PSDVec: a Toolbox for Incremental and Scalable Word Embedding

PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Li, Shaohua, Zhu, Jun, Miao, Chunyan
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 10.06.2016
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1606.03192

Cover

Abstract PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners.
AbstractList PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners.
PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the semantic/syntactic regularities between the words. PSDVec implements a word embedding learning method based on a weighted low-rank positive semidefinite approximation. To scale up the learning process, we implement a blockwise online learning algorithm to learn the embeddings incrementally. This strategy greatly reduces the learning time of word embeddings on a large vocabulary, and can learn the embeddings of new words without re-learning the whole vocabulary. On 9 word similarity/analogy benchmark sets and 2 Natural Language Processing (NLP) tasks, PSDVec produces embeddings that has the best average performance among popular word embedding tools. PSDVec provides a new option for NLP practitioners.
Author Zhu, Jun
Li, Shaohua
Miao, Chunyan
Author_xml – sequence: 1
  givenname: Shaohua
  surname: Li
  fullname: Li, Shaohua
– sequence: 2
  givenname: Jun
  surname: Zhu
  fullname: Zhu, Jun
– sequence: 3
  givenname: Chunyan
  surname: Miao
  fullname: Miao, Chunyan
BackLink https://doi.org/10.48550/arXiv.1606.03192$$DView paper in arXiv
https://doi.org/10.1016/j.neucom.2016.05.093$$DView published paper (Access to full text may be restricted)
BookMark eNotj01LAzEURYMoWGt_gCsDrqe-JJNkRnAhtWqhoNCiy-HlY2TKNKmZVuq_d2xd3c3h3nsuyGmIwRNyxWCcF1LCLaZ98z1mCtQYBCv5CRlwIVhW5Jyfk1HXrQCAK82lFANy_7Z4fPf2jiJdxtiauKd1THQWbPJrH7bYUgyOLiy2aFpPP2JydLo23rkmfF6Ssxrbzo_-c0iWT9Pl5CWbvz7PJg_zDCUXmcyNE7yw4HSJyhWisEaCU1aXmvtaGQZKGHQ-z8H7vGboUCqsrRJQSq3EkFwfaw9u1SY1a0w_1Z9jdXDsiZsjsUnxa-e7bbWKuxT6TxWHfkazQgvxC9TCVGo
ContentType Paper
Journal Article
Copyright 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2016. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.1606.03192
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (subscription)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1606_03192
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a523-54bd328c0d79a6d838cb50d6c7972ef6b1063bade440ee4f1ada56afc63095763
IEDL.DBID BENPR
IngestDate Wed Jul 23 00:24:04 EDT 2025
Mon Jun 30 09:36:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a523-54bd328c0d79a6d838cb50d6c7972ef6b1063bade440ee4f1ada56afc63095763
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2079771873?pq-origsite=%requestingapplication%&accountid=15518
PQID 2079771873
PQPubID 2050157
ParticipantIDs arxiv_primary_1606_03192
proquest_journals_2079771873
PublicationCentury 2000
PublicationDate 20160610
