FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness, Accountability and Transparency Algorithms in Predictive Systems

Predictive systems, in particular machine learning algorithms, can take important, and sometimes legally binding, decisions about our everyday life. In most cases, however, these systems and decisions are neither regulated nor certified. Given the potential harm that these algorithms can cause, thei...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Sokol, Kacper, Hepburn, Alexander, Poyiadzi, Rafael, Clifford, Matthew, Santos-Rodriguez, Raul, Flach, Peter
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 08.09.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2209.03805

Cover

Abstract Predictive systems, in particular machine learning algorithms, can take important, and sometimes legally binding, decisions about our everyday life. In most cases, however, these systems and decisions are neither regulated nor certified. Given the potential harm that these algorithms can cause, their qualities such as fairness, accountability and transparency (FAT) are of paramount importance. To ensure high-quality, fair, transparent and reliable predictive systems, we developed an open source Python package called FAT Forensics. It can inspect important fairness, accountability and transparency aspects of predictive algorithms to automatically and objectively report them back to engineers and users of such systems. Our toolbox can evaluate all elements of a predictive pipeline: data (and their features), models and predictions. Published under the BSD 3-Clause open source licence, FAT Forensics is opened up for personal and commercial usage.
AbstractList Predictive systems, in particular machine learning algorithms, can take important, and sometimes legally binding, decisions about our everyday life. In most cases, however, these systems and decisions are neither regulated nor certified. Given the potential harm that these algorithms can cause, their qualities such as fairness, accountability and transparency (FAT) are of paramount importance. To ensure high-quality, fair, transparent and reliable predictive systems, we developed an open source Python package called FAT Forensics. It can inspect important fairness, accountability and transparency aspects of predictive algorithms to automatically and objectively report them back to engineers and users of such systems. Our toolbox can evaluate all elements of a predictive pipeline: data (and their features), models and predictions. Published under the BSD 3-Clause open source licence, FAT Forensics is opened up for personal and commercial usage.
Journal of Open Source Software, 5(49), 1904 (2020) Predictive systems, in particular machine learning algorithms, can take important, and sometimes legally binding, decisions about our everyday life. In most cases, however, these systems and decisions are neither regulated nor certified. Given the potential harm that these algorithms can cause, their qualities such as fairness, accountability and transparency (FAT) are of paramount importance. To ensure high-quality, fair, transparent and reliable predictive systems, we developed an open source Python package called FAT Forensics. It can inspect important fairness, accountability and transparency aspects of predictive algorithms to automatically and objectively report them back to engineers and users of such systems. Our toolbox can evaluate all elements of a predictive pipeline: data (and their features), models and predictions. Published under the BSD 3-Clause open source licence, FAT Forensics is opened up for personal and commercial usage.
Author Hepburn, Alexander
Sokol, Kacper
Santos-Rodriguez, Raul
Poyiadzi, Rafael
Clifford, Matthew
Flach, Peter
Author_xml – sequence: 1
  givenname: Kacper
  surname: Sokol
  fullname: Sokol, Kacper
– sequence: 2
  givenname: Alexander
  surname: Hepburn
  fullname: Hepburn, Alexander
– sequence: 3
  givenname: Rafael
  surname: Poyiadzi
  fullname: Poyiadzi, Rafael
– sequence: 4
  givenname: Matthew
  surname: Clifford
  fullname: Clifford, Matthew
– sequence: 5
  givenname: Raul
  surname: Santos-Rodriguez
  fullname: Santos-Rodriguez, Raul
– sequence: 6
  givenname: Peter
  surname: Flach
  fullname: Flach, Peter
BackLink https://doi.org/10.48550/arXiv.2209.03805$$DView paper in arXiv
https://doi.org/10.21105/joss.01904$$DView published paper (Access to full text may be restricted)
