A Separator Theorem for Hypergraphs and a CSP-SAT Algorithm
We show that for every \(r \ge 2\) there exists \(\epsilon_r > 0\) such that any \(r\)-uniform hypergraph with \(m\) edges and maximum vertex degree \(o(\sqrt{m})\) contains a set of at most \((\frac{1}{2} - \epsilon_r)m\) edges the removal of which breaks the hypergraph into connected components...
        Saved in:
      
    
          | Published in | arXiv.org | 
|---|---|
| Main Authors | , , | 
| Format | Paper Journal Article | 
| Language | English | 
| Published | 
        Ithaca
          Cornell University Library, arXiv.org
    
        10.12.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2331-8422 | 
| DOI | 10.48550/arxiv.2105.06744 | 
Cover
| Abstract | We show that for every \(r \ge 2\) there exists \(\epsilon_r > 0\) such that any \(r\)-uniform hypergraph with \(m\) edges and maximum vertex degree \(o(\sqrt{m})\) contains a set of at most \((\frac{1}{2} - \epsilon_r)m\) edges the removal of which breaks the hypergraph into connected components with at most \(m/2\) edges. We use this to give an algorithm running in time \(d^{(1 - \epsilon_r)m}\) that decides satisfiability of \(m\)-variable \((d, k)\)-CSPs in which every variable appears in at most \(r\) constraints, where \(\epsilon_r\) depends only on \(r\) and \(k\in o(\sqrt{m})\). Furthermore our algorithm solves the corresponding #CSP-SAT and Max-CSP-SAT of these CSPs. We also show that CNF representations of unsatisfiable \((2, k)\)-CSPs with variable frequency \(r\) can be refuted in tree-like resolution in size \(2^{(1 - \epsilon_r)m}\). Furthermore for Tseitin formulas on graphs with degree at most \(k\) (which are \((2, k)\)-CSPs) we give a deterministic algorithm finding such a refutation. | 
    
|---|---|
| AbstractList | Logical Methods in Computer Science, Volume 17, Issue 4 (December 13, 2021) lmcs:7484 We show that for every$r \ge 2$there exists$\epsilon_r > 0$such that any$r$ -uniform hypergraph with$m$edges and maximum vertex degree$o(\sqrt{m})$contains a set of at most$(\frac{1}{2} - \epsilon_r)m$edges the removal of which breaks the hypergraph into connected components with at most$m/2$edges. We use this to give an algorithm running in time$d^{(1 - \epsilon_r)m}$that decides satisfiability of$m$ -variable$(d, k)$ -CSPs in which every variable appears in at most$r$constraints, where$\epsilon_r$depends only on$r$and$k\in o(\sqrt{m})$ . Furthermore our algorithm solves the corresponding #CSP-SAT and Max-CSP-SAT of these CSPs. We also show that CNF representations of unsatisfiable$(2, k)$ -CSPs with variable frequency$r$can be refuted in tree-like resolution in size$2^{(1 - \epsilon_r)m}$ . Furthermore for Tseitin formulas on graphs with degree at most$k$(which are$(2, k)$ -CSPs) we give a deterministic algorithm finding such a refutation. We show that for every \(r \ge 2\) there exists \(\epsilon_r > 0\) such that any \(r\)-uniform hypergraph with \(m\) edges and maximum vertex degree \(o(\sqrt{m})\) contains a set of at most \((\frac{1}{2} - \epsilon_r)m\) edges the removal of which breaks the hypergraph into connected components with at most \(m/2\) edges. We use this to give an algorithm running in time \(d^{(1 - \epsilon_r)m}\) that decides satisfiability of \(m\)-variable \((d, k)\)-CSPs in which every variable appears in at most \(r\) constraints, where \(\epsilon_r\) depends only on \(r\) and \(k\in o(\sqrt{m})\). Furthermore our algorithm solves the corresponding #CSP-SAT and Max-CSP-SAT of these CSPs. We also show that CNF representations of unsatisfiable \((2, k)\)-CSPs with variable frequency \(r\) can be refuted in tree-like resolution in size \(2^{(1 - \epsilon_r)m}\). Furthermore for Tseitin formulas on graphs with degree at most \(k\) (which are \((2, k)\)-CSPs) we give a deterministic algorithm finding such a refutation.  | 
    