2016-06-10
PublicationDateYYYYMMDD 2016-06-10
PublicationDate_xml – month: 06
  year: 2016
  text: 20160610
  day: 10
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2016
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.596738
SecondaryResourceType preprint
Snippet PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the...
PSDVec is a Python/Perl toolbox that learns word embeddings, i.e. the mapping of words in a natural language to continuous vectors which encode the...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Computer Science - Computation and Language
Distance learning
Embedding
Machine learning
Mapping
Natural language
Natural language processing
Perl
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEA61Jy-iqLRaJQevwd3NY3cFD6ItRfABrdrbkskDBO2Wtkp_vpPsFg_iNUwgmcxkvkkyXwi58E45z61mKYeECZ1Jpq3SzKvSgy2sd_EzmIdHNX4R9zM56xC6rYXRy837d8MPDKvLVIW7ArQS3GR3ECiEYt6nWXM5Gam4WvlfOcSYsenP1hrjxWif7LVAj940K3NAOm5-SK6fJ3evzlxRTad1_QH1hiJopOikzTEddsDMnk5QcaGkib5hakiHn-BsCDFHZDoaTm_HrP3AgGnM75gUYHlWmMTmpVa24IUBmVhl8jLPnFeA6RgHbZ0QiXPCp9pqqbQ3iiPwQcc_Jt15PXc9Qr3MINegC5QSUJhSeCGskWACy7At-qQXp10tGo6KKmikihrpk8FWE1Vrn6sqS3AMGJZyfvJ_z1Oyi_BAhYdRaTIg3fXyy51hCF7DeVyHHwc4hl8
  priority: 102
  providerName: Cornell University
Title PSDVec: a Toolbox for Incremental and Scalable Word Embedding
URI https://www.proquest.com/docview/2079771873
https://arxiv.org/abs/1606.03192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RfDmEx9V9uA1miab7VYogtpWBGuxVXsLsy8QalPbKp787c5uWz0IXgJ5XPJtMvPN7Mw3ACfOCutSg1E1VXHEMckiNAIjJ-pOGWmcDcNg7jri5pHfDrLBCnSWvTC-rHJpE4OhNoX2OXKfCSGqUpW19GL8FvmpUX53dTlCAxejFUwjSIytQjnxylglKF82O92Hn6xLImrEodP59mYQ8zrDyefLh0-yiFPf0ZMQSw2X_hjn4HFaG1Du4thONmHFjrZgLRRq6uk2NLq96yerzxmyflEMVfHJiHYy-s3niT4cMhwZ1iPofVMUe6bgkjVflTXeSe1Av9XsX91EixEIEVKEGGVcmTSROja1OgojU6lVFhuhCYvEOqEooEsVGst5bC13VTSYCXRapESdyHTsQmlUjOweMJclqoYKJT3FldR17jg3OlPa6xQbuQ974bXz8VzlIveI5AGRfagskcgXX_g0_12Pg_9vH8I6kQzhy6uqcQVKs8m7PSJHPlPHsCpb7ePFGtFZ-35Ax7uv5jfpyKDJ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5Roqq9FUpFKI89tEdTx7ve2JUiJCAovKKopG1u1uxLQgpxmtAWfhz_jdmNDQckbrnali1_szvzzew8AL44K63jBqMWV3EkMEkjNBIjJ3OnTGacDcNgLvuy91OcjdLRCjzUtTA-rbLWiUFRm1L7GLmPhBBVaWVtfjD9E_mpUf50tR6hgdVoBdMJLcaqwo5ze_-fXLh55_SY5P01SU66w6NeVE0ZiJCcsCgVyvAk07Fp5yhNxjOt0thITZ9LrJOKfCau0FghYmuFa6HBVKLTkhM7od1Jr30DDcFFTr5f47DbH_x4CvIksk2UnS9OU0PvsG84u7v-52M6ct8XECVEisOlF7YgGLiTD9AY4NTO1mDFTtbhbcgL1fOP0BlcHf-y-jtDNizLsSrvGLFcRlplEVfEMcOJYVckaV-DxX4TEKx7o6zxNnEDhsvA4hOsTsqJ3QTm0kS1UWFGTwmV6Vw4IYxOlfZtkU3WhM3w28V00VSj8IgUAZEmbNdIFNWGmhfP4t96_fYevOsNLy-Ki9P--Wd4T_xG-syuVrwNq7ezv3aHOMSt2q0kxaBY8tp4BE_G2jE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSDVec%3A+a+Toolbox+for+Incremental+and+Scalable+Word+Embedding&rft.jtitle=arXiv.org&rft.au=Li%2C+Shaohua&rft.au=Zhu%2C+Jun&rft.au=Miao%2C+Chunyan&rft.date=2016-06-10&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1606.03192