D3p -- A Python Package for Differentially-Private Probabilistic Programming

We present d3p, a software package designed to help fielding runtime efficient widely-applicable Bayesian inference under differential privacy guarantees. d3p achieves general applicability to a wide range of probabilistic modelling problems by implementing the differentially private variational inf...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Prediger, Lukas, Loppi, Niki, Kaski, Samuel, Honkela, Antti
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 15.09.2021
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2103.11648

Cover

Abstract We present d3p, a software package designed to help fielding runtime efficient widely-applicable Bayesian inference under differential privacy guarantees. d3p achieves general applicability to a wide range of probabilistic modelling problems by implementing the differentially private variational inference algorithm, allowing users to fit any parametric probabilistic model with a differentiable density function. d3p adopts the probabilistic programming paradigm as a powerful way for the user to flexibly define such models. We demonstrate the use of our software on a hierarchical logistic regression example, showing the expressiveness of the modelling approach as well as the ease of running the parameter inference. We also perform an empirical evaluation of the runtime of the private inference on a complex model and find a \(\sim\)10 fold speed-up compared to an implementation using TensorFlow Privacy.
AbstractList We present d3p, a software package designed to help fielding runtime efficient widely-applicable Bayesian inference under differential privacy guarantees. d3p achieves general applicability to a wide range of probabilistic modelling problems by implementing the differentially private variational inference algorithm, allowing users to fit any parametric probabilistic model with a differentiable density function. d3p adopts the probabilistic programming paradigm as a powerful way for the user to flexibly define such models. We demonstrate the use of our software on a hierarchical logistic regression example, showing the expressiveness of the modelling approach as well as the ease of running the parameter inference. We also perform an empirical evaluation of the runtime of the private inference on a complex model and find a \(\sim\)10 fold speed-up compared to an implementation using TensorFlow Privacy.
Proceedings on Privacy Enhancing Technologies, 2022(2), 407-425 We present d3p, a software package designed to help fielding runtime efficient widely-applicable Bayesian inference under differential privacy guarantees. d3p achieves general applicability to a wide range of probabilistic modelling problems by implementing the differentially private variational inference algorithm, allowing users to fit any parametric probabilistic model with a differentiable density function. d3p adopts the probabilistic programming paradigm as a powerful way for the user to flexibly define such models. We demonstrate the use of our software on a hierarchical logistic regression example, showing the expressiveness of the modelling approach as well as the ease of running the parameter inference. We also perform an empirical evaluation of the runtime of the private inference on a complex model and find a$\sim$ 10 fold speed-up compared to an implementation using TensorFlow Privacy.
Author Prediger, Lukas
Honkela, Antti
Kaski, Samuel
Loppi, Niki
Author_xml – sequence: 1
  givenname: Lukas
  surname: Prediger
  fullname: Prediger, Lukas
– sequence: 2
  givenname: Niki
  surname: Loppi
  fullname: Loppi, Niki
– sequence: 3
  givenname: Samuel
  surname: Kaski
  fullname: Kaski, Samuel
– sequence: 4
  givenname: Antti
  surname: Honkela
  fullname: Honkela, Antti
BackLink https://doi.org/10.48550/arXiv.2103.11648$$DView paper in arXiv
https://doi.org/10.2478/popets-2022-0052$$DView published paper (Access to full text may be restricted)
BookMark eNotj0trAjEUhUNpodb6A7pqoOvY5OYx41K0LxA6C_fDjd7Y2HHGZkap_74-ujoc-Dic745d101NjD0oOTS5tfIZ02_cD0FJPVTKmfyK9UBrJXIDcMsGbbuWUoLLwFrdY7Op3nIh-JgXh-6rqXmBi29cEQ9N4tMYAiWqu4hVdRBFinvsiBep8ehjFdsuLk5tlXCzifXqnt0ErFoa_GefzV9f5pN3Mft8-5iMZwItgAjSW7vMNZLxmUJH0ikcyaAzl9PI6KWhLPcQlDJgPJCTDp0f0XIR0FqvdJ89XmbPquU2xQ2mQ3lSLs_KR-LpQmxT87OjtivXzS7Vx08lWGkUKCtB_wHcY1n1
