Adaptive Visual Servo Control for Autonomous Robots
This paper focuses on an adaptive and fault-tolerant vision-guided robotic system that enables to choose the most appropriate control action if partial or complete failure of the vision system in the short term occurs. Moreover, the autonomous robotic system takes physical and operational constraint...
        Saved in:
      
    
          | Published in | arXiv.org | 
|---|---|
| Main Author | |
| Format | Paper Journal Article | 
| Language | English | 
| Published | 
        Ithaca
          Cornell University Library, arXiv.org
    
        05.09.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2331-8422 | 
| DOI | 10.48550/arxiv.2209.02156 | 
Cover
| Abstract | This paper focuses on an adaptive and fault-tolerant vision-guided robotic system that enables to choose the most appropriate control action if partial or complete failure of the vision system in the short term occurs. Moreover, the autonomous robotic system takes physical and operational constraints into account to perform the demands of a specific visual servoing task in a way to minimize a cost function. A hierarchical control architecture is developed based on interwoven integration of a variant of the iterative closest point (ICP) image registration, a constrained noise-adaptive Kalman filter, a fault detection logic and recovery, together with a constrained optimal path planner. The dynamic estimator estimates unknown states and uncertain parameters required for motion prediction while imposing a set of inequality constraints for consistency of the estimation process and adjusting adaptively the Kalman filter parameters in the face of unexpected vision errors. It is followed by the implementation of a fault recovery strategy based on a fault detection logic that monitors the health of the visual feedback using the metric fit error of the image registration. Subsequently, the estimated/predicted pose and parameters are passed to an optimal path planner in order to bring the robot end-effector to the grasping point of a moving target as quickly as possible subject to multiple constraints such as acceleration limit, smooth capture, and line-of-sight angle of the target. | 
    
|---|---|
| AbstractList | This paper focuses on an adaptive and fault-tolerant vision-guided robotic system that enables to choose the most appropriate control action if partial or complete failure of the vision system in the short term occurs. Moreover, the autonomous robotic system takes physical and operational constraints into account to perform the demands of a specific visual servoing task in a way to minimize a cost function. A hierarchical control architecture is developed based on interwoven integration of a variant of the iterative closest point (ICP) image registration, a constrained noise-adaptive Kalman filter, a fault detection logic and recovery, together with a constrained optimal path planner. The dynamic estimator estimates unknown states and uncertain parameters required for motion prediction while imposing a set of inequality constraints for consistency of the estimation process and adjusting adaptively the Kalman filter parameters in the face of unexpected vision errors. It is followed by the implementation of a fault recovery strategy based on a fault detection logic that monitors the health of the visual feedback using the metric fit error of the image registration. Subsequently, the estimated/predicted pose and parameters are passed to an optimal path planner in order to bring the robot end-effector to the grasping point of a moving target as quickly as possible subject to multiple constraints such as acceleration limit, smooth capture, and line-of-sight angle of the target. This paper focuses on an adaptive and fault-tolerant vision-guided robotic system that enables to choose the most appropriate control action if partial or complete failure of the vision system in the short term occurs. Moreover, the autonomous robotic system takes physical and operational constraints into account to perform the demands of a specific visual servoing task in a way to minimize a cost function. A hierarchical control architecture is developed based on interwoven integration of a variant of the iterative closest point (ICP) image registration, a constrained noise-adaptive Kalman filter, a fault detection logic and recovery, together with a constrained optimal path planner. The dynamic estimator estimates unknown states and uncertain parameters required for motion prediction while imposing a set of inequality constraints for consistency of the estimation process and adjusting adaptively the Kalman filter parameters in the face of unexpected vision errors. It is followed by the implementation of a fault recovery strategy based on a fault detection logic that monitors the health of the visual feedback using the metric fit error of the image registration. Subsequently, the estimated/predicted pose and parameters are passed to an optimal path planner in order to bring the robot end-effector to the grasping point of a moving target as quickly as possible subject to multiple constraints such as acceleration limit, smooth capture, and line-of-sight angle of the target.  | 
    