BookMark eNotkNFKwzAYhYMoOOcewCsD3tqZ_mna6l1Rq4OBA3tf0jTZMtqkJt1YH8G3ttu8Ohz4OBy-G3RprJEI3YVkHqWMkSfuDno_ByDPc0JTwi7QBCgNgzQCuEYz77eEEIgTYIxO0G-eFTi3ThqvhX_BGV4N_cYaXFjbVPaAlXV40XaNbKXptVljbmr8JrvGDseWc-2M9P4RZ0LYnel5pRvdDyescNz4jo_jYsBZs7ZO95vWY23wyslai17vJf4efC9bf4uuFG-8nP3nFBX5e_H6GSy_Phav2TLgDFjAIaESCFVEqTSNFakA0koKLhJCaBTTWlECvKKSQR2nJKyEEEqBqniU0qqmU3R_nj15KjunW-6G8uirPPkaiYcz0Tn7s5O-L7d258z4qYQkHLk4BEb_AAKscjI
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/licenses/by/4.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2209.03805
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2209_03805
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a525-a273e203f0ff886f0b228becac7003463df302ab3e52d6801bcccff2fba483bd3
IEDL.DBID GOX
IngestDate Wed Jul 23 00:00:07 EDT 2025
Mon Jun 30 09:18:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-a273e203f0ff886f0b228becac7003463df302ab3e52d6801bcccff2fba483bd3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/2209.03805
PQID 2712096125
PQPubID 2050157
ParticipantIDs arxiv_primary_2209_03805
proquest_journals_2712096125
PublicationCentury 2000
PublicationDate 20220908
2022-09-08
PublicationDateYYYYMMDD 2022-09-08
PublicationDate_xml – month: 09
  year: 2022
  text: 20220908
  day: 08
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.808832
SecondaryResourceType preprint
Snippet Predictive systems, in particular machine learning algorithms, can take important, and sometimes legally binding, decisions about our everyday life. In most...
Journal of Open Source Software, 5(49), 1904 (2020) Predictive systems, in particular machine learning algorithms, can take important, and sometimes legally...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Computer Science - Artificial Intelligence
Computer Science - Computers and Society
Computer Science - Learning
Decisions
Machine learning
Predictions
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF5qg-DNJ77Zg0dj4-5muwgi9VGKYAlSobewTy3UpKZV7E_wX7uzTfUgeNwkl8yQmS_z-D6ETpg-54RRqLhbHTPW5rG0gsbcJokWKrUmkCQ99Hnvid0P02ED9Ze7MDBWuYyJIVCbUkONvEXasOUJ-fhq8haDahR0V5cSGrKWVjCXgWJsBUUEmLGaKLq-62ePP1UXwtseQ9NFezOQebVk9Tn6OCMksJ0KkLGLwqU_wTlknO46ijI5sdUGathiE62GQU093UJf3c4Ag55mAecL3MHZHNb_8aAsx6r8xB6E4kD5G-aAimcsC4NvLej6wqkrRxVEt1Nc60QseLrn4bEF0zmsh-k57oyf_fvPXl6neFTgrIKODsRGXJOcb6NB925w04trOYVYpiSNpQcqliTUJc4JwV2iCBHeg1K3gaSGU-NoQqSiNiWG-8SltNbOEackE1QZuoOaRVnYXYQF1yxNtJGWKUYlV9oS56ElNx5d-n-uPbQbTJhPFowZOVg3D9bdQ4dLq-b11zLNf327___tA7RGYP0AGjriEDVn1bs98qBgpo5rT38Dktm5WQ
  priority: 102
  providerName: ProQuest
Title FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness, Accountability and Transparency Algorithms in Predictive Systems
URI https://www.proquest.com/docview/2712096125
https://arxiv.org/abs/2209.03805
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1BS8MwFA7bvHgRRWXTOXLwaLEmaRa8TV0VYXPIhN1KkiZzMFtpp2wX7_5r89IOD-Kl0PJ6-RLe-17T73sInTN9xQmj8MXd6ICxPg-kETTgJgy1UJFJvUnSaMwfXtjjLJo1EN5qYWSxXnxW_sCqvCTEe5AKMCltOqIAYt6nWXU46a246vjfOMcx_aM_qdXXi3gf7dVEDw-qlTlADZMdou94MMUwDTNz4JTXeIAnGxDv42meL1W-xo5CYm_Y6__iyebYNfr4zsBUXriL5aKA3HSB6ykPlcv2xodVPuUg7tIbPFjOc9f3v76VeJHhSQHnMZDZcG1RfoSm8XB6-xDUwxACGZEokI5mGBJSG1orBLehIkQ4_KXug8UMp6mlIZGKmoik3JUdpbW2llglmaAqpceoleWZaSMsuGZRqFNpmGJUcqUNsY4Y8tRxQ9cxdVDbQ5i8V34XCaCbeHQ7qLtFNan3epmQPuhvgSmd_P_mKdolIByAoxjRRa1V8WHOXDlfqR5qivi-h3ZuhuPJc8-vsLuOvoY_TVul6A
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4BUUVvfSHS0uJDuXVhsb2OqYSq8IjCK4rQInFb-QmR6G7YpC35Cf1R_W_1OBt6QOqNo3etlTz2zsMz830An7nZFZQzvHF3JuG8IxLlJEuES1MjdeZsBEm6GIj-FT-9zq6X4M-iFwbLKhc6MSpqWxm8I9-hHezyRHv8bXyfIGsUZlcXFBqqoVaw-xFirGnsOHOzXyGEm-yfHIX93qK0d5wf9pOGZSBRGc0SFey3oynzqfdSCp9qSmVYmDIdxG4RzHqWUqWZy6gVQZ9rY4z31GvFJdOWhc8uQyssdy_Efq2D48Hw8vGSh4pOcNnZPJsascN2VP0w-rlNaQRXlcia14qPntiCaOB6r6A1VGNXv4YlV76BF7Eu1Ezewu9eNydI31ni-CvpkuEM0QZIXlV3unogweclEWE4lh2VN0SVlhw5pBHGUU-NalSmX0hDSzGHBZ_FaXNgdexGMzPSvbsJ4p7efp-QUUmGNSaQUBWTBlP9HeTPIdc1WCmr0q0DkcLwLDVWOa45U0IbR33wZIUNzmwI8dqwHkVYjOcAHQVKt4jSbcPGQqpF83NOin9H6f3_X2_Caj-_OC_OTwZnH-Alxc4HzCXJDViZ1j_cx-CPTPWnZtcJFM98zv4C5H32xQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FAT+Forensics%3A+A+Python+Toolbox+for+Implementing+and+Deploying+Fairness%2C+Accountability+and+Transparency+Algorithms+in+Predictive+Systems&rft.jtitle=arXiv.org&rft.au=Sokol%2C+Kacper&rft.au=Hepburn%2C+Alexander&rft.au=Poyiadzi%2C+Rafael&rft.au=Clifford%2C+Matthew&rft.date=2022-09-08&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2209.03805