Adaptive Visual Servo Control for Autonomous Robots

This paper focuses on an adaptive and fault-tolerant vision-guided robotic system that enables to choose the most appropriate control action if partial or complete failure of the vision system in the short term occurs. Moreover, the autonomous robotic system takes physical and operational constraint...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Aghili, Farhad
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 05.09.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2209.02156

Cover

Abstract This paper focuses on an adaptive and fault-tolerant vision-guided robotic system that enables to choose the most appropriate control action if partial or complete failure of the vision system in the short term occurs. Moreover, the autonomous robotic system takes physical and operational constraints into account to perform the demands of a specific visual servoing task in a way to minimize a cost function. A hierarchical control architecture is developed based on interwoven integration of a variant of the iterative closest point (ICP) image registration, a constrained noise-adaptive Kalman filter, a fault detection logic and recovery, together with a constrained optimal path planner. The dynamic estimator estimates unknown states and uncertain parameters required for motion prediction while imposing a set of inequality constraints for consistency of the estimation process and adjusting adaptively the Kalman filter parameters in the face of unexpected vision errors. It is followed by the implementation of a fault recovery strategy based on a fault detection logic that monitors the health of the visual feedback using the metric fit error of the image registration. Subsequently, the estimated/predicted pose and parameters are passed to an optimal path planner in order to bring the robot end-effector to the grasping point of a moving target as quickly as possible subject to multiple constraints such as acceleration limit, smooth capture, and line-of-sight angle of the target.
AbstractList This paper focuses on an adaptive and fault-tolerant vision-guided robotic system that enables to choose the most appropriate control action if partial or complete failure of the vision system in the short term occurs. Moreover, the autonomous robotic system takes physical and operational constraints into account to perform the demands of a specific visual servoing task in a way to minimize a cost function. A hierarchical control architecture is developed based on interwoven integration of a variant of the iterative closest point (ICP) image registration, a constrained noise-adaptive Kalman filter, a fault detection logic and recovery, together with a constrained optimal path planner. The dynamic estimator estimates unknown states and uncertain parameters required for motion prediction while imposing a set of inequality constraints for consistency of the estimation process and adjusting adaptively the Kalman filter parameters in the face of unexpected vision errors. It is followed by the implementation of a fault recovery strategy based on a fault detection logic that monitors the health of the visual feedback using the metric fit error of the image registration. Subsequently, the estimated/predicted pose and parameters are passed to an optimal path planner in order to bring the robot end-effector to the grasping point of a moving target as quickly as possible subject to multiple constraints such as acceleration limit, smooth capture, and line-of-sight angle of the target.
This paper focuses on an adaptive and fault-tolerant vision-guided robotic system that enables to choose the most appropriate control action if partial or complete failure of the vision system in the short term occurs. Moreover, the autonomous robotic system takes physical and operational constraints into account to perform the demands of a specific visual servoing task in a way to minimize a cost function. A hierarchical control architecture is developed based on interwoven integration of a variant of the iterative closest point (ICP) image registration, a constrained noise-adaptive Kalman filter, a fault detection logic and recovery, together with a constrained optimal path planner. The dynamic estimator estimates unknown states and uncertain parameters required for motion prediction while imposing a set of inequality constraints for consistency of the estimation process and adjusting adaptively the Kalman filter parameters in the face of unexpected vision errors. It is followed by the implementation of a fault recovery strategy based on a fault detection logic that monitors the health of the visual feedback using the metric fit error of the image registration. Subsequently, the estimated/predicted pose and parameters are passed to an optimal path planner in order to bring the robot end-effector to the grasping point of a moving target as quickly as possible subject to multiple constraints such as acceleration limit, smooth capture, and line-of-sight angle of the target.
