A Separator Theorem for Hypergraphs and a CSP-SAT Algorithm

We show that for every \(r \ge 2\) there exists \(\epsilon_r > 0\) such that any \(r\)-uniform hypergraph with \(m\) edges and maximum vertex degree \(o(\sqrt{m})\) contains a set of at most \((\frac{1}{2} - \epsilon_r)m\) edges the removal of which breaks the hypergraph into connected components...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Koucký, Michal, Rödl, Vojtěch, Talebanfard, Navid
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 10.12.2021
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2105.06744

Cover

Abstract We show that for every \(r \ge 2\) there exists \(\epsilon_r > 0\) such that any \(r\)-uniform hypergraph with \(m\) edges and maximum vertex degree \(o(\sqrt{m})\) contains a set of at most \((\frac{1}{2} - \epsilon_r)m\) edges the removal of which breaks the hypergraph into connected components with at most \(m/2\) edges. We use this to give an algorithm running in time \(d^{(1 - \epsilon_r)m}\) that decides satisfiability of \(m\)-variable \((d, k)\)-CSPs in which every variable appears in at most \(r\) constraints, where \(\epsilon_r\) depends only on \(r\) and \(k\in o(\sqrt{m})\). Furthermore our algorithm solves the corresponding #CSP-SAT and Max-CSP-SAT of these CSPs. We also show that CNF representations of unsatisfiable \((2, k)\)-CSPs with variable frequency \(r\) can be refuted in tree-like resolution in size \(2^{(1 - \epsilon_r)m}\). Furthermore for Tseitin formulas on graphs with degree at most \(k\) (which are \((2, k)\)-CSPs) we give a deterministic algorithm finding such a refutation.
AbstractList Logical Methods in Computer Science, Volume 17, Issue 4 (December 13, 2021) lmcs:7484 We show that for every$r \ge 2$there exists$\epsilon_r > 0$such that any$r$ -uniform hypergraph with$m$edges and maximum vertex degree$o(\sqrt{m})$contains a set of at most$(\frac{1}{2} - \epsilon_r)m$edges the removal of which breaks the hypergraph into connected components with at most$m/2$edges. We use this to give an algorithm running in time$d^{(1 - \epsilon_r)m}$that decides satisfiability of$m$ -variable$(d, k)$ -CSPs in which every variable appears in at most$r$constraints, where$\epsilon_r$depends only on$r$and$k\in o(\sqrt{m})$ . Furthermore our algorithm solves the corresponding #CSP-SAT and Max-CSP-SAT of these CSPs. We also show that CNF representations of unsatisfiable$(2, k)$ -CSPs with variable frequency$r$can be refuted in tree-like resolution in size$2^{(1 - \epsilon_r)m}$ . Furthermore for Tseitin formulas on graphs with degree at most$k$(which are$(2, k)$ -CSPs) we give a deterministic algorithm finding such a refutation.
We show that for every \(r \ge 2\) there exists \(\epsilon_r > 0\) such that any \(r\)-uniform hypergraph with \(m\) edges and maximum vertex degree \(o(\sqrt{m})\) contains a set of at most \((\frac{1}{2} - \epsilon_r)m\) edges the removal of which breaks the hypergraph into connected components with at most \(m/2\) edges. We use this to give an algorithm running in time \(d^{(1 - \epsilon_r)m}\) that decides satisfiability of \(m\)-variable \((d, k)\)-CSPs in which every variable appears in at most \(r\) constraints, where \(\epsilon_r\) depends only on \(r\) and \(k\in o(\sqrt{m})\). Furthermore our algorithm solves the corresponding #CSP-SAT and Max-CSP-SAT of these CSPs. We also show that CNF representations of unsatisfiable \((2, k)\)-CSPs with variable frequency \(r\) can be refuted in tree-like resolution in size \(2^{(1 - \epsilon_r)m}\). Furthermore for Tseitin formulas on graphs with degree at most \(k\) (which are \((2, k)\)-CSPs) we give a deterministic algorithm finding such a refutation.
Author Koucký, Michal
Rödl, Vojtěch
Talebanfard, Navid
Author_xml – sequence: 1
  givenname: Michal
  surname: Koucký
  fullname: Koucký, Michal
– sequence: 2
  givenname: Vojtěch
  surname: Rödl
  fullname: Rödl, Vojtěch
– sequence: 3
  givenname: Navid
  surname: Talebanfard
  fullname: Talebanfard, Navid
BackLink https://doi.org/10.46298/lmcs-17(4:17)2021$$DView published paper (Access to full text may be restricted)
