A likelihood-based approach for multivariate categorical response regression in high dimensions
We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which predictors are irrelevant, which predictors only affect the marginal distributions of the bivariate response, and which predictors affect both the ma...
Saved in:
| Published in | arXiv.org |
|---|---|
| Main Authors | , |
| Format | Paper Journal Article |
| Language | English |
| Published |
Ithaca
Cornell University Library, arXiv.org
23.01.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2331-8422 |
| DOI | 10.48550/arxiv.2007.07953 |
Cover
| Abstract | We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which predictors are irrelevant, which predictors only affect the marginal distributions of the bivariate response, and which predictors affect both the marginal distributions and log odds ratios. To compute our estimator, we propose an efficient first order algorithm which we extend to settings where some subjects have only one response variable measured, i.e., the semi-supervised setting. We derive an asymptotic error bound which illustrates the performance of our estimator in high-dimensional settings. Generalizations to the multivariate categorical response regression model are proposed. Finally, simulation studies and an application in pan-cancer risk prediction demonstrate the usefulness of our method in terms of interpretability and prediction accuracy. An R package implementing the proposed method is available for download at github.com/ajmolstad/BvCategorical. |
|---|---|
| AbstractList | We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which predictors are irrelevant, which predictors only affect the marginal distributions of the bivariate response, and which predictors affect both the marginal distributions and log odds ratios. To compute our estimator, we propose an efficient first order algorithm which we extend to settings where some subjects have only one response variable measured, i.e., the semi-supervised setting. We derive an asymptotic error bound which illustrates the performance of our estimator in high-dimensional settings. Generalizations to the multivariate categorical response regression model are proposed. Finally, simulation studies and an application in pan-cancer risk prediction demonstrate the usefulness of our method in terms of interpretability and prediction accuracy. An R package implementing the proposed method is available for download at github.com/ajmolstad/BvCategorical. We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which predictors are irrelevant, which predictors only affect the marginal distributions of the bivariate response, and which predictors affect both the marginal distributions and log odds ratios. To compute our estimator, we propose an efficient first order algorithm which we extend to settings where some subjects have only one response variable measured, i.e., the semi-supervised setting. We derive an asymptotic error bound which illustrates the performance of our estimator in high-dimensional settings. Generalizations to the multivariate categorical response regression model are proposed. Finally, simulation studies and an application in pan-cancer risk prediction demonstrate the usefulness of our method in terms of interpretability and prediction accuracy. An R package implementing the proposed method is available for download at github.com/ajmolstad/BvCategorical. |
| Author | Molstad, Aaron J Rothman, Adam J |
| Author_xml | – sequence: 1 givenname: Aaron surname: Molstad middlename: J fullname: Molstad, Aaron J – sequence: 2 givenname: Adam surname: Rothman middlename: J fullname: Rothman, Adam J |
| BackLink | https://doi.org/10.48550/arXiv.2007.07953$$DView paper in arXiv https://doi.org/10.1080/01621459.2021.1999819$$DView published paper (Access to full text may be restricted) |
| BookMark | eNotUMtqwzAQFKWFpmk-oKcKera71sOPYwh9QaCX3I1srW2ljuRKSWj_vkrSy84wDMPO3JFr6ywS8pBBKkop4Vn5H3NMGUCRQlFJfkVmjPMsKQVjt2QRwhYAWF4wKfmM1Es6mi8czeCcThoVUFM1Td6pdqCd83R3GPfmqLxRe6RtPL3zplUj9RgmZwNG0kcejLPUWDqYfqDa7NCelHBPbjo1Blz845xsXl82q_dk_fn2sVquEyWZSFBmOea8VKzQGRa6ZFwXsoJWNky0AKIRDQfJFChsy5JrHhXIAbtKiwwqPiePl9hz-3ryZqf8b31aoT6vEB1PF0fs9n3AsK-37uBt_KlmggmZV1ku-B-bZ2I- |