ContentType Paper
Journal Article
Copyright 2021. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://creativecommons.org/licenses/by-nc-sa/4.0
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://creativecommons.org/licenses/by-nc-sa/4.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
EPD
GOX
DOI 10.48550/arxiv.2103.11648
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (subscription)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv Statistics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2103_11648
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
EPD
GOX
ID FETCH-LOGICAL-a522-f0b55d83ae4b71a6e061a90f3768e943d4e78b2f11424b2e606a6b9edcfa55b13
IEDL.DBID GOX
IngestDate Tue Oct 28 17:59:33 EDT 2025
Mon Jun 30 09:27:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-f0b55d83ae4b71a6e061a90f3768e943d4e78b2f11424b2e606a6b9edcfa55b13
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/2103.11648
PQID 2504121502
PQPubID 2050157
ParticipantIDs arxiv_primary_2103_11648
proquest_journals_2504121502
PublicationCentury 2000
PublicationDate 20210915
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 20210915
  day: 15
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2021
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.7731906
SecondaryResourceType preprint
Snippet We present d3p, a software package designed to help fielding runtime efficient widely-applicable Bayesian inference under differential privacy guarantees. d3p...
Proceedings on Privacy Enhancing Technologies, 2022(2), 407-425 We present d3p, a software package designed to help fielding runtime efficient...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Bayesian analysis
Computer Science - Cryptography and Security
Computer Science - Learning
Modelling
Privacy
Probabilistic models
Programming languages
Run time (computers)
Software
Statistical analysis
Statistical inference
Statistics - Machine Learning
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66IXjzJ5tOycFrXJumaXIScc4hKj1M2K0kTQLi3Go3xf335mWdHgQvhTbQw0vyvZeX770PoQuTSpdRromJ_YM5qokuJSU8U1RJLXQkoFD48YmPntn9JJ00CbdFQ6vcYGIAajMvIUfeh1Zb0AkholfVOwHVKLhdbSQ0tlHbO2oJq1oM735yLJRnPmJO1peZoXVXX9VfL5-X_pyTeLDgoPrTDp_-QHHwL8M91M5VZet9tGVnB2gn0DLLxSF6GCQVJgRf43wFRf44V-WrRwDsQ008aLRN_B6dTlckr0GozOK89lsUKK_QgRnegH_15j3UERoPb8c3I9LoHxDloyLiIp2mRiTKMp3FilvvepWMnIcEYSVLDLOZ0NRBNSzT1PqjiOJaWlM6laY6To5Razaf2Q7CkmmhHI2VsoYZa4XWivu_OK6VcYJ2USdYoajWLS4KMFARDNRFvY1himZ5L4rfyTj5f_gU7VIggYDmQtpDrWX9Yc-8F1_q8zBV3zc3nKk
  priority: 102
  providerName: ProQuest
Title D3p -- A Python Package for Differentially-Private Probabilistic Programming
URI https://www.proquest.com/docview/2504121502
https://arxiv.org/abs/2103.11648
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3BSsNAEB3aevEiikqrtezBazDdbDabY7WtRWgNUqG3sNPsgqi1pFXsRfwH_9AvcTZJ8SBeFhI2Oczuy7wl894AnGdhbCMu0cu6NAjL0cN5zD0Zaa5jVOgrJxQeT-ToXtzMwlkN2FYLo_P3h7fSHxhXF3QeCQjUUqg61IkoODHv7az8OVlYcVXzf-cRxyxu_fm0FvliuA97FdFjvXJlDqBmFocw7gdL9v35xXos2TjVPkv0_JEgzYg7sn7VrIRA9_S08ZLcdR4zLMkJc66G1VkquytXUPVMKecIpsPB9GrkVQ0NPE00x7M-hmGmAm0ERl0tDeVSHfuWMK5MLIJMmEght07eKpAbOltoibHJ5laHIXaDY2gsXhamCSwWqLTlXa1NJjJjFKKW9BYrUWdW8RY0izCky9KzInURSosItaC9jUxa7ddV6ozMnM-Ez0_-f_IUdrmr6HANFMI2NNb5qzmjlLzGDtTV8LoDO5eDSXLXKVaJxvHH4AfsSpFt
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RVqi9QaGC8uVDezTsOo6THFAFLGgpyypCW4lbNI5tCZUuS5aP7o_jvzETsnBA4sYlUhLJh7H9ZsaeeQ_gh4uzkChjpevQQwdlpS0zJU2CCjOb2nbKjcJnA9P7o39fxBdz8DjrheGyyhkm1kDtrks-I99lqi1mQmirX-MbyapRfLs6k9DARlrB7dUUY01jx6mfPlAKN9k76dJ8_1Tq-Gh42JONyoBEij1kaNs4dmmEXtukg8aTg8OsHWjjpT7TkdM-Sa0K3HOqrfIU8KOxmXdlwDi2nYiG_QQtHemMcr_WwdEgP3855FEmoZA9er5NrbnDdrH6f3m_Q4lWRGhlWHaoVX964wtqB3e8CK0cx75agjk_-goLdV1oOVmGfjcaCynFvsinzDIgciz_EgQJinVFtxFXIZC4uprKvGKlNC_yijCCa26ZAprfuADsH7nIFRh-hGm-wfzoeuRXQWTaphhUB9E77bxPrUVDowRj0YVUrcFqbYVi_MyxUbCBitpAa7AxM0zR7K9J8boavr__exs-94Zn_aJ_Mjhdhy-KK1JYACLegPnb6s5vUkhxa7eaiRNQfPBSeQIZXN9K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D3p+--+A+Python+Package+for+Differentially-Private+Probabilistic+Programming&rft.jtitle=arXiv.org&rft.au=Prediger%2C+Lukas&rft.au=Loppi%2C+Niki&rft.au=Kaski%2C+Samuel&rft.au=Honkela%2C+Antti&rft.date=2021-09-15&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2103.11648