https://doi.org/10.48550/arXiv.2105.06744$$DView paper in arXiv
BookMark eNotj81Kw0AYRQdRsNY-gCsHXCfOfPOTBFchWCsUFJJ9-JLMNCnNj5NU7NsbW1f3Lg6Xe-7Iddd3hpAHznwZKsWe0f003z5wpnymAymvyAKE4F4oAW7Jahz3jDHQASglFuQlpqkZ0OHUO5rVpnempXbum9Ng3M7hUI8Uu4oiTdJPL40zGh92vWumur0nNxYPo1n955Jk69cs2Xjbj7f3JN56qEB6oY2wVGVguOSVkJxXpYHIWBNILZTmTGAVFTwUquQVWhWiDiqAQhfI0SKKJXm8zJ7N8sE1LbpT_meYnw1n4ulCDK7_Oppxyvf90XXzpxwUhIIDzNQvI4tT0g
ContentType Paper
Journal Article
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/licenses/by/4.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.2105.06744
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2105_06744
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a524-8f9ac5c7e141d3411dce29efe746356103ad9b1835c1daf58a67d22b6ba1afaa3
IEDL.DBID 8FG
IngestDate Tue Sep 30 19:29:39 EDT 2025
Mon Jun 30 09:19:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a524-8f9ac5c7e141d3411dce29efe746356103ad9b1835c1daf58a67d22b6ba1afaa3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2528312244?pq-origsite=%requestingapplication%
PQID 2528312244
PQPubID 2050157
ParticipantIDs arxiv_primary_2105_06744
proquest_journals_2528312244
PublicationCentury 2000
PublicationDate 20211210
PublicationDateYYYYMMDD 2021-12-10
PublicationDate_xml – month: 12
  year: 2021
  text: 20211210
  day: 10
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7817584
SecondaryResourceType preprint
Snippet We show that for every \(r \ge 2\) there exists \(\epsilon_r > 0\) such that any \(r\)-uniform hypergraph with \(m\) edges and maximum vertex degree...
Logical Methods in Computer Science, Volume 17, Issue 4 (December 13, 2021) lmcs:7484 We show that for every$r \ge 2$there exists$\epsilon_r > 0$such that...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Computer Science - Computational Complexity
Computer Science - Logic in Computer Science
Graph theory
Separators
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NSwMxEA1tT15EUWm1Sg5eo5tsstnF01IsRfADWqG3JclOVLCt7Fbx5zub3eJBvIbJITPJzDwm84aQy1jLCDSCHAx9KZOJj5g1ScS8sWVqU6dFmBJx_5DMnuXdUi17hO56YUz1_fbV8gPb-hrxiLpCfypln_QxUWiaeR-XbXEyUHF18r9ymGOGpT-uNcSL6QHZ7xI9mreWOSQ9WB-Rm5zOIbBtbyoa2uJhRTFtpDOEg1Ugj64pYntq6GT-xOb5gubvLxsE8K-rY7KY3i4mM9aNL2BGCclSnxmnnAYueYmxgpcORAYetGw44XgUmzKz-KKU46XxKjWJLoWwiTXceGPiEzJYb9YwJFQ4nzmEjQ7hmNRS2Ux6DZmKIYa0BDMiw3Do4qNlqCgafRRBHyMy3umh6G5nXYiG0aUpqcnT_3eekT3R_N_gAl31mAy21SecYwDe2otghR8ACIPw
  priority: 102
  providerName: Cornell University
Title A Separator Theorem for Hypergraphs and a CSP-SAT Algorithm
URI https://www.proquest.com/docview/2528312244
https://arxiv.org/abs/2105.06744
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oxMSbz4Ai2YPXAt3udtt4MEh4xAQkggm3ZrsPNZGCLRpP_nZnl6oHEy9N2l7a2e18881Mv0HoMuC0ozmQHIC-yKOh6XipCDueEamK0khy4qZEjCfh6IHeLtiiTLgVZVvlt090jlqtpM2Rt4lVIbFlIHq9fvXs1ChbXS1HaOyiKgB1bHd1NBj-5FhIyCFiDrbFTCfd1Rb5x_N7C3gOa4GfphRiUnfpjyt2-DI4QNWpWOv8EO3o7AjtubZMWRyjqy6eaafOvcqx-41eLzGEmXgE9DF3YtMFFpnCAvdmU2_WnePuyyM89uZpeYLmg_68N_LKcQeeYIR6kYmFZJJrn_oKsMVXUpNYG82p1ZDzO4FQcQpfIJO-EoZFIuSKkDRMhS-MEMEpqmSrTNcQJtLEEmimBPpGOWVpTA3XMQt0oCOlRR3V3Esn662iRWLtkTh71FHj2w5JuZuL5Nf2Z__fPkf7xPZ8-ATcewNVNvmbvgDQ3qRNtzJNVL3pT6b3cDa8W8Bx_Nn_AjXymGM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLaACcGNpxjPHOBYWNO0aYUQGi-N1zSxIXGr3CQFJNhGN14_jv-GEzo4IHHjmkqRaie2v9j-DLAZSFEzkkAOub7YE1Fe8zKMal6OmY6zWEnupkRcNqPGtTi7CW_G4GPUC2PLKkc20Rlq3VP2jXyHWxYSmwYS-_0nz06NstnV0QgNLEcr6D1HMVY2dpyb91eCcIO90yPS9xbnJ8edw4ZXThnwMOTCi_MEVaik8YWvyaT7WhmemNxIYanb_FqAOsno4IfK15iHMUZSc55FGfqYIwa07ThURCASwn6Vg-Nm6-r7kYdHkkL24Cub6rjDdrB4u3_ZJqAVbpOjEIKCYrf0yxc4B3cyA5UW9k0xC2OmOweTri5UDeZht87axtGD9wrm-vjNI6M4lzUIvxaO7XrAsKsZssN2y2vXO6z-cEtyG949LkDnPySxCBPdXtcsAeMqTxThXEX4UUgRZonIpUnCwAQm1garsOR-Ou1_UWqkVh6pk0cVVkdySMvrNEh_lL_89-cNmGp0Li_Si9Pm-QpMc1uA4nPyNaswMSyezRpFEMNsvdQTg_SfT8YnKaTYOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Separator+Theorem+for+Hypergraphs+and+a+CSP-SAT+Algorithm&rft.jtitle=arXiv.org&rft.au=Kouck%C3%BD%2C+Michal&rft.au=R%C3%B6dl%2C+Vojt%C4%9Bch&rft.au=Talebanfard%2C+Navid&rft.date=2021-12-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2105.06744