Bayesian Decision Making in Groups is Hard

We study the computations that Bayesian agents undertake when exchanging opinions over a network. The agents act repeatedly on their private information and take myopic actions that maximize their expected utility according to a fully rational posterior belief. We show that such computations are NP-...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Hązła, Jan, Jadbabaie, Ali, Mossel, Elchanan, M Amin Rahimian
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 27.07.2019
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1705.04770

Cover

Abstract We study the computations that Bayesian agents undertake when exchanging opinions over a network. The agents act repeatedly on their private information and take myopic actions that maximize their expected utility according to a fully rational posterior belief. We show that such computations are NP-hard for two natural utility functions: one with binary actions, and another where agents reveal their posterior beliefs. In fact, we show that distinguishing between posteriors that are concentrated on different states of the world is NP-hard. Therefore, even approximating the Bayesian posterior beliefs is hard. We also describe a natural search algorithm to compute agents' actions, which we call elimination of impossible signals, and show that if the network is transitive, the algorithm can be modified to run in polynomial time.
AbstractList We study the computations that Bayesian agents undertake when exchanging opinions over a network. The agents act repeatedly on their private information and take myopic actions that maximize their expected utility according to a fully rational posterior belief. We show that such computations are NP-hard for two natural utility functions: one with binary actions, and another where agents reveal their posterior beliefs. In fact, we show that distinguishing between posteriors that are concentrated on different states of the world is NP-hard. Therefore, even approximating the Bayesian posterior beliefs is hard. We also describe a natural search algorithm to compute agents' actions, which we call elimination of impossible signals, and show that if the network is transitive, the algorithm can be modified to run in polynomial time.
Operations Research, 2021 We study the computations that Bayesian agents undertake when exchanging opinions over a network. The agents act repeatedly on their private information and take myopic actions that maximize their expected utility according to a fully rational posterior belief. We show that such computations are NP-hard for two natural utility functions: one with binary actions, and another where agents reveal their posterior beliefs. In fact, we show that distinguishing between posteriors that are concentrated on different states of the world is NP-hard. Therefore, even approximating the Bayesian posterior beliefs is hard. We also describe a natural search algorithm to compute agents' actions, which we call elimination of impossible signals, and show that if the network is transitive, the algorithm can be modified to run in polynomial time.
Author Hązła, Jan
Mossel, Elchanan
M Amin Rahimian
Jadbabaie, Ali
Author_xml – sequence: 1
  givenname: Jan
  surname: Hązła
  fullname: Hązła, Jan
– sequence: 2
  givenname: Ali
  surname: Jadbabaie
  fullname: Jadbabaie, Ali
– sequence: 3
  givenname: Elchanan
  surname: Mossel
  fullname: Mossel, Elchanan
– sequence: 4
  fullname: M Amin Rahimian
BackLink https://doi.org/10.48550/arXiv.1705.04770$$DView paper in arXiv
https://doi.org/10.1287/opre.2020.2000$$DView published paper (Access to full text may be restricted)
BookMark eNotj71OwzAURi0EEqX0AZiwxIaU9Prnxu4IBdpKRSzdo5vEQS7gBJsg-vaUlulbjj6dc8FOQxccY1cCcm0RYUrxx3_nwgDmoI2BEzaSSonMainP2SSlLQDIwkhENWK397RzyVPgD672yXeBP9ObD6_cB76I3dAn7hNfUmwu2VlL78lN_nfMNk-Pm_kyW78sVvO7dUYoMbMgKwta2aaolREkdaFbB-Ra1JVTAltBBVbWtlg4Zwh0rQ3ZetagBdKkxuz6eHsIKfvoPyjuyr-g8hC0J26ORB-7z8Glr3LbDTHsnUoJRs2UNQLVL9qgTXM
