A likelihood-based approach for multivariate categorical response regression in high dimensions

We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which predictors are irrelevant, which predictors only affect the marginal distributions of the bivariate response, and which predictors affect both the ma...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Molstad, Aaron J, Rothman, Adam J
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 23.01.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2007.07953

Cover

Abstract We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which predictors are irrelevant, which predictors only affect the marginal distributions of the bivariate response, and which predictors affect both the marginal distributions and log odds ratios. To compute our estimator, we propose an efficient first order algorithm which we extend to settings where some subjects have only one response variable measured, i.e., the semi-supervised setting. We derive an asymptotic error bound which illustrates the performance of our estimator in high-dimensional settings. Generalizations to the multivariate categorical response regression model are proposed. Finally, simulation studies and an application in pan-cancer risk prediction demonstrate the usefulness of our method in terms of interpretability and prediction accuracy. An R package implementing the proposed method is available for download at github.com/ajmolstad/BvCategorical.
AbstractList We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which predictors are irrelevant, which predictors only affect the marginal distributions of the bivariate response, and which predictors affect both the marginal distributions and log odds ratios. To compute our estimator, we propose an efficient first order algorithm which we extend to settings where some subjects have only one response variable measured, i.e., the semi-supervised setting. We derive an asymptotic error bound which illustrates the performance of our estimator in high-dimensional settings. Generalizations to the multivariate categorical response regression model are proposed. Finally, simulation studies and an application in pan-cancer risk prediction demonstrate the usefulness of our method in terms of interpretability and prediction accuracy. An R package implementing the proposed method is available for download at github.com/ajmolstad/BvCategorical.
We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which predictors are irrelevant, which predictors only affect the marginal distributions of the bivariate response, and which predictors affect both the marginal distributions and log odds ratios. To compute our estimator, we propose an efficient first order algorithm which we extend to settings where some subjects have only one response variable measured, i.e., the semi-supervised setting. We derive an asymptotic error bound which illustrates the performance of our estimator in high-dimensional settings. Generalizations to the multivariate categorical response regression model are proposed. Finally, simulation studies and an application in pan-cancer risk prediction demonstrate the usefulness of our method in terms of interpretability and prediction accuracy. An R package implementing the proposed method is available for download at github.com/ajmolstad/BvCategorical.
Author Molstad, Aaron J
Rothman, Adam J
Author_xml – sequence: 1
  givenname: Aaron
  surname: Molstad
  middlename: J
  fullname: Molstad, Aaron J
– sequence: 2
  givenname: Adam
  surname: Rothman
  middlename: J
  fullname: Rothman, Adam J
BackLink https://doi.org/10.48550/arXiv.2007.07953$$DView paper in arXiv
https://doi.org/10.1080/01621459.2021.1999819$$DView published paper (Access to full text may be restricted)
