Binary-Tree Encoding for Uniform Binary Sources in Index Modulation Systems

The problem of designing bit-to-pattern mappings and power allocation schemes for orthogonal frequency-division multiplexing (OFDM) systems that employ subcarrier index modulation (IM) is considered. We assume the binary source conveys a stream of independent, uniformly distributed bits to the patte...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Coon, Justin P, Mihai-Alin Badiu, Liu, Ye, Yarkin, Ferhat, Dang, Shuping
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 07.01.2019
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1901.01736

Cover

Abstract The problem of designing bit-to-pattern mappings and power allocation schemes for orthogonal frequency-division multiplexing (OFDM) systems that employ subcarrier index modulation (IM) is considered. We assume the binary source conveys a stream of independent, uniformly distributed bits to the pattern mapper, which introduces a constraint on the pattern transmission probability distribution that can be quantified using a binary tree formalism. Under this constraint, we undertake the task of maximizing the achievable rate subject to the availability of channel knowledge at the transmitter. The optimization variables are the pattern probability distribution (i.e., the bit-to-pattern mapping) and the transmit powers allocated to active subcarriers. To solve the problem, we first consider the relaxed problem where pattern probabilities are allowed to take any values in the interval [0,1] subject to a sum probability constraint. We develop (approximately) optimal solutions to the relaxed problem by using new bounds and asymptotic results, and then use a novel heuristic algorithm to project the relaxed solution onto a point in the feasible set of the constrained problem. Numerical analysis shows that this approach is capable of achieving the maximum mutual information for the relaxed problem in low and high-SNR regimes and offers noticeable benefits in terms of achievable rate relative to a conventional OFDM-IM benchmark.
AbstractList The problem of designing bit-to-pattern mappings and power allocation schemes for orthogonal frequency-division multiplexing (OFDM) systems that employ subcarrier index modulation (IM) is considered. We assume the binary source conveys a stream of independent, uniformly distributed bits to the pattern mapper, which introduces a constraint on the pattern transmission probability distribution that can be quantified using a binary tree formalism. Under this constraint, we undertake the task of maximizing the achievable rate subject to the availability of channel knowledge at the transmitter. The optimization variables are the pattern probability distribution (i.e., the bit-to-pattern mapping) and the transmit powers allocated to active subcarriers. To solve the problem, we first consider the relaxed problem where pattern probabilities are allowed to take any values in the interval [0,1] subject to a sum probability constraint. We develop (approximately) optimal solutions to the relaxed problem by using new bounds and asymptotic results, and then use a novel heuristic algorithm to project the relaxed solution onto a point in the feasible set of the constrained problem. Numerical analysis shows that this approach is capable of achieving the maximum mutual information for the relaxed problem in low and high-SNR regimes and offers noticeable benefits in terms of achievable rate relative to a conventional OFDM-IM benchmark.
The problem of designing bit-to-pattern mappings and power allocation schemes for orthogonal frequency-division multiplexing (OFDM) systems that employ subcarrier index modulation (IM) is considered. We assume the binary source conveys a stream of independent, uniformly distributed bits to the pattern mapper, which introduces a constraint on the pattern transmission probability distribution that can be quantified using a binary tree formalism. Under this constraint, we undertake the task of maximizing the achievable rate subject to the availability of channel knowledge at the transmitter. The optimization variables are the pattern probability distribution (i.e., the bit-to-pattern mapping) and the transmit powers allocated to active subcarriers. To solve the problem, we first consider the relaxed problem where pattern probabilities are allowed to take any values in the interval [0,1] subject to a sum probability constraint. We develop (approximately) optimal solutions to the relaxed problem by using new bounds and asymptotic results, and then use a novel heuristic algorithm to project the relaxed solution onto a point in the feasible set of the constrained problem. Numerical analysis shows that this approach is capable of achieving the maximum mutual information for the relaxed problem in low and high-SNR regimes and offers noticeable benefits in terms of achievable rate relative to a conventional OFDM-IM benchmark.