| Author | Aghili, Farhad | 
    
| Author_xml | – sequence: 1 givenname: Farhad surname: Aghili fullname: Aghili, Farhad  | 
    
| BackLink | https://doi.org/10.1109/TMECH.2021.3087729$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.2209.02156$$DView paper in arXiv  | 
    
| BookMark | eNotj0FLw0AUhBdRsNb-AE8GPCe-fZtNNsdQtAoFQYvXsOnuQkqaF3eToP_e2Hqawwwz892wy446y9gdhyRVUsKj9t_NlCBCkQBymV2wBQrBY5UiXrNVCAcAwCxHKcWCidLofmgmG302YdRt9GH9RNGausFTGznyUTkO1NGRxhC9U01DuGVXTrfBrv51yXbPT7v1S7x927yuy22sJcpYZkoKkxunAec5hcqAcKZGzp3ZW2NhNkEZYW2BfK-FS61VXENRcxRWiiW7P9eeiKreN0ftf6o_supENicezone09dow1AdaPTd_KnCnHMOMp8hfwERclIa | 
    
| ContentType | Paper Journal Article  | 
    
| Copyright | 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0  | 
    
| Copyright_xml | – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0  | 
    
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY GOX  | 
    
| DOI | 10.48550/arxiv.2209.02156 | 
    
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Computer Science arXiv.org  | 
    
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection  | 
    
| DatabaseTitleList | Publicly Available Content Database | 
    
| Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 2331-8422 | 
    
| ExternalDocumentID | 2209_02156 | 
    
| Genre | Working Paper/Pre-Print | 
    
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY GOX  | 
    
| ID | FETCH-LOGICAL-a525-56853d7dfa02267828d03fdb211fdcede0d7d08d3ee921ca3f4ee81a09b123e53 | 
    
| IEDL.DBID | 8FG | 
    
| IngestDate | Wed Jul 23 00:23:56 EDT 2025 Mon Jun 30 09:20:51 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a525-56853d7dfa02267828d03fdb211fdcede0d7d08d3ee921ca3f4ee81a09b123e53 | 
    
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2711105755?pq-origsite=%requestingapplication% | 
    
| PQID | 2711105755 | 
    
| PQPubID | 2050157 | 
    
| ParticipantIDs | arxiv_primary_2209_02156 proquest_journals_2711105755  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220905 2022-09-05  | 
    
| PublicationDateYYYYMMDD | 2022-09-05 | 
    
| PublicationDate_xml | – month: 09 year: 2022 text: 20220905 day: 05  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Ithaca | 
    
| PublicationPlace_xml | – name: Ithaca | 
    
| PublicationTitle | arXiv.org | 
    
| PublicationYear | 2022 | 
    
| Publisher | Cornell University Library, arXiv.org | 
    
| Publisher_xml | – name: Cornell University Library, arXiv.org | 
    
| SSID | ssj0002672553 | 
    
| Score | 1.8088992 | 
    
| SecondaryResourceType | preprint | 
    
| Snippet | This paper focuses on an adaptive and fault-tolerant vision-guided robotic system that enables to choose the most appropriate control action if partial or... This paper focuses on an adaptive and fault-tolerant vision-guided robotic system that enables to choose the most appropriate control action if partial or...  | 
    
| SourceID | arxiv proquest  | 
    
| SourceType | Open Access Repository Aggregation Database  | 
    
| SubjectTerms | Adaptive control Computer Science - Robotics Computer Science - Systems and Control Constraints Cost function End effectors Fault detection Fault tolerance Grasping (robotics) Image registration Kalman filters Moving targets Parameter uncertainty Recovery Robot control Servocontrol Three dimensional models Vision systems Visual control Visual tasks  | 
    
| SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PS8MwFH5sO3kRRWXTKTl4Dab50SbHMhxDUEGm7FaSJoVd7Fg78c_3pe3wIF7z45CX5H3fS_K-ANwziz7PS0GZSyyVxhpqtU2oY1qK1IfUq5jv_PySrt7l00ZtRkCOuTB2_7396vWBXfPAeZSTRFRKxzBGohCTeV83_eVkJ8U1tP9thxyzK_rjWju8WJ7B6UD0SN7PzDmMwucFiNzbXXQw5GPbHLA6btWaLPr34gQJJMkPbcwzwICcvNWubptLWC8f14sVHb4toFZxRVWKCOgzX1mER4QCrj0TlXcYaVW-DD4wrGTaixAMT0orKhmCTiwzDlEkKHEFE4z8wxSIiWpZiOlJllqpS-mMcK5k3PB4lqvZDKbdYItdr0xRRDsUnR1mMD-OvxhWZVPwDD1bJGjq-v-eN3DC4xP_eGmi5jBp94dwi8DburvO-j9xooFb priority: 102 providerName: Cornell University  | 
    
| Title | Adaptive Visual Servo Control for Autonomous Robots | 
    
| URI | https://www.proquest.com/docview/2711105755 https://arxiv.org/abs/2209.02156  | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6IXjzk6lz9OA1Lk2aNj3JHPtA2Bxjym4laVIYyFrXTjz5t_uSdXoQvASanPKa_H4v7xOhOyIB83TAMFG-xEEsYyyF9LEiImChNqHmNt95Mg3HL8HTki9rg1tZh1XuMdEBtc5TayPv0ghupVUu-EPxjm3XKOtdrVtoHKImEHVsT7UYjn5sLDSMQGNmO2emK93VlZvP1cc9pbZMJbCdzaB2U3-g2PHL8AQ1Z7Iwm1N0YNZn6MiFZablOWI9LQsLSN7rqtzKN89e7dzr7-LLPVA4vd62snkJ8ID35rnKq_ICLYaDRX-M6zYHWHLKMQ-BMXWkMwl0CtRBhSYs0wpeZplOjTYEFonQzJiY-qlkWWCM8CWJFbCO4ewSNdb52rSQF9vqWqAD-FEoA5EGKmZKpYTG1Np-BblCLbfZpNhVskisHBInhyvU3u8_qU9xmfzK_Pr_5Rt0TG1agHW08DZqVJutuQWyrlTH_ZEOaj4OprM5fI2elzBOvgbfBHWV1A | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4QiNGbz6Ci9qDHynZ3W9oDMYgQkEcIQcOt2e0uCYmhSMHHj_O_OVOKHky8ce0mTXZm95vXfjOEXFMJmKcFt6lypC0CGdjSl46tqC-4p42nXeQ79_pe60k8jt1xjnxtuDD4rHKDiSlQ6zjCHHmZVeBWonPh3s1fbZwahdXVzQgNmY1W0NW0xVhG7OiYz3cI4ZJq-wH0fcNYszGqt-xsyoAtXebargcGS1f0RII1A-RmvqZ8ohUERhMdGW0oLFJfc2MC5kSST4QxviNpoAD0DQ6NAAtQEFwEEPsV7hv9wfAnyQM_BJedr6upae-wslx8TN9uGcM-mWBukcKdfvpjC1ID19wnhYGcm8UByZnZIdlJ34VGyRHhNS3niIjW8zRZyRcLsSW26usH7hZ4vFZttURiRLxKrGGs4mVyTEbbkMAJyc_imSkSK8D2XuCEOBVPCj8SKuBKRZQFDJPPPj0lxXSz4XzdSiNEOYSpHE5JabP_MLtGSfir9LP_l6_IbmvU64bddr9zTvYYchSw6uOWSH65WJkL8ByW6jLTj0XCLZ-Ib6qU1Vk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Visual+Servo+Control+for+Autonomous+Robots&rft.jtitle=arXiv.org&rft.au=Aghili%2C+Farhad&rft.date=2022-09-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2209.02156 |