ContentType Paper
Journal Article
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
EPD
GOX
DOI 10.48550/arxiv.1705.04770
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv Mathematics
arXiv Statistics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1705_04770
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
EPD
GOX
ID FETCH-LOGICAL-a525-802b80438d6c371a2464fe0aef54be315f1a65b88f56ee7a04c47a8c9d580a4a3
IEDL.DBID GOX
IngestDate Tue Jul 22 21:58:40 EDT 2025
Mon Jun 30 09:38:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-802b80438d6c371a2464fe0aef54be315f1a65b88f56ee7a04c47a8c9d580a4a3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/1705.04770
PQID 2073938715
PQPubID 2050157
ParticipantIDs arxiv_primary_1705_04770
proquest_journals_2073938715
PublicationCentury 2000
PublicationDate 20190727
PublicationDateYYYYMMDD 2019-07-27
PublicationDate_xml – month: 07
  year: 2019
  text: 20190727
  day: 27
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.697644
SecondaryResourceType preprint
Snippet We study the computations that Bayesian agents undertake when exchanging opinions over a network. The agents act repeatedly on their private information and...
Operations Research, 2021 We study the computations that Bayesian agents undertake when exchanging opinions over a network. The agents act repeatedly on their...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Bayesian analysis
Computer Science - Computational Complexity
Computer Science - Learning
Computer Science - Multiagent Systems
Computer Science - Social and Information Networks
Decision making
Economic models
Expected utility
Mathematics - Statistics Theory
Polynomials
Search algorithms
Statistics - Theory
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aInjzSdUqe_AkpO7mnZPgoxah4qFCb8skm0Av29qtov_eJN3qQfCanCYZ5pt8k5kPoUteSWOsLLB0wYMZeI-NoB4XVciRtObgeexGHj-L0St7mvJpS7g17bfKTUxMgbqa28iRRyaEahrSe36zeMNRNSpWV1sJjW3UDUCto1er4eMPx0KEDBkzXRcz0-iua1h-zj4GcYbMIGcyShR309KfUJzwZbiHui-wcMt9tOXqA7STvmXa5hBd3cKXi22O2X2rhZONk3xUNquzRBs12azJYvn9CE2GD5O7EW7VDTBwwgMyEKNiGa4SlsoCCBPMuxyc58w4WnBfgOBGKc-FcxJyZpkEZXXFVQ4M6DHq1PPa9VAW3jhEWkNz5SnT0mpdaeW4hoC-3hFygnrJxnKxHmBRRvPLZP4J6m_MLlvnbcrfoz79f_sM7Yb8ITZBYSL7qLNavrvzgNErc5Eu4hsM647R
  priority: 102
  providerName: ProQuest
Title Bayesian Decision Making in Groups is Hard
URI https://www.proquest.com/docview/2073938715
https://arxiv.org/abs/1705.04770
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3BSgMxEB3aevEiikqrteTgSVjdzSab5Gh1axFaRSr0tkx2E-ilSLeKXvx2k-wWD-IlhzA5DBkybzK8NwCXvBJalyKJhHERzNDaSGepjZLKYSSlOFru2cizeTZ9ZY9LvuwA2XFhcPO5-mj0gXV947VermMmhCvKuw4oeDLv07JpTgYprtb-185hzLD152kN-WJyCAct0CO3zc0cQcesj-FqjF_G0xbJfTvbhszCOCiyWpPwDVSTVU18O_0EFpN8cTeN2mkFEXLK3UtPtfRttSorU5EgZRmzJkZjOdMmTbhNMONaSsszYwTGrGQCZakqLmNkmJ5CzxX8pg_E1SxUlDqNpU2ZEqVSlZKGK3TZ1BpKB9APPhZvjSBF4d0vgvsDGO7cLtpgrAsaZO9cZcTP_j95DvsOC3hCU0TFEHrbzbu5cPl2q0fQlZOHEeyN8_nzyyhcgVtn3_kPak2B1Q
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTwIxFH5BiNGba0BR56AXk8GZLtPpgZggEpAlxGDCbdKZaRMugAwu_Dj_m20Z9GDijWsnafLNa9_a9z6Aa5qyOE6Y7zKpTzARSrlxgJXrp9pH4pwKRU03cn8QtF_I05iOC_C16YUxzyo3OtEq6nSWmBy5yYRgjrV7T-_nr65hjTLV1Q2FhsipFdK6HTGWN3Z05epDh3BZvdPU8r5BqPU4emi7OcuAKyiiWkOjODTlsDRIMPMFIgFR0hNSURJL7FPli4DGYahoICUTHkkIE2HCUxp6ggist92BEsGE69iv1HgcDJ9_kjwoYNplx-tqqp0ddicWn5P3mhliU_MIMxzJJbv0xxZYA9c6gNJQzOXiEApyegS79l1okh3DbUOspOmzdJo5GY_Tt_xVzmTq2LxV5kwyx9T_T2C0DeCnUJzOprIMjg6yEEti7IXK_IaE85SHknKhzb-SCFWgbDFG8_UEjcjAjyz8ClQ3sKP89mTRr6zP_v98BXvtUb8X9TqD7jnsa2fGdGS5iFWhuFy8yQvtMCzjy1wsDkRbPgjfnSrRIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Decision+Making+in+Groups+is+Hard&rft.jtitle=arXiv.org&rft.au=H%C4%85z%C5%82a%2C+Jan&rft.au=Jadbabaie%2C+Ali&rft.au=Mossel%2C+Elchanan&rft.au=M+Amin+Rahimian&rft.date=2019-07-27&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1705.04770