| Author | Koucký, Michal Rödl, Vojtěch Talebanfard, Navid  | 
    
| Author_xml | – sequence: 1 givenname: Michal surname: Koucký fullname: Koucký, Michal – sequence: 2 givenname: Vojtěch surname: Rödl fullname: Rödl, Vojtěch – sequence: 3 givenname: Navid surname: Talebanfard fullname: Talebanfard, Navid  | 
    
| BackLink | https://doi.org/10.46298/lmcs-17(4:17)2021$$DView published paper (Access to full text may be restricted) https://doi.org/10.48550/arXiv.2105.06744$$DView paper in arXiv  | 
    
| BookMark | eNotj81Kw0AYRQdRsNY-gCsHXCfOfPOTBFchWCsUFJJ9-JLMNCnNj5NU7NsbW1f3Lg6Xe-7Iddd3hpAHznwZKsWe0f003z5wpnymAymvyAKE4F4oAW7Jahz3jDHQASglFuQlpqkZ0OHUO5rVpnempXbum9Ng3M7hUI8Uu4oiTdJPL40zGh92vWumur0nNxYPo1n955Jk69cs2Xjbj7f3JN56qEB6oY2wVGVguOSVkJxXpYHIWBNILZTmTGAVFTwUquQVWhWiDiqAQhfI0SKKJXm8zJ7N8sE1LbpT_meYnw1n4ulCDK7_Oppxyvf90XXzpxwUhIIDzNQvI4tT0g | 
    
| ContentType | Paper Journal Article  | 
    
| Copyright | 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0  | 
    
| Copyright_xml | – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: http://creativecommons.org/licenses/by/4.0  | 
    
| DBID | 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY GOX  | 
    
| DOI | 10.48550/arxiv.2105.06744 | 
    
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection arXiv Computer Science arXiv.org  | 
    
| DatabaseTitle | Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection  | 
    
| DatabaseTitleList | Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 2331-8422 | 
    
| ExternalDocumentID | 2105_06744 | 
    
| Genre | Working Paper/Pre-Print | 
    
| GroupedDBID | 8FE 8FG ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BGLVJ CCPQU DWQXO FRJ HCIFZ L6V M7S M~E PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS AKY GOX  | 
    
| ID | FETCH-LOGICAL-a524-8f9ac5c7e141d3411dce29efe746356103ad9b1835c1daf58a67d22b6ba1afaa3 | 
    
| IEDL.DBID | 8FG | 
    
| IngestDate | Tue Sep 30 19:29:39 EDT 2025 Mon Jun 30 09:19:05 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a524-8f9ac5c7e141d3411dce29efe746356103ad9b1835c1daf58a67d22b6ba1afaa3 | 
    
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2528312244?pq-origsite=%requestingapplication% | 
    
| PQID | 2528312244 | 
    
| PQPubID | 2050157 | 
    
| ParticipantIDs | arxiv_primary_2105_06744 proquest_journals_2528312244  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20211210 | 
    
| PublicationDateYYYYMMDD | 2021-12-10 | 
    
| PublicationDate_xml | – month: 12 year: 2021 text: 20211210 day: 10  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Ithaca | 
    
| PublicationPlace_xml | – name: Ithaca | 
    
| PublicationTitle | arXiv.org | 
    
| PublicationYear | 2021 | 
    
| Publisher | Cornell University Library, arXiv.org | 
    
| Publisher_xml | – name: Cornell University Library, arXiv.org | 
    
| SSID | ssj0002672553 | 
    
| Score | 1.7817584 | 
    
| SecondaryResourceType | preprint | 
    
| Snippet | We show that for every \(r \ge 2\) there exists \(\epsilon_r > 0\) such that any \(r\)-uniform hypergraph with \(m\) edges and maximum vertex degree... Logical Methods in Computer Science, Volume 17, Issue 4 (December 13, 2021) lmcs:7484 We show that for every$r \ge 2$there exists$\epsilon_r > 0$such that...  | 
    
| SourceID | arxiv proquest  | 
    
| SourceType | Open Access Repository Aggregation Database  | 
    
| SubjectTerms | Algorithms Computer Science - Computational Complexity Computer Science - Logic in Computer Science Graph theory Separators  | 
    
