IRS-User Association in IRS-Aided MISO Wireless Networks: Convex Optimization and Machine Learning Approaches
This paper concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO) downlink wireless communication network. The main objective of the paper is to maximize the sum-rate of all users by solving the joint optimization...
        Saved in:
      
    
          | Published in | arXiv.org | 
|---|---|
| Main Authors | , , , | 
| Format | Paper Journal Article | 
| Language | English | 
| Published | 
        Ithaca
          Cornell University Library, arXiv.org
    
        29.10.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2331-8422 | 
| DOI | 10.48550/arxiv.2210.16667 | 
Cover
| Summary: | This paper concentrates on the problem of associating an intelligent reflecting surface (IRS) to multiple users in a multiple-input single-output (MISO) downlink wireless communication network. The main objective of the paper is to maximize the sum-rate of all users by solving the joint optimization problem of the IRS-user association, IRS reflection, and BS beamforming, formulated as a non-convex mixed-integer optimization problem. The variable separation and relaxation are used to transform the problem into three convex sub-problems, which are alternatively solved through the convex optimization (CO) method. The major drawback of the proposed CO-based algorithm is high computational complexity. Thus, we make use of machine learning (ML) to tackle this problem. To this end, first, we convert the optimization problem into a regression problem. Then, we solve it with feed-forward neural networks (FNNs), trained by CO-based generated data. Simulation results show that the proposed ML-based algorithm has a performance equivalent to the CO-based algorithm, but with less computation complexity due to its offline training procedure. | 
|---|---|
| Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50  | 
| ISSN: | 2331-8422 | 
| DOI: | 10.48550/arxiv.2210.16667 |