Author Dang, Shuping
Liu, Ye
Mihai-Alin Badiu
Coon, Justin P
Yarkin, Ferhat
Author_xml – sequence: 1
  givenname: Justin
  surname: Coon
  middlename: P
  fullname: Coon, Justin P
– sequence: 2
  fullname: Mihai-Alin Badiu
– sequence: 3
  givenname: Ye
  surname: Liu
  fullname: Liu, Ye
– sequence: 4
  givenname: Ferhat
  surname: Yarkin
  fullname: Yarkin, Ferhat
– sequence: 5
  givenname: Shuping
  surname: Dang
  fullname: Dang, Shuping
BackLink https://doi.org/10.1109/JSTSP.2019.2914531$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.1901.01736$$DView paper in arXiv
BookMark eNotj0tPAjEUhRujiYj8AFc2cT14-xqmSyWgRIwLcD3p9GFKoMUWDPx7K5ib3LP5cvKdG3QZYrAI3REY8kYIeFTp4H-GRAIZAhmx-gL1KGOkajil12iQ8woAaD2iQrAeenv2QaVjtUzW4knQ0fjwhV1M-DP4Eht8BvAi7pO2GfuAZ8HYA36PZr9WOx8DXhzzzm7yLbpyap3t4D_7aDmdLMev1fzjZTZ-mldKUFFxSR0YaSUH1slaG6UYB2LBdsY4V57oOklBuHLCyhq05U5DI6AZGa1ZH92fa09L223ymyLY_i1uT4sL8XAmtil-723etatiH4pTS0ldBBoOgv0Cks1bRw
ContentType Paper
Journal Article
Copyright 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
GOX
DOI 10.48550/arxiv.1901.01736
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1901_01736
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
AKZ
GOX
ID FETCH-LOGICAL-a525-492f0d9e9403b96cdaa3401e0ebddffbdd5bb9205f5f55e960ce4fc085087dcc3
IEDL.DBID GOX
IngestDate Tue Jul 22 21:59:04 EDT 2025
Mon Jun 30 09:20:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-492f0d9e9403b96cdaa3401e0ebddffbdd5bb9205f5f55e960ce4fc085087dcc3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/1901.01736
PQID 2164928405
PQPubID 2050157
ParticipantIDs arxiv_primary_1901_01736
proquest_journals_2164928405
PublicationCentury 2000
PublicationDate 20190107
2019-01-07
PublicationDateYYYYMMDD 2019-01-07
PublicationDate_xml – month: 01
  year: 2019
  text: 20190107
  day: 07
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2019
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.678862
SecondaryResourceType preprint
Snippet The problem of designing bit-to-pattern mappings and power allocation schemes for orthogonal frequency-division multiplexing (OFDM) systems that employ...
The problem of designing bit-to-pattern mappings and power allocation schemes for orthogonal frequency-division multiplexing (OFDM) systems that employ...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Computer Science - Information Theory
Feasibility studies
Frequency division multiplexing
Heuristic methods
Mapping
Mathematics - Information Theory
Modulation
Numerical analysis
Optimization
Orthogonal Frequency Division Multiplexing
Power management
Probability
Probability distribution
Subcarriers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwGA1zRfDmTzadkoPXbF3bNM1BhMnGVDaGTtit5Cfs0s5uin--X7JWD4IUemgKpV_C916-JO8hdEs5F5kxlhjJYIKSMEEA1xWJhM300MaZ9mYws3k6fUueVnTVQvPmLIzbVtnkRJ-odalcjXwQAa_nkEtDer95J841yq2uNhYaorZW0HdeYuwABZFTxmqjYDSeL15-qi5RyoBDx_vlTS_mNRDV1_qz73CxD6PTSTUH_tGf5OwRZ3KMgoXYmOoEtUxxig79Rk21PUPPI3-AliwrY_C4UKXDHgzMEwN7dAQU71_Ar74qv8XrAj86RUQ8K3Vt1YVrmfJztJyMlw9TUhsiEEEjSuD_bai54UkYS54qLUQM0yMTGqm1tXCjUvIopBYuamBuokxilROly5hWKr5A7aIsTAfhmKqUKYD7ZCgTxig3SWjlkKXwnTQWrIs6Pgj5Zq95kbv45D4-XdRr4pLX432b__bO5f_NV-gIKAf3RQzWQ-1d9WGuAdZ38qbuq2_Ji6I9
  priority: 102
  providerName: ProQuest
Title Binary-Tree Encoding for Uniform Binary Sources in Index Modulation Systems
URI https://www.proquest.com/docview/2164928405
https://arxiv.org/abs/1901.01736
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NSwMxEB3aevEiikqrteTgNbrdTTabo5WtVWkVrdDbkk_oZSttFU_-dmezWzyIBHIIEwKTkPcmYd4AXHIpVeacp04LDFCYUBRx3dBY-cwOfZLZUAxmOksnb-xhwRctILtcGLX-Wn7W-sB6c12h1RWemSRtQxuJQpXM-7SoPyeDFFdj_2uHHDMM_blaA16MD-GgIXrkpt6ZI2i58hgeRyH9lc7XzpG8NKsKOQjyRoLcr6KPpDYgr-FNfUOWJbmv9AzJdGWbQlukERk_gfk4n99OaFPOgCoec8pk7CMrnWRRomVqrFIJBjcuctpa77HjWss44h4bdxhZGMe8qSTlMmGNSU6hU65K1wWScJMKg2DNhpoJwaVjkddDkeI6aaJED7rBCcV7rVhRVP4pgn960N_5pWhO66aIMWaSiFMRP_t_5jnsI1mQ4flB9KGzXX-4CwTkrR5AOxvfDWBvlM-eXwZhj7Cffuc_HR-Ovg
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgE4IbTzEYkAMcC12bNMsBIQ02bYxNEwyJW5XmIe3SjY3nj-O_4WQdHJC4TZV6aKtUchL7sx1_BjhlQsi6MTYwGUcHhXIZoF1XQSRtXddsXNe-GUyvn7Qf6e0Te1qBr0UtjDtWudCJXlHrsXIx8osIcb1AXRqyq8lz4LpGuezqooWGLFor6EtPMVYUdnTN5zu6cLPLzg3O91kUtZrD63ZQdBkIJItYgIPaUAsjaBhnIlFayhh9DhOaTGtr8cayTEQhs3gxg4BfGWqVY3qrc61UjMOuQpnGVKDvV240-4P7nyBPlHCE7PE8m-q5wy7k9GP0du7M8DluBscMXfaP_tgCb-Bam1AeyImZbsGKybdhzZ8LVbMd6DZ8vW4wnBpDmrkaO1NHEOgSBKsO75L5B-TBJwFmZJSTjiNgJL2xLjqDkYIVfReGy5DMHpTycW72gcRMJVwhuqC1jHLOhKGhzWo8wf8kseQV2PdCSCdzio3UySf18qlAdSGXtNhes_R3MRz8__oE1tvD3l161-l3D2ED0Y7w8RNehdLL9NUcIaJ4yY6LeSOQLnmlfAODMOBP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binary-Tree+Encoding+for+Uniform+Binary+Sources+in+Index+Modulation+Systems&rft.jtitle=arXiv.org&rft.au=Coon%2C+Justin+P&rft.au=Mihai-Alin+Badiu&rft.au=Liu%2C+Ye&rft.au=Yarkin%2C+Ferhat&rft.date=2019-01-07&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1901.01736