| SummonAdditionalLinks | – databaseName: arXiv.org dbid: GOX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NSwMxEA1tT15EUWm1Sg5eo5tsstnF01IsRfADWqG3JclOVLCt7Fbx5zub3eJBvIbJITPJzDwm84aQy1jLCDSCHAx9KZOJj5g1ScS8sWVqU6dFmBJx_5DMnuXdUi17hO56YUz1_fbV8gPb-hrxiLpCfypln_QxUWiaeR-XbXEyUHF18r9ymGOGpT-uNcSL6QHZ7xI9mreWOSQ9WB-Rm5zOIbBtbyoa2uJhRTFtpDOEg1Ugj64pYntq6GT-xOb5gubvLxsE8K-rY7KY3i4mM9aNL2BGCclSnxmnnAYueYmxgpcORAYetGw44XgUmzKz-KKU46XxKjWJLoWwiTXceGPiEzJYb9YwJFQ4nzmEjQ7hmNRS2Ux6DZmKIYa0BDMiw3Do4qNlqCgafRRBHyMy3umh6G5nXYiG0aUpqcnT_3eekT3R_N_gAl31mAy21SecYwDe2otghR8ACIPw priority: 102 providerName: Cornell University  | 
    
| Title | A Separator Theorem for Hypergraphs and a CSP-SAT Algorithm | 
    
| URI | https://www.proquest.com/docview/2528312244 https://arxiv.org/abs/2105.06744  | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oxMSbz4Ai2YPXAt3udtt4MEh4xAQkggm3ZrsPNZGCLRpP_nZnl6oHEy9N2l7a2e18881Mv0HoMuC0ozmQHIC-yKOh6XipCDueEamK0khy4qZEjCfh6IHeLtiiTLgVZVvlt090jlqtpM2Rt4lVIbFlIHq9fvXs1ChbXS1HaOyiKgB1bHd1NBj-5FhIyCFiDrbFTCfd1Rb5x_N7C3gOa4GfphRiUnfpjyt2-DI4QNWpWOv8EO3o7AjtubZMWRyjqy6eaafOvcqx-41eLzGEmXgE9DF3YtMFFpnCAvdmU2_WnePuyyM89uZpeYLmg_68N_LKcQeeYIR6kYmFZJJrn_oKsMVXUpNYG82p1ZDzO4FQcQpfIJO-EoZFIuSKkDRMhS-MEMEpqmSrTNcQJtLEEmimBPpGOWVpTA3XMQt0oCOlRR3V3Esn662iRWLtkTh71FHj2w5JuZuL5Nf2Z__fPkf7xPZ8-ATcewNVNvmbvgDQ3qRNtzJNVL3pT6b3cDa8W8Bx_Nn_AjXymGM | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLaACcGNpxjPHOBYWNO0aYUQGi-N1zSxIXGr3CQFJNhGN14_jv-GEzo4IHHjmkqRaie2v9j-DLAZSFEzkkAOub7YE1Fe8zKMal6OmY6zWEnupkRcNqPGtTi7CW_G4GPUC2PLKkc20Rlq3VP2jXyHWxYSmwYS-_0nz06NstnV0QgNLEcr6D1HMVY2dpyb91eCcIO90yPS9xbnJ8edw4ZXThnwMOTCi_MEVaik8YWvyaT7WhmemNxIYanb_FqAOsno4IfK15iHMUZSc55FGfqYIwa07ThURCASwn6Vg-Nm6-r7kYdHkkL24Cub6rjDdrB4u3_ZJqAVbpOjEIKCYrf0yxc4B3cyA5UW9k0xC2OmOweTri5UDeZht87axtGD9wrm-vjNI6M4lzUIvxaO7XrAsKsZssN2y2vXO6z-cEtyG949LkDnPySxCBPdXtcsAeMqTxThXEX4UUgRZonIpUnCwAQm1garsOR-Ou1_UWqkVh6pk0cVVkdySMvrNEh_lL_89-cNmGp0Li_Si9Pm-QpMc1uA4nPyNaswMSyezRpFEMNsvdQTg_SfT8YnKaTYOg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Separator+Theorem+for+Hypergraphs+and+a+CSP-SAT+Algorithm&rft.jtitle=arXiv.org&rft.au=Kouck%C3%BD%2C+Michal&rft.au=R%C3%B6dl%2C+Vojt%C4%9Bch&rft.au=Talebanfard%2C+Navid&rft.date=2021-12-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2105.06744 |