCQR5YA3Ucx_FYoZYKqbRDK7pFjnOBSjSgpkXw99w5qRgQq3X28M72O-vunRm7iUUm6OURSOmyICpwG1twRYBc0HcuUi70RTSTp3i8iB6XatlifK-FsZuv1WfdHzir7kgFeitCTUrxAwwUSMw7XdbJSd-Kq7H_tcMY0w_9uVo9X4yO2VET6PFB7ZkT1oLylD0PnMN7nlAvXzjVWART6n3JJ1C98ike33Wji-Q-l89HK4oJ-bAu8uYzcjStWlWwzt6-ORo-zBbVGZuPhvP7cdB8bRBYhcC4WGqTOJlY6QqI8aD3C4vUnCgDoXE2slbju8tEttDI8VliVK4LcNqCFiIGec7a5XsJHcbBqdziPCuliYSLKW0HRimdCwEi73dZxwOSftTdK1LCKvVYdVlvj1Ha7NwqRSdhSCh0rC7-n3nJDkOSAVBZR9hj7e1mB1dIztvs2nvoB_ytjf4
  priority: 102
  providerName: Cornell University
Title Accelerating High-Order Mesh Optimization Using Finite Element Partial Assembly on GPUs
URI https://www.proquest.com/docview/2669771765
https://arxiv.org/abs/2205.12721
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gExI3ntpgTDlw7bY0TdOeEKA9hLSH0CZ2q9I0hUlbN9aB4MJvx846OCBxqdRHLrbrz7E_O4Rc-yxmuPNwONex46Vgxsro1AEsaGntCe1aEk1_4Pcm3sNUTIuEW17QKnc-0TrqZKkxR96ExRCqMOmLm9Wrg6dGYXW1OEJjn5QBqEO06qDT_cmxuL6EiJlvi5l2dFdTrT9m7w3sLm0wV-KE0LJ99McVW3zpHJHySK3M-pjsmeyEHFhaps5PydOt1oALqKXsmSInwxnirEzaN_kLHcLvvij6KKmt_dPODGNI2t6SwukIDUPNKZZ2F_H8k8KH3dEkPyPjTnt833OKoxAcJUCQ2ucyDDQPFNep8cExtFIFUB6I0LihVp5SEvZpoadSCTFBHIQikanRUhnJmG_4OSlly8xUCDVaJArWKc5Dj2kfy3wmFEImjBmWtKqkYgUSrbbTLiKUVWRlVSW1nYyiwtLz6FcvF_-_viSHLrYOIBXErZHSZv1mrgDQN3Hdaq1OynftwegR7rrDKVz7X-1vEuyirQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLaACcGNp3gMyAGOhaVpmvWAEI-N8diY0BDcqjRNAQm2sfL8cfw37KyDAxI3rm0TVY6Tz44_2wCbIU84eR6eECbxggzVWFuTeYgFFWMCaXxHomm2wsZVcHojb8bgc5QLQ7TK0ZnoDuq0Z-iOfAcHo6nCVSj3-k8edY2i6OqohYYuWiuku67EWJHYcWY_3tCFy3dPjnC9t3y_XuscNryiy4CnJf6jCYWKqkZUtTCZDXHPVTKNKFmVkfUjowOtFbpAUaAzhXCbVCOZqswapa3iPLQCpx2HUiCCCH2_0kGt1b78vuTxQ4UmuxhGU13tsB09eL9_3ab01m3uKypRWnKPfmGBA7j6DJTaum8HszBmu3Mw6XihJp-H631jEJhITbq3jEgh3gUV62RNm9-xCzxvHotETubIB6x-T0Ysqw1Z6axNmqkfGMWWH5OHD4YfHrev8gXo_IeUFmGi2-vaJWDWyFTjOC1EFHATUpzRRlKqlHPL08oyLDmBxP1huY2YZBU7WS1DeSSjuNhqefyjGCt_v96AqUaneR6fn7TOVmHapzwG4qX4ZZh4HrzYNbQunpP1Yg0ZxP-sNV9G7OEa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+High-Order+Mesh+Optimization+Using+Finite+Element+Partial+Assembly+on+GPUs&rft.jtitle=arXiv.org&rft.au=Jean-Sylvain+Camier&rft.au=Dobrev%2C+Veselin&rft.au=Knupp%2C+Patrick&rft.au=Kolev%2C+Tzanio&rft.date=2022-12-02&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2205.12721