Author Aghili, Farhad
Author_xml – sequence: 1
  givenname: Farhad
  surname: Aghili
  fullname: Aghili, Farhad
BackLink https://doi.org/10.1109/TMECH.2021.3087729$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2209.02156$$DView paper in arXiv
BookMark eNotj0FLw0AUhBdRsNb-AE8GPCe-fZtNNsdQtAoFQYvXsOnuQkqaF3eToP_e2Hqawwwz892wy446y9gdhyRVUsKj9t_NlCBCkQBymV2wBQrBY5UiXrNVCAcAwCxHKcWCidLofmgmG302YdRt9GH9RNGausFTGznyUTkO1NGRxhC9U01DuGVXTrfBrv51yXbPT7v1S7x927yuy22sJcpYZkoKkxunAec5hcqAcKZGzp3ZW2NhNkEZYW2BfK-FS61VXENRcxRWiiW7P9eeiKreN0ftf6o_supENicezone09dow1AdaPTd_KnCnHMOMp8hfwERclIa
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2209.02156
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2209_02156
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a525-56853d7dfa02267828d03fdb211fdcede0d7d08d3ee921ca3f4ee81a09b123e53
IEDL.DBID 8FG
IngestDate Wed Jul 23 00:23:56 EDT 2025
Mon Jun 30 09:20:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-56853d7dfa02267828d03fdb211fdcede0d7d08d3ee921ca3f4ee81a09b123e53
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2711105755?pq-origsite=%requestingapplication%
PQID 2711105755
PQPubID 2050157
ParticipantIDs arxiv_primary_2209_02156
proquest_journals_2711105755
PublicationCentury 2000
PublicationDate 20220905
2022-09-05
PublicationDateYYYYMMDD 2022-09-05
PublicationDate_xml – month: 09
  year: 2022
  text: 20220905
  day: 05
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8088992
SecondaryResourceType preprint
Snippet This paper focuses on an adaptive and fault-tolerant vision-guided robotic system that enables to choose the most appropriate control action if partial or...
This paper focuses on an adaptive and fault-tolerant vision-guided robotic system that enables to choose the most appropriate control action if partial or...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Adaptive control
Computer Science - Robotics
Computer Science - Systems and Control
Constraints
Cost function
End effectors
Fault detection
Fault tolerance
Grasping (robotics)
Image registration
Kalman filters
Moving targets
Parameter uncertainty
Recovery
Robot control
Servocontrol
Three dimensional models
Vision systems
Visual control
Visual tasks
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PS8MwFH5sO3kRRWXTKTl4Dab50SbHMhxDUEGm7FaSJoVd7Fg78c_3pe3wIF7z45CX5H3fS_K-ANwziz7PS0GZSyyVxhpqtU2oY1qK1IfUq5jv_PySrt7l00ZtRkCOuTB2_7396vWBXfPAeZSTRFRKxzBGohCTeV83_eVkJ8U1tP9thxyzK_rjWju8WJ7B6UD0SN7PzDmMwucFiNzbXXQw5GPbHLA6btWaLPr34gQJJMkPbcwzwICcvNWubptLWC8f14sVHb4toFZxRVWKCOgzX1mER4QCrj0TlXcYaVW-DD4wrGTaixAMT0orKhmCTiwzDlEkKHEFE4z8wxSIiWpZiOlJllqpS-mMcK5k3PB4lqvZDKbdYItdr0xRRDsUnR1mMD-OvxhWZVPwDD1bJGjq-v-eN3DC4xP_eGmi5jBp94dwi8DburvO-j9xooFb
  priority: 102
  providerName: Cornell University
Title Adaptive Visual Servo Control for Autonomous Robots
URI https://www.proquest.com/docview/2711105755
https://arxiv.org/abs/2209.02156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6IXjzk6lz9OA1Lk2aNj3JHPtA2Bxjym4laVIYyFrXTjz5t_uSdXoQvASanPKa_H4v7xOhOyIB83TAMFG-xEEsYyyF9LEiImChNqHmNt95Mg3HL8HTki9rg1tZh1XuMdEBtc5TayPv0ghupVUu-EPxjm3XKOtdrVtoHKImEHVsT7UYjn5sLDSMQGNmO2emK93VlZvP1cc9pbZMJbCdzaB2U3-g2PHL8AQ1Z7Iwm1N0YNZn6MiFZablOWI9LQsLSN7rqtzKN89e7dzr7-LLPVA4vd62snkJ8ID35rnKq_ICLYaDRX-M6zYHWHLKMQ-BMXWkMwl0CtRBhSYs0wpeZplOjTYEFonQzJiY-qlkWWCM8CWJFbCO4ewSNdb52rSQF9vqWqAD-FEoA5EGKmZKpYTG1Np-BblCLbfZpNhVskisHBInhyvU3u8_qU9xmfzK_Pr_5Rt0TG1agHW08DZqVJutuQWyrlTH_ZEOaj4OprM5fI2elzBOvgbfBHWV1A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4QiNGbz6Ci9qDHynZ3W9oDMYgQkEcIQcOt2e0uCYmhSMHHj_O_OVOKHky8ce0mTXZm95vXfjOEXFMJmKcFt6lypC0CGdjSl46tqC-4p42nXeQ79_pe60k8jt1xjnxtuDD4rHKDiSlQ6zjCHHmZVeBWonPh3s1fbZwahdXVzQgNmY1W0NW0xVhG7OiYz3cI4ZJq-wH0fcNYszGqt-xsyoAtXebargcGS1f0RII1A-RmvqZ8ohUERhMdGW0oLFJfc2MC5kSST4QxviNpoAD0DQ6NAAtQEFwEEPsV7hv9wfAnyQM_BJedr6upae-wslx8TN9uGcM-mWBukcKdfvpjC1ID19wnhYGcm8UByZnZIdlJ34VGyRHhNS3niIjW8zRZyRcLsSW26usH7hZ4vFZttURiRLxKrGGs4mVyTEbbkMAJyc_imSkSK8D2XuCEOBVPCj8SKuBKRZQFDJPPPj0lxXSz4XzdSiNEOYSpHE5JabP_MLtGSfir9LP_l6_IbmvU64bddr9zTvYYchSw6uOWSH65WJkL8ByW6jLTj0XCLZ-Ib6qU1Vk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Visual+Servo+Control+for+Autonomous+Robots&rft.jtitle=arXiv.org&rft.au=Aghili%2C+Farhad&rft.date=2022-09-05&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2209.02156