| ContentType | Paper Journal Article |
| Copyright | 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
| Copyright_xml | – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS EPD GOX |
| DOI | 10.48550/arxiv.2007.07953 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Statistics arXiv.org |
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2331-8422 |
| ExternalDocumentID | 2007_07953 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS EPD GOX |
| ID | FETCH-LOGICAL-a524-e516e638a27d1e7d823d7590c5b24c004b4b3052a0aec883d34b4060ef9d41093 |
| IEDL.DBID | 8FG |
| IngestDate | Tue Jul 22 21:58:59 EDT 2025 Mon Jun 30 09:19:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a524-e516e638a27d1e7d823d7590c5b24c004b4b3052a0aec883d34b4060ef9d41093 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| OpenAccessLink | https://www.proquest.com/docview/2424569164?pq-origsite=%requestingapplication% |
| PQID | 2424569164 |
| PQPubID | 2050157 |
| ParticipantIDs | arxiv_primary_2007_07953 proquest_journals_2424569164 |
| PublicationCentury | 2000 |
| PublicationDate | 20220123 |
| PublicationDateYYYYMMDD | 2022-01-23 |
| PublicationDate_xml | – month: 01 year: 2022 text: 20220123 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Ithaca |
| PublicationPlace_xml | – name: Ithaca |
| PublicationTitle | arXiv.org |
| PublicationYear | 2022 |
| Publisher | Cornell University Library, arXiv.org |
| Publisher_xml | – name: Cornell University Library, arXiv.org |
| SSID | ssj0002672553 |
| Score | 1.786188 |
| SecondaryResourceType | preprint |
| Snippet | We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which... We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which... |
| SourceID | arxiv proquest |
| SourceType | Open Access Repository Aggregation Database |
| SubjectTerms | Asymptotic methods Bivariate analysis Computer simulation First order algorithms Multivariate analysis Regression models Statistics - Computation Statistics - Methodology |
| SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ3PS8MwFMcfcycvoqhsOiUHr8E0TZr2OMQxBPUyYbeS5scojirbHP75viQdHsRbeaSX9_L6viXvfQJwZ4vSGysbzDSjaVAEVHNtKCu8R_WPMXfhRPf5pZi_iaelXA6AHGZh9Oa73Sc-cLO9T4RBVcn8CI5QKIRh3tdlOpyMKK5-_e861JjR9OfTGuvF7BROeqFHpikyZzBw3TnUU7Ju3926DTBhGiqIJQeqN0H5SGJ_3x7_X1ECktCstEoMD7JJvawOH1apdbUjbUcCbZjYQOgPlu0FLGaPi4c57a84oFpyQZ3MCocZoLmymVO25LlVsmJGNlwY3L-NaDAhuWbambLMbY4WVjDnKysCCOoSht1H50ZAXBhytV5JjxmmeF5lLiuYqfJScFF6N4ZRdEz9mSgW4f5JVUefjWFy8FXd7-BtzeORKIpHcfX_m9dwzMM4AMsozycw3G2-3A0W6V1zGyP1A3vpkjk priority: 102 providerName: Cornell University |
| Title | A likelihood-based approach for multivariate categorical response regression in high dimensions |
| URI | https://www.proquest.com/docview/2424569164 https://arxiv.org/abs/2007.07953 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60QfDmk1Zr2YPXpcnmfRKVPhBai1ToLWx2NyVY0prU4snf7swm1YPgJSSzt3lnZvYbQm5VEGVS-SlYmhQMMwImuJDMDrIMsn-QucaO7mQajF-9p4W_aApuVTNWufeJxlGrtcQaeZ-bFh0kM97d5p3h1ijsrjYrNA6JBYE6Rq2OhqOfGgsPQsiY3bqZaaC7-qL8zHcNcmEY40pky5D-uGITX4YnxJqJjS5PyYEuzsiRGcuU1TlJ7ukqf9OrHMGHGUYcRfco4BTSTWrmAXfwvwspI8XhpmWN-UHLevZVw8uyHnUtaF5QRCemChH9kVJdkPlwMH8cs2YlAhM-95j2nUCDxQgeKkeHKuKuCv3Yln7KPQn6nnopGDAXttAyilzlAsUObJ3FykPgqEvSKtaFbhOq8VKsykI_A4sMuRs72glsGbsRMDrKdIe0DWOSTY16gfsqw8TwrEO6e14ljcZXya98rv4_vibHHK8Q2A7jbpe0tuWHvoHAvk17Rno9Yj0MprMX-Bo9L-A5-Rp8A1K7prg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEG4IxOjNZ0BRe9Bjw273fSDGBwTkEWIw4bbptl2ykSwIiPrj_G9Ou7t6MPHGbdO9zUw7Xzsz34fQlXD9mAsngp3GGVGIgDDKODHcOAb0Dz6XqqI7GLqdZ_tx4kxK6KuYhVFtlcWZqA9qMefqjbxBdYkOwIx9s3glSjVKVVcLCQ2WSyuIpqYYywc7evLzHa5wq2b3Afx9TWm7Nb7vkFxlgDCH2kQ6pishCBn1hCk94VNLeE5gcCeiNocQiuwI9gRlBpPc9y1hwYrhGjIOhJ1xMUEGqNiWHcDdr3LXGo6efh55qOsBZLeyaqrmDmuw5UeyyakTvUBpMlf00p9coBNcex9VRmwhlweoJNNDtKP7QvnqCIW3eJa8yFmi2I-JSnkCFzTkGPAu1g2JG7hwA2bFqrtqmpGO4GXWfCvhY5r12qY4SbGiR8ZCSQqoldUxGm_DWieonM5TWUVYqqlcEXtODEeCR63AlKZr8MDywdN-LGuoqg0TLjLaDSWY6YXaZjVUL2wV5ltuFf4GyOn_vy_Rbmc86If97rB3hvaommcwTEKtOiqvl2_yHFDGOrrIfYlRuOXo-QbSHOPl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+likelihood-based+approach+for+multivariate+categorical+response+regression+in+high+dimensions&rft.jtitle=arXiv.org&rft.au=Molstad%2C+Aaron+J&rft.au=Rothman%2C+Adam+J&rft.date=2022-01-23&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2007.07953 |