BookMark eNotUMtqwzAQFKWFpmk-oKcKera71sOPYwh9QaCX3I1srW2ljuRKSWj_vkrSy84wDMPO3JFr6ywS8pBBKkop4Vn5H3NMGUCRQlFJfkVmjPMsKQVjt2QRwhYAWF4wKfmM1Es6mi8czeCcThoVUFM1Td6pdqCd83R3GPfmqLxRe6RtPL3zplUj9RgmZwNG0kcejLPUWDqYfqDa7NCelHBPbjo1Blz845xsXl82q_dk_fn2sVquEyWZSFBmOea8VKzQGRa6ZFwXsoJWNky0AKIRDQfJFChsy5JrHhXIAbtKiwwqPiePl9hz-3ryZqf8b31aoT6vEB1PF0fs9n3AsK-37uBt_KlmggmZV1ku-B-bZ2I-
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
EPD
GOX
DOI 10.48550/arxiv.2007.07953
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Statistics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2007_07953
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
EPD
GOX
ID FETCH-LOGICAL-a524-e516e638a27d1e7d823d7590c5b24c004b4b3052a0aec883d34b4060ef9d41093
IEDL.DBID 8FG
IngestDate Tue Jul 22 21:58:59 EDT 2025
Mon Jun 30 09:19:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524-e516e638a27d1e7d823d7590c5b24c004b4b3052a0aec883d34b4060ef9d41093
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2424569164?pq-origsite=%requestingapplication%
PQID 2424569164
PQPubID 2050157
ParticipantIDs arxiv_primary_2007_07953
proquest_journals_2424569164
PublicationCentury 2000
PublicationDate 20220123
PublicationDateYYYYMMDD 2022-01-23
PublicationDate_xml – month: 01
  year: 2022
  text: 20220123
  day: 23
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.786188
SecondaryResourceType preprint
Snippet We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which...
We propose a penalized likelihood method to fit the bivariate categorical response regression model. Our method allows practitioners to estimate which...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Asymptotic methods
Bivariate analysis
Computer simulation
First order algorithms
Multivariate analysis
Regression models
Statistics - Computation
Statistics - Methodology
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ3PS8MwFMcfcycvoqhsOiUHr8E0TZr2OMQxBPUyYbeS5scojirbHP75viQdHsRbeaSX9_L6viXvfQJwZ4vSGysbzDSjaVAEVHNtKCu8R_WPMXfhRPf5pZi_iaelXA6AHGZh9Oa73Sc-cLO9T4RBVcn8CI5QKIRh3tdlOpyMKK5-_e861JjR9OfTGuvF7BROeqFHpikyZzBw3TnUU7Ju3926DTBhGiqIJQeqN0H5SGJ_3x7_X1ECktCstEoMD7JJvawOH1apdbUjbUcCbZjYQOgPlu0FLGaPi4c57a84oFpyQZ3MCocZoLmymVO25LlVsmJGNlwY3L-NaDAhuWbambLMbY4WVjDnKysCCOoSht1H50ZAXBhytV5JjxmmeF5lLiuYqfJScFF6N4ZRdEz9mSgW4f5JVUefjWFy8FXd7-BtzeORKIpHcfX_m9dwzMM4AMsozycw3G2-3A0W6V1zGyP1A3vpkjk
  priority: 102
  providerName: Cornell University
Title A likelihood-based approach for multivariate categorical response regression in high dimensions
URI https://www.proquest.com/docview/2424569164
https://arxiv.org/abs/2007.07953
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60QfDmk1Zr2YPXpcnmfRKVPhBai1ToLWx2NyVY0prU4snf7swm1YPgJSSzt3lnZvYbQm5VEGVS-SlYmhQMMwImuJDMDrIMsn-QucaO7mQajF-9p4W_aApuVTNWufeJxlGrtcQaeZ-bFh0kM97d5p3h1ijsrjYrNA6JBYE6Rq2OhqOfGgsPQsiY3bqZaaC7-qL8zHcNcmEY40pky5D-uGITX4YnxJqJjS5PyYEuzsiRGcuU1TlJ7ukqf9OrHMGHGUYcRfco4BTSTWrmAXfwvwspI8XhpmWN-UHLevZVw8uyHnUtaF5QRCemChH9kVJdkPlwMH8cs2YlAhM-95j2nUCDxQgeKkeHKuKuCv3Yln7KPQn6nnopGDAXttAyilzlAsUObJ3FykPgqEvSKtaFbhOq8VKsykI_A4sMuRs72glsGbsRMDrKdIe0DWOSTY16gfsqw8TwrEO6e14ljcZXya98rv4_vibHHK8Q2A7jbpe0tuWHvoHAvk17Rno9Yj0MprMX-Bo9L-A5-Rp8A1K7prg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEG4IxOjNZ0BRe9Bjw273fSDGBwTkEWIw4bbptl2ykSwIiPrj_G9Ou7t6MPHGbdO9zUw7Xzsz34fQlXD9mAsngp3GGVGIgDDKODHcOAb0Dz6XqqI7GLqdZ_tx4kxK6KuYhVFtlcWZqA9qMefqjbxBdYkOwIx9s3glSjVKVVcLCQ2WSyuIpqYYywc7evLzHa5wq2b3Afx9TWm7Nb7vkFxlgDCH2kQ6pishCBn1hCk94VNLeE5gcCeiNocQiuwI9gRlBpPc9y1hwYrhGjIOhJ1xMUEGqNiWHcDdr3LXGo6efh55qOsBZLeyaqrmDmuw5UeyyakTvUBpMlf00p9coBNcex9VRmwhlweoJNNDtKP7QvnqCIW3eJa8yFmi2I-JSnkCFzTkGPAu1g2JG7hwA2bFqrtqmpGO4GXWfCvhY5r12qY4SbGiR8ZCSQqoldUxGm_DWieonM5TWUVYqqlcEXtODEeCR63AlKZr8MDywdN-LGuoqg0TLjLaDSWY6YXaZjVUL2wV5ltuFf4GyOn_vy_Rbmc86If97rB3hvaommcwTEKtOiqvl2_yHFDGOrrIfYlRuOXo-QbSHOPl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+likelihood-based+approach+for+multivariate+categorical+response+regression+in+high+dimensions&rft.jtitle=arXiv.org&rft.au=Molstad%2C+Aaron+J&rft.au=Rothman%2C+Adam+J&rft.date=2022-01-23&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2007.07953